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Propositional Logic and Cellular Automata

Shuichi Inokuchi * Toshikazu Ishida 1 Yasuo Kawahara

1 Introduction

The notion of cellular automata was introduced by von Neumann [8] and Ulam [12] as theoretical
model to demonstrate a system capable of self-reproduction and universal computation. In the 1980s
Wolfram [13] engaged in a study of elementary cellular automata and classified them into four classes.
He claimed that the fourth class are thought to be computationally universal and in 2004 Cook proved
that CA-110 is Turing-complete, and the importance of analysis of one dimensional we re-recognized.
One dimensional cellular automata have been investigated by many researchers and one of important
properties which should be studied is reversibility (surjectivity). Moore [6] and Myhill [7] proved the
Garden-of-Eden theorem which states that a cellular automaton is locally injective if and only if it is
surjective. Richardson [10] showed that the inverse dynamics of deterministic cellular automata can be
described by another cellular automata if and only if it is reversible. Nobe and Yura [9], Inokuchi et.
al. [4] showed the reversibility of one dimensional cellular automta with finite cell array. Hagiya et. al.
(3] proposed the analyzing method of cellular automata using abstraction by temporal logic. And also
researches on cellular automata on groups have been published. Sato [11] introduced group structured
linear cellular automata and the star operation of local transition rules. Yukita [14] investigated the
surjectivity of cellular automata on groups. Fujio [2] and Inokuchi et. al. [5]studied the composition of
cellular automata on groups, and Ceccherini-Silberstein and Coornaert [1] summerized cellular automata
and groups.

In the paper we mention an analogy of propositional logic and 2-state cellular automata on groups.
The following analogy between them mentioned in the paper must be recognized by quit a lot of readers.

CA Logic

states @ = {0,1} < truth values @ = {0,1}
cells (cell space) G > atomic propositions &
configuration m € Q¢ +«  valuation m € Q%
localrule f: QY - Q < formula A

Many researchers on cellular automata so far understood that local rules are equivalent to formulae,
because local rules are boolean functions of finite variables. However they might not make use of
formulae to define transition functions. The main idea of the paper is to redefine transition functions
with formulae and their truth values.

In section 2 and 3 we recall propositional logic and the usual definition of cellular automata on
groups. In section 4 we deal with formulae and define multiplication of formulae, and we redefine the
transition function wsing formulae on groups in section 5. In section 6 we introduce some examples of
reversible formulae.

2 Propositional logic

First we recall the fundamentals on propositional logic to emerge analogy of propositional logic and CA
theory.
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Let ® be a set of propositional variables (or atomic propositions), and L and — logical symbols.
Formulae on & are inductively defined by BNF:

A:=v|L|A—-A (ved)
Other logical symbols are introduced by the usual abbreviations.

Negation: A=A 1

Verum: T=-1

Disjunction: AVB=-4— B
Conjunction: AAB=—(A — —B)
Equivalence: A& B=(A— B)A(B— A)
Exclusive or: A+ B = -(A + B).

The set of all formulae on ® will be denoted by Fs.

Let Q = {0, 1} be the set of truth values. The implication operator = on () is defined as follows.
0=0=1, 0=1=1, 1=1=1, 1=0=0.

Operations -, V, A, <, + (XOR, addition modulo 2) on Q are defined by the same way as the above
abbreviations.

Definition 2.1 A valuation (interpretation) m of a set ® is a function m : & — Q. The truth value
m[A] € Q of a formula A for m is inductively defined as follows.

(a) m[v] = m(v) for all v € ®.

(b) m[L] =0

(c) mlA — B] = m[A] = m[B].

For two formulae A and B we write as A = B, if m[A] = m[B] for all valuations m : & — Q.
Proposition 2.2 Let A, B,C be formulae on ®. Then

(a) AVB=BVA, (AVB)VC=Av(BVC), AVA=A

(b) ANB=BAA, (AANB)AC=AAN(BAC),ANA=A

(c) A+B=B+A, (A+B)+C=A+(B+0),

(d) ~(-A4)=A, -(AvB)=-AA-B,~(AAB)=-AV-B

() A+A=1,A+1=A-A=A+4+T

3 CA on groups

In this section we review the usual definition of 2-state CA on groups.

