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1. THE APPROXIMATION PROPERTY

Definition 1.1. Let P a be poset and x a cardinal. We say that the poset P has
the k-approzimation property if for every ordinal  and every f € ("2)V", if f lteV
for every z € ([r]<*)", then f € V.

It is known that for an uncountable «, if P is an atomless poset of size < x and
Q is a P-name for a s-closed poset, then P x Q has the K-approximation property
(e.g., see Mitchell [1]). In this note , we show that the size assumption for a poset
P can be relaxed to the chain condition assumption.

Definition 1.2. Let « be a regular uncountable cardinal. A poset P satisfies the
strong k-chain condition (strong k-c.c., for short) if P satisfies the k-c.c. and for
every k-Suslin tree 7', P does not add a cofinal branch of T'.

Note 1.3. (1) If there is no x-Suslin tree, then the k-c.c. is equivalent to the
strong k-c.c.
(2) For a poset P, if P x P satisfies the s-c.c., then P satisfies the strong x-c.c.

Lemma 1.4. If a poset P satisfies the u-c.c. for some u < &, then P satisfies the
strong k-c.c. In particular, every poset of size < k satisfies the strong k-c.c.

Proof. Suppose to the contrary that there is a x-Suslin tree T such that IFp“T
has a cofinal branch B”. Let T' = {t € T : p IFp“t € B’for some p € P}. It
is easy to check that 7" is a downward closed subtree of T" of height x. Since P
satisfies the p-c.c. and p < k, each level of 7" has size < u. Now, by Kurepa’s
theorem, 7" has a cofinal branch. Then this branch is a cofinal branch of T, this is
a contradiction. O

The following is a main result of this note:

Lemma 1.5. Let s be a regular uncountable cardinal. Let P be an atomless poset
which satisfies the strong k-c.c. Let Q be a P-name for a k-closed poset (trivial
poset is possible). Then P x Q has the k-approzimation property.
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Proof. Let Q be a term poset of Q, that is, Q is the set of all P-names ¢ with
IFp“g € Q”. For do,G1 € Q, define ¢o < g1 if IFp“go < g1 in Q”. Since Q is a name
for a x-closed poset, Q is k-closed.

Let & be a PxQ-name such that I-“¢ € V”. We say that a condition (p, §) € PxQ
decides & if there is y with (p,q) IF“¢ = y”.

Claim 1.6. Let 7 be an ordinal and f be a P x Q-name such that IF“f : 7 — 2 and
flz € V for every z € ([7]<*)V”. Let (p,q) € P+ Q and z € [7]<F. Then there are
¢* < q and F C *2 such that:

(1) |F| < k.

(2) For every g € F, there is p' < p such that (p/,¢*) IF “f|z = g”.

(3) For everyp' < p, there are p" < p/ and g € F such that (p",¢*) IF “flz = ¢”

Proof. 1t is easy to check that the set {p’ < p : 3¢ ((¢,¢') < (p,q) and (¢, ¢)
decides f|z)} is predense below p. Take a maximal antichain A which is contained
in this set. Since PP satisfies the s-c.c., we know that |4| < x. Then for each
r € A, there are ¢, and g, such that (r,¢,) < (p,¢) and (r,¢,) II-“fIa: = g,”. Let
F = {g, : r € A} and one can take ¢* such that ¢* < ¢ and r IF“¢* = ¢,” for every
r € A. Then ¢* and F work. O[Claim]

In order to show that IP’*Q has the K-approximation property, take (p,q) € PxQ,
an ordinal 7, and a name f such that (p,¢) IF“ f : 7 — 2 and f|z € V for every
z € ([7]< )V”. Suppose to the contrary that (p,¢) IF“f ¢ V”.

By induction on « < k, we would find z,, ¢4, Fi (@ < k) such that:

(1) z4 € [1]<* and (z, : @ < k) is C-increasing.
(2) (do : @ < K) is decreasing in Q and ¢y < g.

(3) Fy C*=2 and |F,| < &.

(4) For every g € F,, there is p’ < p such that (', do) IF“f|ze = ¢”.

