THE APPROXIMATION PROPERTY AND THE CHAIN CONDITION

Toshimichi Usuba (薄葉 季路)
Organization of Advanced Science and Technology
Kobe University

1. The approximation property

Definition 1.1. Let \mathbb{P} a be poset and κ a cardinal. We say that the poset \mathbb{P} has the κ -approximation property if for every ordinal τ and every $f \in ({}^{\tau}2)^{V^{\mathbb{P}}}$, if $f|x \in V$ for every $x \in ([\tau]^{<\kappa})^V$, then $f \in V$.

It is known that for an uncountable κ , if $\mathbb P$ is an atomless poset of size $<\kappa$ and $\dot{\mathbb Q}$ is a $\mathbb P$ -name for a κ -closed poset, then $\mathbb P*\dot{\mathbb Q}$ has the κ -approximation property (e.g., see Mitchell [1]). In this note, we show that the size assumption for a poset $\mathbb P$ can be relaxed to the chain condition assumption.

Definition 1.2. Let κ be a regular uncountable cardinal. A poset \mathbb{P} satisfies the strong κ -chain condition (strong κ -c.c., for short) if \mathbb{P} satisfies the κ -c.c. and for every κ -Suslin tree T, \mathbb{P} does not add a cofinal branch of T.

- Note 1.3. (1) If there is no κ -Suslin tree, then the κ -c.c. is equivalent to the strong κ -c.c.
 - (2) For a poset \mathbb{P} , if $\mathbb{P} \times \mathbb{P}$ satisfies the κ -c.c., then \mathbb{P} satisfies the strong κ -c.c.

Lemma 1.4. If a poset \mathbb{P} satisfies the μ -c.c. for some $\mu < \kappa$, then \mathbb{P} satisfies the strong κ -c.c. In particular, every poset of size $< \kappa$ satisfies the strong κ -c.c.

Proof. Suppose to the contrary that there is a κ -Suslin tree T such that $\Vdash_{\mathbb{P}}$ "T has a cofinal branch \dot{B} ". Let $T' = \{t \in T : p \Vdash_{\mathbb{P}}$ " $t \in \dot{B}$ " for some $p \in \mathbb{P}\}$. It is easy to check that T' is a downward closed subtree of T of height κ . Since \mathbb{P} satisfies the μ -c.c. and $\mu < \kappa$, each level of T' has size $< \mu$. Now, by Kurepa's theorem, T' has a cofinal branch. Then this branch is a cofinal branch of T, this is a contradiction.

The following is a main result of this note:

Lemma 1.5. Let κ be a regular uncountable cardinal. Let \mathbb{P} be an atomless poset which satisfies the strong κ -c.c. Let $\dot{\mathbb{Q}}$ be a \mathbb{P} -name for a κ -closed poset (trivial poset is possible). Then $\mathbb{P} * \dot{\mathbb{Q}}$ has the κ -approximation property.

Proof. Let $\tilde{\mathbb{Q}}$ be a term poset of $\dot{\mathbb{Q}}$, that is, $\tilde{\mathbb{Q}}$ is the set of all \mathbb{P} -names \dot{q} with $\Vdash_{\mathbb{P}}$ " $\dot{q} \in \dot{\mathbb{Q}}$ ". For $\dot{q}_0, \dot{q}_1 \in \tilde{\mathbb{Q}}$, define $\dot{q}_0 \leq \dot{q}_1$ if $\Vdash_{\mathbb{P}}$ " $\dot{q}_0 \leq \dot{q}_1$ in $\dot{\mathbb{Q}}$ ". Since $\dot{\mathbb{Q}}$ is a name for a κ -closed poset, $\tilde{\mathbb{Q}}$ is κ -closed.

Let \dot{x} be a $\mathbb{P}*\dot{\mathbb{Q}}$ -name such that $\Vdash "\dot{x} \in V"$. We say that a condition $\langle p, \dot{q} \rangle \in \mathbb{P}*\dot{\mathbb{Q}}$ decides \dot{x} if there is y with $\langle p, \dot{q} \rangle \Vdash "\dot{x} = y"$.