Let G be a group with a unit element e and Q = {0,1} the set of states. A function m: G — Q is
called a configuration on G. We denote by Q€ the set of all configurations m : G — Q.

Definition 3.1 For a configuration m € Q€ and a € G the shifted configurations am, ma € QE are
defined as follows:
(am)(z) = m(a"'z) and (ma)(z)=m(za™t)

forallz € G.
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The following states the basic properties of shifted configurations.
Proposition 3.2 Let m € Q¢ and a,b € G. Then
(a) em=m, me=m
(b) (ab)m = a(bm), m(ab) = (ma)b.

For a configuration m € Q€ and a subset V of G the restricted configuration mly € QV is defined
by Vz € V. (m|v)(x) = m(z). Let N be a finite subset of G. A function f : Q¥ — Q is called a local
rule on a neighborhood N.

Definition 3.3 For a local rule f: Q¥ — Q a function Ty : Q% — Q€ is defined by
T¢(m)(z) = f(z"'m|N)
for all m € GY and z € G. The function Ty is called the transition function defined by f.

The transition function T is often called a cellular automaton (CA) on a group G.

4 Formulae on groups

4.1 Shifted formulae

To redefine transition functions of CA using formulae on groups, shifted formulae will be introduced by
making use of multiplication of groups.

Let G be a group with a unit element e. The set of all formulae on G will be denoted by Fg.
Definition 4.1 For A € Fg and a € G, the shifted formula aA € Fg is inductively defined as follows:
(a) av € G
(b) al =1
(c) a(A— B) =aA — aB.
The following states the basic properties of shifted formulae.
Proposition 4.2 Let A, B be a formula on a group G, and a,b € G. Then
(a) eA=A
(b) (ab)A = a(bA)
(¢) a(=A4) = =(ad)
(d) a(AV B)=aAVaB
(e) a(AAB)=aAAaB
(f) a(A+ B) =aA +aB.
The following proposition is for valuation of a formula A for shifted configuration ma and am.
Proposition 4.3 Leta € G, m € Q¢ and A € Fg. Then
(a) (am)[A] = m[a~'4]
(b) (ma)[A] = m[Aa~"]
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4.2 Multiplication of formulae

Using the group action the multiplication of formulae can be defined as well as shifted formulae. In the
next section it turns out that the multiplication of formulae dominates the composition of transition
functions of CA on groups.

Definition 4.4 Let A and C be formulae on a group G. The multiplication AC of A and C is inductively
defined as follows.

(a) vC (shifted formula) is already defined.
(by LC=1
(c) (A— B)C =AC — BC.
The following states the basic properties of the multiplication of formulae.
Proposition 4.5 Let A, B,C be formulae on a group G and a,b€ G. Then
(a) Ae = A, A(ab) = (Aa)b
(b) Either AL=1 or AL=T.
(c) (~A)B = ~(AB)
(d) (AvB)C=ACV BC
(e) (AANB)C =ACABC
(f) (A+B)C = AC + BC
(g) (AB)C = A(BC).
Remark. The following eqations need not hold.
e A(B—C)=AB — AC
A(Bv(C)=ABV AC
A(BAC)=ABAAC
A(B+C)=AB+ AC
Applying multiplication of formulae Fujio’s example [2] is simply described as follows. Let z € G.

(e+z)(z ' +e) = e(zl+e)+z(zl+e) {45(f)}
= (z7l+e)+(e+x) {4.2(f) }
= z7l+z. {22(b) A+A4=1}

Let A be a formula A on a group. The power A™ (n > 0) of A is defined as follows:
Al=e, A™=4TA.

For example we have

o (eAT)*=eATAZZA--- A" I AZ"

o (evz)"=evzVziv.--vz»lvgn

o (e—z)"=2z""1 52"

o (eA—z)? =€z

If G is commutative, then Ax = zA holds for all x € G.



5 New definition of transition functions

Following the analogy of propositional logic and CA we redefine the transition functions of CA using
valuation of formulae.

Definition 5.1 For a formula A € Fg define a function T4 : Q€ — Q€ by
Ta(m)(z) = mzA]
for all m € G€ and = € G. The function T4 is called the transition function defined by A.

For g € Q the constant configuration m € Q€ such that m(v) = ¢ for all atomic propositions v € G
will be denoted by 4.