(5) For every p’ < p there are p” < p’ and g € F, such that (p”, ¢,) IF“f|zs =
g, ie., theset {p' < p: (1, da) F“f|zq = g” for some g € F,} is predense
below p.

(6) For every g € F,, there are gy, g1 € Fo41 such that g C go, g1 and go # g1.

When o = 0, pick an arbitrary zo € [7]<*. Then we can find required go < ¢
and Fy by Claim 1.6.

Let o > 0 and suppose zg, g, F3 are defined for all 8 < c.

Case 1: a is limit. We can find z, € [7]<* such that 3 C z, for § < a. Since
Q is s-closed, we can find ¢* < s for every 8 < . Then take ¢, < ¢* and F, by
Claim 1.6.

Case 2: « is successor, say a@ = 8+ 1. Pick a maximal antichain A C P below
p such that for every p’ € A there is g € F such that (¢, gg) IF“f|zs = g”. Note



that |A| < &, and, for every g € Fj, there is p’ € A with (¢, ds) IF“flzg = ¢
Since |A| < & and (p, 4s) IF“f ¢ V", we can find z, € [7]<" such that z5 C z, for
B < a, but (p', ds) does not decide f|z, for every p’ € A.

Claim 1.7. For each p' € A, there are p, 0} <P, 94,91 To — 2, and 1 < gz such
that go # 91 and (pj, 7) I+ “f|ze = g:”.

Proof. Since (p',ds) does not decide flz,, we can take (g}, do), (P}, ¢1) < (¥, ds),
and ¢j, 91 : o — 2 such that g # ¢; and (p},¢;) IF“f|z, = ¢/”. We may assume
that py is incompatible with pi; if pj and p| have a common extension p,, take
p0, 7] < p2 such that pyLp! and replace p} by pf.

Now take 7 < gg such that p} I-“7 = ¢,”. Clearly p}, g; and 7 work. ~ [J[Claim]

For each p’ € A, pick 7y < ¢p such that there are pj,p} < P, g4, 9} : Ta — 2
with gy # g7 and (pf, ) I-“flae = ;7.

Then pick ¢* < gg such that p' IF¢* = 7" for every p' € A. Finally, take
do < ¢* and F, C *+2 as in Claim 1.6. The following claim shows that z,, ¢,, and
F, work well:

Claim 1.8. For each g € Fj, there are go, g1 € F, such that go # g1 and g C go, 1.

Proof. Take p' € A so that (1, g) IF“f|zs = g”. Then we can take pg, py < p’ and
90,91 : Ta — 2 such that gy # g} and (p}, ¢*) F“f|zs = ¢}”. Clearly g C g}, 9, By
the choice of F,, and ¢,, for each i < 2, one can take p; < p} and g; € F, such that
(i, o) IF“f|xq = ;7. Since ¢, < ¢*, each (ps, §a) is compatible with (p}, ¢*). This
means that g, = ¢;, so go # ¢1 and g C go, 91. O[Claim]

Suppose qq, o, Fy are defined for a < k. Note that, for every a < 8 < & and
g € Fp, we have g|z, € F,; take p' < p such that (¢, g) IF“f|zs = g”. Then one
can pick p” < p’ and h € F, such that (p”, 4o) IF“f|za = h”. (¥, ds) is compatible
with (0", ¢a). So h = g|z,.

Let T = U, Fo. T with the inclusion forms a x-tree, and each node of T has
at least two immediate successors.

Claim 1.9. T has no antichain of size k.

Proof. For each g € T, there are p; and oy < & such that (pg, 4a,) II—“f|xag =gq".
For g,¢' in T, if g and ¢’ are incompatible in T', then py is incompatible with p, in
P. This means that if T" has an antichain of size «, then P also has an antichain of
size k. This is impossible, hence T" does not have an antichain of size k. O[Claim]

Hence T is a x-Suslin tree. We finish the proof by showing the following claim,
which contradicts the strong «-c.c. of P:
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Claim 1.10. plFp “T has a cofinal branch”.