Claim 1.6. Let τ be an ordinal and \dot{f} be a $\mathbb{P}*\dot{\mathbb{Q}}$ -name such that \Vdash " $\dot{f}:\tau\to 2$ and $\dot{f}|x\in V$ for every $x\in ([\tau]^{<\kappa})^V$ ". Let $\langle p,\dot{q}\rangle\in\mathbb{P}*\dot{\mathbb{Q}}$ and $x\in [\tau]^{<\kappa}$. Then there are $\dot{q}^*\leq \dot{q}$ and $F\subseteq {}^x2$ such that:

- (1) $|F| < \kappa$.
- (2) For every $g \in F$, there is $p' \leq p$ such that $\langle p', \dot{q}^* \rangle \Vdash "\dot{f} | x = g"$.
- (3) For every $p' \leq p$, there are $p'' \leq p'$ and $g \in F$ such that $\langle p'', \dot{q}^* \rangle \Vdash "\dot{f} | x = g"$.

Proof. It is easy to check that the set $\{p' \leq p : \exists \dot{q}' (\langle p', \dot{q}' \rangle \leq \langle p, \dot{q} \rangle \text{ and } \langle p', \dot{q}' \rangle \}$ decides $\dot{f}|x\}$ is predense below p. Take a maximal antichain A which is contained in this set. Since \mathbb{P} satisfies the κ -c.c., we know that $|A| < \kappa$. Then for each $r \in A$, there are \dot{q}_r and g_r such that $\langle r, \dot{q}_r \rangle \leq \langle p, \dot{q} \rangle$ and $\langle r, \dot{q}_r \rangle \Vdash "\dot{f}|x = g_r$ ". Let $F = \{g_r : r \in A\}$ and one can take \dot{q}^* such that $\dot{q}^* \leq \dot{q}$ and $r \Vdash "\dot{q}^* = \dot{q}_r$ " for every $r \in A$. Then \dot{q}^* and F work.

In order to show that $\mathbb{P}*\dot{\mathbb{Q}}$ has the κ -approximation property, take $\langle p,\dot{q}\rangle\in\mathbb{P}*\dot{\mathbb{Q}}$, an ordinal τ , and a name \dot{f} such that $\langle p,\dot{q}\rangle\Vdash$ " $\dot{f}:\tau\to 2$ and $\dot{f}|x\in V$ for every $x\in([\tau]^{<\kappa})^V$ ". Suppose to the contrary that $\langle p,\dot{q}\rangle\Vdash$ " $\dot{f}\notin V$ ".

By induction on $\alpha < \kappa$, we would find $x_{\alpha}, \dot{q}_{\alpha}, F_{\alpha}$ ($\alpha < \kappa$) such that:

- (1) $x_{\alpha} \in [\tau]^{<\kappa}$ and $\langle x_{\alpha} : \alpha < \kappa \rangle$ is \subseteq -increasing.
- (2) $\langle \dot{q}_{\alpha} : \alpha < \kappa \rangle$ is decreasing in $\tilde{\mathbb{Q}}$ and $\dot{q}_0 \leq \dot{q}$.
- (3) $F_{\alpha} \subseteq {}^{x_{\alpha}}2$ and $|F_{\alpha}| < \kappa$.
- (4) For every $g \in F_{\alpha}$, there is $p' \leq p$ such that $\langle p', \dot{q}_{\alpha} \rangle \Vdash "\dot{f} | x_{\alpha} = g"$.
- (5) For every $p' \leq p$ there are $p'' \leq p'$ and $g \in F_{\alpha}$ such that $\langle p'', \dot{q}_{\alpha} \rangle \Vdash "\dot{f} | x_{\alpha} = g$ ", i.e., the set $\{p' \leq p : \langle p', \dot{q}_{\alpha} \rangle \Vdash "\dot{f} | x_{\alpha} = g$ " for some $g \in F_{\alpha}\}$ is predense below p.
- (6) For every $g \in F_{\alpha}$, there are $g_0, g_1 \in F_{\alpha+1}$ such that $g \subseteq g_0, g_1$ and $g_0 \neq g_1$.