Proposition 5.2 Letv,z,a € G, m € Q¢ and A, B € Fg. Then
a) Ty(m) = mv™!

b) T (m)=0

If T4 =T, then A= B.

(a)
(b) T.
()
(d) Ta(am) = a(Ta(m))

(e) Ta(ma) = Tpa-1(m).

(f) Tasp(m)(z) = Ta(m)(z) = Tp(m)(z)
(8) T=a(m)(z) = ~(Ta(m)(z))

(h) Tavp(m)(z) = Ta(m)(z) Vv Tp(m)(x)
(i) Tans(m)(z) = Ta(m)(x) A Tp(m)(z)
() Tayp(m)(z) = Ta(m)(z) + Tp(m)(z).

The composition S o T of a function T : Q€ — Q¢ followed by a function S : Q¥ — Q€ is defined

as usual:
vm € Q°. (S o T)(m) = S(T(m)).

Although the composition of transition functions of CA is intractable to describe with the traditional
definition using local rules f : QN — Q. However, the multiplication of formulae directly corresponds
to the composition of transition functions. The next theorem is a main result of the paper.

Theorem 5.3 For all formulae A, B € F¢ the identity T4 o Tg = Tap holds.

Proof. We need to show the following.
(a) Tqu o TC = TvC
(b) T oTo = T ¢

(¢) TaspoTe = T(asp)c-
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(a) TyoTec =Tyc :

(Ty o Te)(m)(z) = Tu(Tc(m))(z)
(Te(m)v~!)(z) {52(a)}
Te(m)(zv) {31}

I

= m[(zv)C] {51}
= mlz(vC)] {45(b) }
= Tyc(m)(z). {51}

(b) Ty oTe =T, :
(TLeTg)(m) = Ti(Tc(m))
=0 {5.2(b) }
= TL(m).

(c) TaspoTc = Tiasp)c
(TA—yB o TC)(m) (:I:)
= Ta-»B(Tc(m))(z)

= Ta(Tc(m))(z) = Tp(Tc(m))(z) {5.2(f) }
= (TaoTg)(m)(x) = (T o Tc)(m)(z)

= Tac(m)(z) = Tpc(m)(x) {H}
= Tac-pc(m)(z) {5.2(f) }
= Tiaspc(m)(z). {4.4(c) }
This completes the proof. O

6 Reversibility

6.1 Reversibility of formulae

By the virtue of the last theorem 5.3 the reversibility of transition functions can be converted to a
condition for formulae. A formula A on a group G is reversible if there exists a formula B such that
AB=e¢and BA=e.

Corollary 6.1 Let A, B and C be formulae on a group G. Then
(a) If A is reversible, then Ty : Q€ — Q€ is reversible.
(b) If AB=¢€e and CA=e, then B=C.
(c) A and B are reversible iff so are AB and BA.
(d) IfAC=1,C# L and C # T, then A is not reversible.

Proof. (a) It is trivial by proposition 5.2 and the last theorem 5.3.
(b) Assume AB = ¢ and CA = e. Then

B = eB
= (CAB {CA=e}
= C(AB) { 45(g)}
= Ce {AB=¢}
= C. { 4.5(a) }

(c) Assume that AB and BA are reversible. Then ABD = ¢ and EBA = e hold for some formulae D
and E. By (a) we have BD = EB, which implies that A is reversible.

(d) Assume DA = e for some formula D. Then we have C = eC = (DA)C = D(AC) = DL. Hence
C=_1orC=T by4.5(b). This contradicts the assumption. O
Remark. The single condition AC = 1 does not always imply that A is not reversible. (el = 1)



6.2 Examples of reversible formulae

In this section we give several examples of formulae which induce reversible transition functions.

Proposition 6.2 For z € G both z and —x are reversible.

1 1

Proof. zz~! =271z =€ and (-z)(-27 1) = ~(z—-z7!) = ==(zz7!) =e. O
A polynomial is a formula constructed by powers of an element of G and exclusive or +. Formally
polynomials of z € G are defined as follows.

(a) Every power z" is a polynomial (monomial) of z for all integers n.
(b) If A and B are polynomials of x, then A + B is a polynomial of z. O

For example, e + a:2, g4+ 22 +z2ande+e= 1 are polynomials of z. But T is not a polynomial.

Polynomials satisfy the following useful properties.

