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CONVERSES OF LOEWNER-HEINZ INEQUALITY VIA
OPERATOR MEANS

TAKEAKI YAMAZAKI AND MITSURU UCHIYAMA

ABSTRACT. Let f(t) be an operator monotone function. Then A < B implies
f(A) < f(B), moreover f(A) < f(B) implies f(A)~§f(B) < I. But the converse
implications are not true. We will show that if (I + £B)~§(I + £A4) < I for all
0 < k < n, then A < B. Moreover, we extend it to multi-variable matrices means.

1. INTRODUCTION

In what follows, H means a complex Hilbert space with inner product (-, ), and an
operator means a bounded linear operator on H. An operator A is said to be positive
(denoted by A > 0) if and only if (Az,z) > 0 for all z € H, and A < B means B — A
is positive. Moreover, an operator A is said to be positive definite (denoted by A > 0)
if A is positive and invertible.

A real continuous function f(t) defined on a real interval I is said to be operator
monotone, provided A < B implies f(A) < f(B) for any two bounded self-adjoint
operators A and B whose spectra are in I. Typical examples of operator monotone
functions are t* for 0 < a < 1 and log ¢t. Lowener-Heinz inequality means that A* < B®
for 0 < a < 1if A < B for positive operators A and B. A continuous function f defined
on I is called an operator convezx functionon I if f(sA+(1—s)B) < sf(A)+(1-s)f(B)
for every 0 < s < 1 and for every pair of bounded self-adjoint operators A and B
whose spectra are both in I. An operator concave function is likewise defined. If
I = (0,00), then f(t) is operator monotone on I if and only if f(¢) is operator
concave and f(oo) > —oo ([14], cf.[5]). This implies that every operator monotone
function on (0, 00) is operator concave. Then the associated operator mean AcB is
defined and represented as

(1.1) AoB = AT f(A"1BA™1)A?

if A is invertible [7]. o is said to be symmetric if AcB = Bo A for every A, B. o is
symmetric if and only if f(¢) = ¢f(1/t). When f(t) =t* (0 < a < 1), the associated
mean is denoted by Afl, B and called weighted geometric mean. In particular, the case

of a = 1 is the usual geometric mean and simply denoted by A§B. The arithmetic
mean V and the harmonic mean ! are naturally defined. It is well-known that A!B <
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A§B < AVB for every A, B > 0; of course these are symmetric. It is well-known that
0 < A < B implies that B~§4 < A4 = I, but the converse does not hold.

In the recent years, geometric means of n-matrices are studied by many authors.
Let Pr, be the set of all m~by—m positive definite matrices. Define w = (wy, ..., wy,) be
a probability vector, i.e., w; > 0fori=1,..,n and Y7, w; = 1. Let A, be the set of
all probability vectors. For w = (wy, ..., w,) € A,, the Karcher mean Alw; Ag, .. Ay)
of Ai,..., A, € P, is characterized as the unique positive definite solution of the
matrix equation [12]

n

Z w; log(X_TlAiX:%) = 0.

i=1
fw= (hl—, cee %) € Ap, then the Karcher mean is simply written by A(Ay, ..., Ap). In
the two matrices case, A, B € P,,, the Karcher mean coincides with the weighted geo-
metric mean. We note that the above matrix equation is called the Karcher equation
[6]. The Katcher mean inherits many properties of geometric means (see [2, 12, 9, 3]).
For instance, Y i, w;4; < I implies A(w; A1, ..., 4,) < I for w = (W1, ooy wp) € Ay, in
(11, 16].

Related to the Karcher mean, the power mean is also discussed in [10]. The power
mean of n-matrices is inspired from the power mean of positive numbers. For ¢ €
[-1,1\{0} and w = (wy, ..., w,) € A,, the power mean Py(w; Ay, ..., Ay) of Ay, ..., A, €
Pr, is defined as the unique positive definite solution of the matrix equation

(1.2) > wiXhA) = X,
=1

where ift € [~1,0), X#,4; means X2 (X_TlAiX_Tl)tX%, but it is not an operator mean.
fw=(3 ., %) € Ay, then the power mean is simply written by P,(Ay, ..., 4,). It is
shown. in [10] that the power mean of two matrices, A, B € P,,, coincides with

1
P(1 — w,w; A, B) = A} ((1 —w)I + w(A—‘%BA%l)f) LS

The power mean interpolates among the arithmetic, Karcher (geometric) and har-
monic means. More precisely, the Karcher mean can be considered as the limit point
of the power mean as t — 0, it is the same situation to the number case.

