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1 Introduction

The paper is devoted to a fourth order parabolic obstacle problem. We shall announce a
result ([13]) which is a joint work with M. Novaga of Pisa University.

The obstacle problem for elliptic and parabolic PDE’s is a topics which attracted
a great interest in the past years, and has been widely discussed in the mathematical
literature. However, even if many studies are available for second order elliptic and
parabolic equations (see for instance [6, 9] and references therein), there are relatively
few results for higher order obstacle problems, even in the linear fourth order case. More
precisely, the elliptic obstacle problem for the biharmonic operator has been considered in
[5, 7, 8, 10, 11, 14]. To the best of our knowledge, there is no analog for the corresponding
parabolic obstacle problem. The purpose of this paper is to investigate the regularity of
a solution to the obstacle problem for the parabolic biharmonic equation.

In the sequel we let  C RY be a bounded domain, with boundary of class C*** for
some a € (0,1), and we let f: Q — R be the obstacle function, satisfying

(1.1) f € C*Q), f<0 on 09.
We consider an initial datum ug :  — R such that
(1.2) up € H3(Q), up > f ae in Q.

We recall that u € H3(Q2) implies u = 0 and Vu - v = 0 on 99 (see [7, 8]), that is, u
satisfies Dirichlet boundary condition on 992.



In this paper, we consider the following fourth order parabolic obstacle problem:

(8tu(x,t) + A%u(z,t) >0 in Qx Ry,
Owu(z,t) + A%u(z,t) =0 in {(z,t) € A xRy : u(z,t) > f(z)},
P) u(z,t) =0 on 00 xRy,
Vu(z,t) - v z) =0 on 00 xRy,
u(z,t) > f(z) in OQxRy,,
L u(z,0) = uo(z) in Q.

The main result of this paper is the following:

Theorem 1.1. Let N < 3, and let f be a function satisfying (1.1). Then, for any initial
data ug satisfying (1.2), the problem (P) has a unique solution

(1.3) u € L®(Ry; H(Q)) N H}

loc

(R+, Lz(Q)), with U € LZ(R+ X Q)
Furthermore the solution u satisfies the following properties:

(i) u € L20,T; W3*(Q)) for any T > 0. In particular, if N =1,

1 1-2
(1.4) we C¥(0,T;CY() with 0<y <7 and 0<f < — T
if N =23,
- 4—N-2
(1.5) ue CY([0,T];C%(Q)) with 0 <~ < and 0< 8 < Tf

(ii) For a.e. t € R, the quantity

(16) Mt == ut('v t) + Az”('? t)
defines a Radon measure in Q, and for any T > 0 there ezists a constant C > 0
such that
T
(1.7) / 1 (Q)2dt < C.
0

Let us point out that the problem (P) corresponds to the gradient flow of a convex
functional defined on the Hilbert space L?(f2), hence we can apply the general theory of
maximal monotone operators developed in [4]. Indeed, given f as above, we can define
the functional Ef(u) : L?(Q2) — [0, +o0] as

2 : 2
Ef(u)z{/nmm it weH2Q) and u> f,

+00 otherwise.
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Notice that Ef¢(u) is convex and lower semicontinuous on L?(Q), and (P) corresponds to
the gradient flow

(1.8) us + 0E¢(u) 0, u(0) = uy,

where OE denotes the subdifferential of E in L2(€2). In particular, given an initial datum
up € H3(Q) with ug > £, by the results in [4] it follows that the evolution problem (1.8)
has a unique solution u satisfying

(1.9) u € L®(Ry; H3(Q)) N Hy (Ry; L2(Q))  with uy € LRy x Q).

The purpose of this paper is to give an extra regularity of solution to (P). To this aim,
we characterize the solution u by means of an implicit variational scheme, corresponding
to the minimizing movements introduced by De Giorgi (see e.g. [2]). This approach will
allow us to extend some of the arguments in [7], concerning the regularity of the elliptic
obstacle problem for the biharmonic operator.

We point out that the method does not rely on the linear structure of the problem and
can be applied to more general fourth order parabolic equations. Indeed our motivation
for this work rise from an analysis of a motion of planar closed curves which is governed
by the straightening flow with obstacle. Curve straightening flow is a L? gradient flow for
the total squared curvature

Ely) = l/n2 ds,
2 Y

where v is a closed planar curve, x and s denote respectively the curvature and the arc
length parameter of y. Although the flow is a fourth order quasilinear parabolic equation,
we expect that the method of this paper will be available for the geometric obstacle
problem.

The paper is organized as follows: in Section 2 we introduce the implicit scheme
corresponding to problem (P), by means of an appropriate variational problem; in Section
3 we study the regularity of solutions to the variational problem; in Section 4 we pass to
the limit in the approximating scheme and prove Theorem 1.1.