When $\alpha = 0$, pick an arbitrary $x_0 \in [\tau]^{<\kappa}$. Then we can find required $\dot{q}_0 \leq \dot{q}$ and F_0 by Claim 1.6.

Let $\alpha > 0$ and suppose $x_{\beta}, \dot{q}_{\beta}, F_{\beta}$ are defined for all $\beta < \alpha$.

Case 1: α is limit. We can find $x_{\alpha} \in [\tau]^{<\kappa}$ such that $x_{\beta} \subseteq x_{\alpha}$ for $\beta < \alpha$. Since $\tilde{\mathbb{Q}}$ is κ -closed, we can find $\dot{q}^* \leq \dot{q}_{\beta}$ for every $\beta < \alpha$. Then take $\dot{q}_{\alpha} \leq \dot{q}^*$ and F_{α} by Claim 1.6.

Case 2: α is successor, say $\alpha = \beta + 1$. Pick a maximal antichain $A \subseteq \mathbb{P}$ below p such that for every $p' \in A$ there is $g \in F_{\beta}$ such that $\langle p', \dot{q}_{\beta} \rangle \Vdash "\dot{f} | x_{\beta} = g"$. Note

that $|A| < \kappa$, and, for every $g \in F_{\beta}$, there is $p' \in A$ with $\langle p', \dot{q}_{\beta} \rangle \Vdash "\dot{f} | x_{\beta} = g$ ". Since $|A| < \kappa$ and $\langle p, \dot{q}_{\beta} \rangle \Vdash "\dot{f} \notin V$ ", we can find $x_{\alpha} \in [\tau]^{<\kappa}$ such that $x_{\beta} \subseteq x_{\alpha}$ for $\beta < \alpha$, but $\langle p', \dot{q}_{\beta} \rangle$ does not decide $\dot{f} | x_{\alpha}$ for every $p' \in A$.

Claim 1.7. For each $p' \in A$, there are $p'_0, p'_1 \leq p'$, $g'_0, g'_1 : x_\alpha \to 2$, and $\dot{r} \leq \dot{q}_\beta$ such that $g'_0 \neq g'_1$ and $\langle p'_i, \dot{r} \rangle \Vdash "\dot{f}|x_\alpha = g_i$ ".

Proof. Since $\langle p', \dot{q}_{\beta} \rangle$ does not decide $\dot{f}|x_{\alpha}$, we can take $\langle p'_{0}, \dot{q}_{0} \rangle, \langle p'_{1}, \dot{q}_{1} \rangle \leq \langle p', \dot{q}_{\beta} \rangle$, and $g'_{0}, g'_{1}: x_{\alpha} \to 2$ such that $g'_{0} \neq g'_{1}$ and $\langle p'_{i}, \dot{q}_{i} \rangle \Vdash "\dot{f}|x_{\alpha} = g'_{i}$ ". We may assume that p'_{0} is incompatible with p'_{1} ; if p'_{0} and p'_{1} have a common extension p_{2} , take $p''_{0}, p''_{1} \leq p_{2}$ such that $p''_{0} \perp p''_{1}$ and replace p'_{i} by p''_{i} .

Now take $\dot{r} \leq \dot{q}_{\beta}$ such that $p_i'' \Vdash "\dot{r} = \dot{q}_i"$. Clearly p_i', g_i' and \dot{r} work. \square [Claim]

For each $p' \in A$, pick $\dot{r}_{p'} \leq \dot{q}_{\beta}$ such that there are $p'_0, p'_1 \leq p', g'_0, g'_1 : x_{\alpha} \to 2$ with $g'_0 \neq g'_1$ and $\langle p'_i, \dot{r}_{p'} \rangle \Vdash "\dot{f} | x_{\alpha} = g'_i$ ".