One of the author has obtained the following result:

Theorem A ([15]). Let f(t) be a non-constant operator monotone function with
f(1) > 0. Then there exists {t,}°, C R so that t, | 0;

A<B < fla+t,4) < fla+t.B).

Here we observe that for positive invertible operators A and B, the following im-
plications hold:

(13) A<B = A*<B*a€(0,1) = logA<logB = A{B ' <.

Hence, we have the following question:
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Question. Let f(t) be a non-constant operator monotone function with f(1) > 0.
Then does there exist {t,}°>, C R so that t, | 0,

A<B < fla+t Alf(a+t,B)t<I?

The aim of this paper is to give an answer for the above question, and investigate
the converse of Loewner-Heinz inequality in the view point of operator mean. It is
organized as follows: In Section 2, we shall give an answer for the question, firstly.
Then we shall show that if f(AA + I)of(AB + 1) < I for all operator mean satisfying
| < # < V and all sufficiently small A > 0 if and only if A < B. In Section 3, we
will extend the results obtained in Section 2 in the case of the power means and the
Karcher mean.

2. OPERATOR INEQUALITY AND OPERATOR MEAN

We begin by recalling a few results which we will need later. If AfB < I, then
APEBP < [ for all p > 1 (we call it Ando-Hiai inequality [1]). Actually, AP§B? is
decreasing for p > 1 if A§B < I (see Corollary 3.3 of [13]). The following well-known
result for positive invertible operators is essential (see [4]):

(2.1) logA<logB <= B PHAP <] forallp>0.

In this paper we deal with a non-constant operator monotone function f(t) defined
on a neighborhood of ¢t = t;. However we assume t, = 1 for simplicity. In this case,
for every bounded self-adjoint operator A the function f(AA 4 I) is well-defined for
sufficiently small \. We also note that f'(1) > 0.

At the beginning of this section we give an answer for the question introduced in
the previous section:

Answer. For positive invertible operators A and B,
-1
A< B < <I+§A)ﬁ(I+§B> <l

forall0 < k <mn.
To prove this, we shall use so-called Ando-Hiai inequality: For positive invertible
operators A and B,
A, B<I = AM4,B? <1

holds for all p > 1.
Proof. (=>): Obvious by (1.3). (<=): By Ando-Hiai inequality,

(I+—§A> ﬁ<I+§B) <I foralln> 1.

Letting n — oo, we have
ek4fe *B < T for all k > 0.
It is equivalent to loge4 < loge?, ie., A < B. 0O

We have the following results by investigating the above discussion.



Theorem 1. Let f(t) be an operator monotone function on (0, 00) with f(1) =1, and
let A and B be bounded self-adjoint operators. Let o be an operator mean satisfying
'<o < V. Then A < B if and only if FAA+ D)o f(=AB+1) < I for all sufficiently
small A > 0.

To prove Theorem 1, we will use the following well-known lemma.

Lemma 2. For positive invertible operators Ay, ..., A, and w = (w, ..., wy) € Ay,

},i{% (; wﬂf) = exp (Z w; log Ai) ,

i=1

uniformly, i.e., | 5, wiAf)% —exp (3 wilog 4;) || = 0 as p \, 0.

Proof of Theorem 1. Assume A < B. Since ()‘AH)“L,;_AB 1) < T holds for every posi-
tive number A and f(1) = 1, we have

I> f(()\A + 1) +2(—-/\B + I)) > FOAA+T) +2f(—)\B +1I)

= fAA+D)Vf(=AB+1I)> f(AA+ D)o f(=AB + 1),
where the second inequality is due to the operator concavity of f. Assume conversely
f(AA+ o f(-=AB+1I) < I. By the assumption we have f(AA + I)!f(—~\B +I)<I.