Proof. Take a (V,P)-generic G with p € G and work in V[G]. Let a < k. Since
{r <p:{p, da) F“f|ze = g” for some g € F,} is predense below p, we can find
Po € G and g, € F, C T such that (p,, ¢a) II-“fI:z:a = ¢.”. Now, for a < f < &,
Pa is compatible with ps and gg < go. S0 (pa, da) is compatible with (pg, gg). This
means that g, C g, s0 {ga : @ < Kk} is a cofinal branch of T O[Claim)]

O

Note 1.11. If P satisfies the x-c.c. but does not the strong x-c.c., then P cannot
have the x-approximation property.

2. APPLICATIONS

We consider some applications of Lemma 1.5.

Definition 2.1. Let x be a regular uncountable cardinal and A > « a cardinal. A
set X C P, has the strong tree property if for every (d, : z € X) with d, C z, if
Hd:Na:z € X}| <k for every a € P, then there is D C X such that for every
a € P theset {z € X :d,Na= DNa} is unbounded in P\,

Fact 2.2 (Viale-Weiss [3]). (1) The following are equivalent:
(a) P\ has the strong tree property.
(b) There is some unbounded set X C PcA such that X has the strong tree
property.

(c) Every unbounded subset of PcA has the strong tree property.

(2) K has the tree property if and only if Pcx has the strong tree property.

(3) K is strongly compact if and only if k is inaccessible and P\ has the strong
tree property for every \ > k.

(4) Suppose Proper Forcing Aziom. Then P,,\ has the strong tree property for
every A > ws.

Viale-Weiss [3] showed that for an inaccessible «, if a standard x-stage iteration
satisfying the x-c.c. forces that “x = wy; and Proper forcing axiom”, then x must
be strongly compact in the ground model. The following is a slight improvement
of their result.

Proposition 2.3. Let k be a regular uncountable cardinal. Suppose that there is a
poset P which has the strong k-c.c. and forces that “P.A has the strong tree property
for every A > k”. Then P.A has the strong tree property for every A > k in the
ground model.



Proof. We check that P, has the strong tree property for every A > k. Fix A > &
and take (d; : € P,A) such that d, C z and |{d; Na:z € P} < « for every
a € PgA. Take a (V,P)-generic G and work in V[G]. In V[G], PY ) is unbounded
in P, since P satisfies the x-c.c. By the strong tree property of PY'\ in V[G], we
can find D C A such that {x € PYA :d; Na = DNa} is unbounded in P, for
every a € P,A. We see D € V, this completes the proof. For each a € PV ), there
isz € PY\ with DNa=d,Na € V. Thus, by the k-approximation property of
P, we have D € V. O

Next we look at the indestructibility of weak compactness.

Definition 2.4. Let « be weakly compact. If every s-directed closed forcing pre-
serves the weak compactness of «, then « is said to be indestructibly weakly compact.

The existence of an indestructibly weakly compact cardinal is consistent (Laver
[2]). The following theorem suggests that the consistency of the existence of an
indestructibly weakly compact cardinal might be at least strongly compact cardinal.

Proposition 2.5. Let « be a regular uncountable cardinal. If there is a poset which
satisfies the strong k-c.c. and forces that “k is indestructibly weakly compact”, then
K 18 strongly compact.

Proof. Take A > . We see that P, A has the strong tree property. Take (d, : £ € P)\)
with d; C z and [{d; Na:z € P.A}| < & for every a € P

Take a (V, P)-generic G, and a (V[G], Col(x, A))-generic H. We work in V[G][H].
Fix a bijection 7 : A\ = k. We know that {r“z : £ € PY A} is unbounded in P,k.
Since x is weakly compact in V|[G][H], by the tree property of x, there is C C s
such that {7“c € Pyx : 7%(dy) Na = C Na} is unbounded for all a € Pex. Put
D = 7~1“C. Then for every a € P, the set {z € P\ :d,Na = DNa}is
unbounded in P.A. We know D € V since P x Col(x, A) has the x-approximation
property by Lemma 1.5. O
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