Then pick $q^* \leq q_{\beta}$ such that $p' \Vdash "\dot{q}^* = \dot{r}_{p'}"$ for every $p' \in A$. Finally, take $\dot{q}_{\alpha} \leq \dot{q}^*$ and $F_{\alpha} \subseteq {}^{x_{\alpha}}2$ as in Claim 1.6. The following claim shows that x_{α} , \dot{q}_{α} , and F_{α} work well:

Claim 1.8. For each $g \in F_{\beta}$, there are $g_0, g_1 \in F_{\alpha}$ such that $g_0 \neq g_1$ and $g \subseteq g_0, g_1$.

Proof. Take $p' \in A$ so that $\langle p', \dot{q}_{\beta} \rangle \Vdash "\dot{f} | x_{\beta} = g"$. Then we can take $p'_0, p'_1 \leq p'$ and $g'_0, g'_1 : x_{\alpha} \to 2$ such that $g'_0 \neq g'_1$ and $\langle p'_i, \dot{q}^* \rangle \Vdash "\dot{f} | x_{\alpha} = g'_i$ ". Clearly $g \subseteq g'_0, g'_1$. By the choice of F_{α} and \dot{q}_{α} , for each i < 2, one can take $p_i \leq p'_i$ and $g_i \in F_{\alpha}$ such that $\langle p_i, \dot{q}_{\alpha} \rangle \Vdash "\dot{f} | x_{\alpha} = g_i$ ". Since $\dot{q}_{\alpha} \leq \dot{q}^*$, each $\langle p_i, \dot{q}_{\alpha} \rangle$ is compatible with $\langle p'_i, \dot{q}^* \rangle$. This means that $g'_i = g_i$, so $g_0 \neq g_1$ and $g \subseteq g_0, g_1$.

Suppose $\dot{q}_{\alpha}, x_{\alpha}, F_{\alpha}$ are defined for $\alpha < \kappa$. Note that, for every $\alpha < \beta < \kappa$ and $g \in F_{\beta}$, we have $g|x_{\alpha} \in F_{\alpha}$; take $p' \leq p$ such that $\langle p', \dot{q}_{\beta} \rangle \Vdash "\dot{f}|x_{\beta} = g$ ". Then one can pick $p'' \leq p'$ and $h \in F_{\alpha}$ such that $\langle p'', \dot{q}_{\alpha} \rangle \Vdash "\dot{f}|x_{\alpha} = h$ ". $\langle p', \dot{q}_{\beta} \rangle$ is compatible with $\langle p'', \dot{q}_{\alpha} \rangle$. So $h = g|x_{\alpha}$.

Let $T = \bigcup_{\alpha < \kappa} F_{\alpha}$. T with the inclusion forms a κ -tree, and each node of T has at least two immediate successors.

Claim 1.9. T has no antichain of size κ .

Proof. For each $g \in T$, there are p_g and $\alpha_g < \kappa$ such that $\langle p_g, \dot{q}_{\alpha_g} \rangle \Vdash "\dot{f} | x_{\alpha_g} = g$ ". For g, g' in T, if g and g' are incompatible in T, then p_g is incompatible with $p_{g'}$ in \mathbb{P} . This means that if T has an antichain of size κ , then \mathbb{P} also has an antichain of size κ . This is impossible, hence T does not have an antichain of size κ . $\square[Claim]$

Hence T is a κ -Suslin tree. We finish the proof by showing the following claim, which contradicts the strong κ -c.c. of \mathbb{P} :