. A,
Since t» is operator concave for 0 < A < p, we observe
—A

(f(AA +D)F + f(-AB+ I);Ae) 7 (f(/\A+ N+ f(—AB+I)—1>—1 -

2 2
and then

<f(_)\A+I)jAZ +f(—,\B+I)‘T”) g <7
> <I

In virtue of
(2.2) lim || F(AA + ' —exp(f'(1)A)|| =0,

we obtain

2
Letting p — 0, by Lemma 2, it yields exp(@(A —B)) < I. Thisimplies A< B. O

We remark that a symmetric operator mean o, that is AcB = BoA for every A
and B, satisfies | < o < V.

Theorem 3. Let f(t) be a non-constant operator monotone function on (0, 00) with
f(1) =1, and let A and B be bounded self-adjoint operators. Then the following are
equivalent:
(i) A<B,
(i) =2 < |fFOA+ D= z||f(~AB + D)7 a|| for all z € H and all sufficiently
small X > 0,

-1
~F(pA 1 F()pBN 7
(e te ) <1 asix—0.
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(iii) ||z||? < |le~?“z||||ePPx|| for all z € H and all p > 0.
To prove Theorem 3, we need the following lemma:

Lemma 4. Let S, ..., S, be operators on H. Then the following are mutually equiv-
alent:

1 n
M I<- > " :5;S; for allty, ..., tn > 0 with [[ t; = 1,
=1

(ii) |lz||" < H |Siz|| for allz € H.

i=1

Proof. Assume (i). Notice that each S; is non-singular: indeed, if S;z = 0 for a vector
z € H, then there is a {t;}}-; such that

n

Z %(S;’S,-x,x) < (z,z)

i=1
and [], ¢t = 1. Since

for all z € H, by putting ¢; as

T TS S,y

we have
n tz
<> (s n
(x,a:)_iﬂnSwa H||Sxi|

We consequently get (ii). Next assume (ii). For t1, oy tn > 0 with [, & = 1, we

have
]2 <H||S:1:||n —Ht (SzSiz, z)n < Z (S: Sz, z)
i=1 i=
This yields (i). O

Proof of Theorem 8. By Theorem 1, A < B is equivalent to f(AA+Dif(—AB+1) < I
for all sufficiently small A > 0. Then we have

I> fOA+DEf(-AB+1I) = (tfOA+ D)} (-1- F(=AB + I))

> (tf(OVA + D) (% f(-AB+ 1))

for all £ > 0, and obtain

LOA+ DT +tf(-AB+ 1)

I<
- 2




for all ¢ > 0. By Lemma 4, we have (ii). Next we assume (ii). By Lemma 4
WOA+D+tf(-AB+ 1)
2
A
_ | GF0A+ D+ (MBI
- 2

I<

for all 0 < A < p and all ¢ > 0, where the last inequality follows from operator
A
concavity of t» for A/p € [0,1]. Then we have

p < BR0A+ D)3 —2|-txf(—/\B+I)"T.

It is equivalent to
lel* < IfF (A + D F || f(-AB + DRl
for all 0 < A < p and z € H by Lemma 4. Letting A\ — 0, we have (iii) by (2.2) and
replacing %1—) into p. Lastly, we will prove (iii) — (i). By Lemma 4, (iii) implies
e—sz + e2pB

I< — ——

—_ 2 ?
and then .
—2pA 2B\ p
I< (e +e ) P

2
for all p > 0. By Lemma 2, we have
1 —2A 1 2B
Igexp<0ge ;_ o8¢ ) = exp(B — A).

This implies A < B. O

Corollary 5. Let A and B be positive invertible operators. Then log A < log B if and
only if ||z||? < ||A~Pz||||BPz| for allp >0 and all z € H.

Corollary 5 has been already shown in [17] in the case of A = |T*| and B = |T|
(i.e., T is log-hyponormal).