Proposition 6.3 Let A, B,C be formulae on a group G and x € G. Then
(a) If A is a polynomial of x, then AL = 1.
(b) If A, B and C are polynomials of z, then A(B+ C) = AB + AC.
(c) If A and B are polynomials of =, then AB is a polynomial of .
(d) If A and B are polynomials of x, then AB = BA.
(e) If A is a polynomial of x and z" = e for some integer n > 1, then A(e + z) is not reversible.

(f) If 2™ = e for some integer n > 1, then e + « + - - - + a2* + 2%+ {5 not reversible for all natural
numbers k.

Proposition 6.4 Let ¢ € G. If 2™ = e for a positive integer n # 0 (mod 3), then the polynomial
A=e+4z+ 2% is reversible.

Proof. In the case of n = 3k — 1. First note that (e + z)A = e+ 3. Set B=e+ Ef”ll 3 (e + z).
Then

BA = A+z’£;§x3j-1(e+x)A

= A+Y;01 29 Y eta®) {(e+z)A=e+2®}
= A+ 43!

= e+ax42% 4?4231

= . {z%F1=¢)

In the case of n = 3k — 2. Set B = z%% + Zf: 7373(e + z). Then

BA = 2¥%A4+ Y5 12% 3 12)A
= FA+ T 29 (e + %) {(e+n)A=e+2®}
= g3k-34 4 ¢ 4 g3k-3
— .'E3k—3 +13k_2 +x3k—1 + 6+x3k—3
= {232 =¢}

This completes the proof. g
The polynomial A = e + x + 22 extends the local rule with Wolfram number 150 for 3-neighborhood
local rules.

Rule No. | 111 110 101 100 011 010 001 000
150 1 0 0 1 0 1 1 0
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Remark. If 23 = e, then the polynomial A = e + & + 2 is not reversible. Set B = Z;?:l 3-2(e 4 ).
Then

BA = z‘izl 2¥%(e + 7)A
= ijlszi3j1‘2(e+x3) {(e+zx)A=e+23}
= x4+ g3kt
= 1, { 3kt — o }

which shows that AB = | and A = e + z + 2 is not reversible.

Proposition 6.5 Let z € G. If z'%1 = e for a positive integer k > 0, then the polynomial A =
e+z+ 2%+ 23 + x4 is reversible.

Proof. Assume that z°%'~1 = e for a positive integer &’ and set C = e + ¥ =1 25=1(e 4 ). Then
g j=1

CA = A+Y5 ' % e+ 2)A

A+ 35 e + 29) {(e+a)A=c+a}
= A+zt4g5
= e+z+z?+ad+at 4ot 4251
= z+z2+2? (¢ -1=¢}
= (e+z+z?)z.

From Prop. 6.4 if 23! = e for some positive integer h then the polynomial (e + = + x?) is reversible.
Hence if £15%~1 = e then the polynomial A is reversible. a
Finally we show a reversible formula that is not a polynomial.

Lemma 6.6 Let A= (—e Az) +z?% be a formula on a group. Then the identity

ok+1

A% = (meABg) +
holds for all natural numbers k, where By =z Az3 A28 A - A 2211,
Corollary 6.7 If 22"~ = ¢ for an integer n > 2, then the formula A = (=e A z) + 22 is reversible.

Proof. In the previous lemma 6.6 we have seen that the identity

A2k—-l = (—\e A Bk—l) + £E2k
holds for all integers k > 1. Take a unique integer k such that 2k=1 <« 2 — 1 < 2%, Then 2 < n<2k-1
and so —e A 22"~ = —e A e = L. Hence we have

A

ok—1

(—e A Bk—1) + %
2", {—eAz?1=1}

]

which proves the statement. a
The formula A = (—e A z) + 22 extends the local rule with Wolfram number 166 (or 154, 180, 210)
for 3-neighborhood local rules.

Rule No. | 111 110 101 100 011 010 001 000
166 1 0 1 0 0 1 1 0

7 Conclusion

‘We mentioned the analogy of cellular automata and propositional logic, and defined the multipication of
formulae and the transition function of cellular automata using valuation of formulae. And we showed
that a formula on a group represents a local rule of CA and that the multiplication of formulae on a
group determines the composition of transition functions. Also we defined the reversibility of a formula,
and proved that if a formula is reversible then the transition function for it is reversible.
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