Claim 1.10. $p \Vdash_{\mathbb{P}} "T \text{ has a cofinal branch"}.$

Proof. Take a (V, \mathbb{P}) -generic G with $p \in G$ and work in V[G]. Let $\alpha < \kappa$. Since $\{p' \leq p : \langle p', \dot{q}_{\alpha} \rangle \Vdash "\dot{f} | x_{\alpha} = g" \text{ for some } g \in F_{\alpha} \}$ is predense below p, we can find $p_{\alpha} \in G$ and $g_{\alpha} \in F_{\alpha} \subseteq T$ such that $\langle p_{\alpha}, \dot{q}_{\alpha} \rangle \Vdash "\dot{f} | x_{\alpha} = g_{\alpha}"$. Now, for $\alpha < \beta < \kappa$, p_{α} is compatible with p_{β} and $\dot{q}_{\beta} \leq \dot{q}_{\alpha}$. So $\langle p_{\alpha}, \dot{q}_{\alpha} \rangle$ is compatible with $\langle p_{\beta}, \dot{q}_{\beta} \rangle$. This means that $g_{\alpha} \subseteq g_{\beta}$, so $\{g_{\alpha} : \alpha < \kappa\}$ is a cofinal branch of T. $\square[Claim]$

Note 1.11. If \mathbb{P} satisfies the κ -c.c. but does not the strong κ -c.c., then \mathbb{P} cannot have the κ -approximation property.

2. APPLICATIONS

We consider some applications of Lemma 1.5.

Definition 2.1. Let κ be a regular uncountable cardinal and $\lambda \geq \kappa$ a cardinal. A set $X \subseteq \mathcal{P}_{\kappa}\lambda$ has the *strong tree property* if for every $\langle d_x : x \in X \rangle$ with $d_x \subseteq x$, if $|\{d_x \cap a : x \in X\}| < \kappa$ for every $a \in \mathcal{P}_{\kappa}\lambda$, then there is $D \subseteq \lambda$ such that for every $a \in \mathcal{P}_{\kappa}\lambda$ the set $\{x \in X : d_x \cap a = D \cap a\}$ is unbounded in $\mathcal{P}_{\kappa}\lambda$.

Fact 2.2 (Viale-Weiss [3]). (1) The following are equivalent:

- (a) $\mathcal{P}_{\kappa}\lambda$ has the strong tree property.
- (b) There is some unbounded set $X \subseteq \mathcal{P}_{\kappa}\lambda$ such that X has the strong tree property.
- (c) Every unbounded subset of $\mathcal{P}_{\kappa}\lambda$ has the strong tree property.
- (2) κ has the tree property if and only if $\mathcal{P}_{\kappa}\kappa$ has the strong tree property.
- (3) κ is strongly compact if and only if κ is inaccessible and $\mathcal{P}_{\kappa}\lambda$ has the strong tree property for every $\lambda \geq \kappa$.
- (4) Suppose Proper Forcing Axiom. Then $\mathcal{P}_{\omega_2}\lambda$ has the strong tree property for every $\lambda \geq \omega_2$.

Viale-Weiss [3] showed that for an inaccessible κ , if a standard κ -stage iteration satisfying the κ -c.c. forces that " $\kappa = \omega_2$ and Proper forcing axiom", then κ must be strongly compact in the ground model. The following is a slight improvement of their result.

Proposition 2.3. Let κ be a regular uncountable cardinal. Suppose that there is a poset \mathbb{P} which has the strong κ -c.c. and forces that " $\mathcal{P}_{\kappa}\lambda$ has the strong tree property for every $\lambda \geq \kappa$ ". Then $\mathcal{P}_{\kappa}\lambda$ has the strong tree property for every $\lambda \geq \kappa$ in the ground model.