3. KARCHER AND POWER MEANS OF MULTI-VARIABLE MATRICES

In this section, we will discuss about only m-by—m matrices, hence H means C™.
Before stating our discussion, we shall introduce some properties of power mean for
the reader’s convenience. Let w = (wy,...,w,) € A, and Ay,..., A, € P,. By the
definition of power mean (1.2), we have

Pi(w; Ay, ..., Ap) = ZwiAi and Py(w; A1, ..., Ap) = Py(w; AT, . AT
i=1

for t € (0, 1]; especially

n -1
P_l(w;Al, ...,An) = (Z ’LUzA,L_l) .
i=1

131



132

Moreover, we have

Lemma 6 ([8, 10, 11]). The power mean P,(w; Ay, ..., A,) 1s increasing fort € [—1,1]\
{0}, and

%il% Pi(w; Ay, ..y Ap) = Aw; Ay, .., Ay).

Henceforth, we use the symbol Py(w; A1, ..., A,) instead of A(w; Ay, ..., Ay).

Theorem 7. Let Ay, ..., A, be Hermitian matrices, and w = (wy, ..., w,) € Ap. Let
f(t) be a non-constant operator monotone function on (0,00) with f(1) = 1. Then
the following are equivalent:

(1) i’wiA,; S 0,
i=1

(i) Pi(w; fAA1+ D)y, fOMAR+ 1)) = Zwif()\Ai + I) < I for all sufficiently
=1
small X\ > 0, l
(iii) for each t € [-1,1], Py(w; f(AA1 + 1), ..., f(AMAn + I)) < I for all sufficiently
small A > 0.

Proof. Proof of (i) — (ii). It is obvious that (i) implies > . ; w;(AA; + 1) < I for all
A > 0. Since f(t) is an operator concave function with f(1) = 1, we have

I=fI)>f (iwi()‘Ai+I)> > iwif()\ArFI)-

i=1
(ii) — (iii) is given by only using Lemma 6, that is,

Po(w; fAAL + 1), .., f(AAn + 1)) < Pi(w; f(AAL + 1), .., f(AAR + 1))

= iw,-f(mi +I)<I.

i=1

We shall prove (iii) — (i). By Lemma 6, we have

(anwif(mi + I)‘l) < Bw; fQA + 1), ., fQA + 1)) < L.

Then we have

1>

r

I< En:wz‘f(/\fli +I)7* < (2": w; f(AA; +I)_§>
Py =1

for 0 < A < p. Hence we have

I< (ijwif(mwf)-‘f)
i=1

3=



By (2.2), we have

1
n P
I< (Z wie_pf'(l)A") as A — 0.
=1

By Lemma 2, we have

n

i=1
that is, (i). O

We especially consider the probability vector w = (%

variable case of Theorem 3.

., 2) to obtain a multi-

Theorem 8. Let A, ..., A, be Hermitian matrices, and let f be a non-constant oper-
ator monotone function on (0,00) with f(1) = 1. Then the following are equivalent:

6> A <o
=1

(i) [|z||™ < H IFAA; + 1) z|| for all sufficiently small A > 0 and all z € H,

i=1

(iii) ||z||™ < H le™P4iz|| for all z € H and all p > 0.

i=1
Proof of Theorem 8. Assume (i). We have
AFOAAL+ D), FOA + D)) < T

for all sufficiently small A > 0 by Lemma 6 and Theorem 7. Let ¢4, ..., t, be positive
numbers satisfying [;, t; = 1. Using harmonic-geometric means inequality, we have

I>A(f(AA +1), ..., f(AAn + 1))

" -1
= AT AL+ ), oo £ f AR 4+ 1)) > (Z "o+ I)-l) |

i=1

that is,
I<Yy ZfQ4+D)
< ;nf(x +1)
Hence we have (ii) by Lemma 4. We next assume (ii). By Lemma 4, we have
A
1 n 1 mn —-p p P
1<~ JOA+DI< | = tr fOA+ D>
<o LM+ _(n; fOi+ )A)
for all 0 < A < p. Then
IS F 4 DT > 1,
i=1
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and by Lemma 4, we obtain
lzl” < TTIF A + DF 2|
i=1
holds for all z € H. Letting A — 0, we have

n
7
Izl < T lle=™7" 4z

i=1
holds for all p > 0 by (2.2). Replacing pf'(1)/2 into p > 0, we have (iii).
Lastly we assume (iii). By Lemma 4, we have

1 n
— ;S- e—PAi > I’
n

i=1

and we obtain .
(.1_ Z e—PAi) 2 I
n i
for all p > 0. Hence by Lemma 2, we have (i). O
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