Proof. We check that $\mathcal{P}_{\kappa}\lambda$ has the strong tree property for every $\lambda \geq \kappa$. Fix $\lambda \geq \kappa$ and take $\langle d_x : x \in \mathcal{P}_{\kappa}\lambda \rangle$ such that $d_x \subseteq x$ and $|\{d_x \cap a : x \in \mathcal{P}_{\kappa}\lambda\}| < \kappa$ for every $a \in \mathcal{P}_{\kappa}\lambda$. Take a (V, \mathbb{P}) -generic G and work in V[G]. In V[G], $\mathcal{P}_{\kappa}^V\lambda$ is unbounded in $\mathcal{P}_{\kappa}\lambda$ since \mathbb{P} satisfies the κ -c.c. By the strong tree property of $\mathcal{P}_{\kappa}^V\lambda$ in V[G], we can find $D \subseteq \lambda$ such that $\{x \in \mathcal{P}_{\kappa}^V\lambda : d_x \cap a = D \cap a\}$ is unbounded in $\mathcal{P}_{\kappa}\lambda$ for every $a \in \mathcal{P}_{\kappa}\lambda$. We see $D \in V$, this completes the proof. For each $a \in \mathcal{P}_{\kappa}^V\lambda$, there is $x \in \mathcal{P}_{\kappa}^V\lambda$ with $D \cap a = d_x \cap a \in V$. Thus, by the κ -approximation property of \mathbb{P} , we have $D \in V$.

Next we look at the indestructibility of weak compactness.

Definition 2.4. Let κ be weakly compact. If every κ -directed closed forcing preserves the weak compactness of κ , then κ is said to be *indestructibly weakly compact*.

The existence of an indestructibly weakly compact cardinal is consistent (Laver [2]). The following theorem suggests that the consistency of the existence of an indestructibly weakly compact cardinal might be at least strongly compact cardinal.

Proposition 2.5. Let κ be a regular uncountable cardinal. If there is a poset which satisfies the strong κ -c.c. and forces that " κ is indestructibly weakly compact", then κ is strongly compact.

Proof. Take $\lambda \geq \kappa$. We see that $\mathcal{P}_{\kappa}\lambda$ has the strong tree property. Take $\langle d_x : x \in \mathcal{P}_{\kappa}\lambda \rangle$ with $d_x \subseteq x$ and $|\{d_x \cap a : x \in \mathcal{P}_{\kappa}\lambda\}| < \kappa$ for every $a \in \mathcal{P}_{\kappa}\lambda$.

Take a (V, \mathbb{P}) -generic G, and a $(V[G], \operatorname{Col}(\kappa, \lambda))$ -generic H. We work in V[G][H]. Fix a bijection $\pi: \lambda \to \kappa$. We know that $\{\pi^{"}x: x \in \mathcal{P}_{\kappa}^{V}\lambda\}$ is unbounded in $\mathcal{P}_{\kappa}\kappa$. Since κ is weakly compact in V[G][H], by the tree property of κ , there is $C \subseteq \kappa$ such that $\{\pi^{"}x \in \mathcal{P}_{\kappa}\kappa: \pi^{"}(d_{x}) \cap a = C \cap a\}$ is unbounded for all $a \in \mathcal{P}_{\kappa}\kappa$. Put $D = \pi^{-1}$ "C. Then for every $a \in \mathcal{P}_{\kappa}\lambda$, the set $\{x \in \mathcal{P}_{\kappa}^{V}\lambda: d_{x} \cap a = D \cap a\}$ is unbounded in $\mathcal{P}_{\kappa}\lambda$. We know $D \in V$ since $\mathbb{P} * \operatorname{Col}(\kappa, \lambda)$ has the κ -approximation property by Lemma 1.5.

REFERENCES

- [1] W. J. Mitchell, On the Hamkins approximation property. Ann. Pure Appl. Logic 144 (2006), no. 1-3, 126-129.
- [2] R. Laver, Making the supercompactness of κ indestructible under κ -directed closed forcing. Israel J. Math. 29 (1978), no. 4, 385–388.
- [3] M. Viale, C. Weiss, On the consistency strength of the proper forcing axiom. Adv. Math. 228 (2011), no. 5, 2672–2687.

(T. Usuba) Organization of Advanced Science and Technology, Kobe University, Rokko-dai 1-1, Nada, Kobe, 657-8501 Japan

E-mail address: usuba@people.kobe-u.ac.jp