2 Preliminary

The equation in (P) is the L? gradient flow for the functional
1 2
Blu) = X / (Au(z)]? dz.
2Ja

Let T > 0, n € N, and set



Let us set up, = up. For ¢ = 1,---,n, we define inductively w;, as a solution of the
minimum problem

(M; ) min {G; ,(u) : u € K},
where

21) Ginw) i= B(w) + Pin(u)
with

(2:2) Ponlt) 1= g [ (= 1) o,

and K is a convex set given by
K :={ue H}Q): u(z) > f(z) a.e in Q}.
In the following, we let

(2.3) Vin(z) = Yonl®) ~ Uim1n(@),

Tn

We give a definition of a piecewise linear interpolations of {u;}:

Definition 2.1. (Piecewise linear interpolation) Let f be a function satisfying (1.1).
Let ug € H3(Q) with ug(z) > f(z) a.e. in Q. Define u, : A x [0,T] —» R as

(2.4) Un (T, 8) = Ui1n(7) + (¢ = (i = 1)70) Vin(@)
if (2,t) € A X [(1 — V)7n, 47 fori=1,--- ,n.

By a technical reason, additionally we need a piecewise constant interpolations of

{Ui,n} and {V;,n}‘

Definition 2.2. (Piecewise constant interpolation) Define i, : Q x [0,7] — R as

(25) ﬁ'n(my t) = ui,n(x)a
(2.6) Va(z,t) = Via(2),

if (x,t) € QA x [(i — V)1, imy) fori=1,--- ,n.

3 Existence and regularity of minimizers of (M)

We first mention a well-known compactness result in H2(Q2) ([1]).

15



16

Proposition 3.1. The following embedding is compact:

rCl'"Y(—Q) for 0<y< % if N=1,
N
C%(Q 0<y<2—— f N =2,3,
(3.1) HY ) J O W) Jor 0<7 ; ¥
L)  for 1<Vg< +oo if N =4,
\Lq(Q) for 1§Vq<N_4 if N2>5.

We start with the existence of minimizers of (M;,).

Theorem 3.1. (Existence of minimizers) Let f be a function satisfying (1.1). Let
up € HE(Q) with uo(z) > f(z) a.e. in Q. Then the problem (M;,) possesses a unique
solution u; , € HZ(Q) with uin(z) > f(z) a.e. in Q foreachi=1,--- n.

Proof. Fix n € Ny T > 0, and ¢ = 1,--- ,n. From (2.1)-(2.2) and the minimality of a
solution u to (M;,), we obtain that

E(’U,) < Gz‘,n(u) < Gz’,n(ui—l,n) = E(ui—l,n)a
and then

0 < inf Gin(u) < Gin(ticin) = E(uic1n) < -+ < E(uy).
H3(O)

Thus we can take a minimizing sequence {u;} C HZ(Q) for (M) such that u;(z) > f(z)
a.e. in () for each j € N and sup; Gin(u;) < oo.

Observing that the norm ||Au|| 2(q, is equivalent to [|ul|zz(q) (e-g., see [12]), it follows
from

18| 2y = 1/ 2B () < v/ 2E(uo) = || Auoll 2
that {u;} is uniformly bounded in HZ(Q2). Thus there exists u € HZ(Q) such that
(3.2) uj —u in HZ(Q),
in particular,
(3.3) Au; — Au in  L%(Q),

up to a subsequence. Thenks to Proposition 3.1, we obtain that

( - 1
CH(Q)) for 0<y< 3 if N=1,
) J C*(Q) for 0<y<2— N if N=23,
u; > u in 2
LYQ) for 1<Vg<+oo if N=4,
\Lq(Q) for 1<Vg< ]\/'2]1[4 if N>5
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In particular, for the case of N > 4,
(3.4) u; - u a.e in Q up to asubsequence.

Recalling u; > f a.e. in Q for each j € N, (3.4) yields that u > f a.e. in Q. Making use
of Fatou’s Lemma, we conclude that

(3.5) Pin(u) < imint P, (u).
Furthermore (3.3) implies

1 1. . o
(36) B(w) = 5 1 8ul3ag) < 3 minf A3, = liminf Bu,).

Combining (3.5) with (3.6), we see that u € HZ() is the minimizer of (M;,) with u > f
a.e. in . The uniqueness follows from the fact that the functional G;,(-) is strictly
convex. t

Regarding the regularity of the minimizer u,, obtained in Theorem 3.1, we show the
following:

Theorem 3.2. Let u;y,, be the solution of (M;,) obtained by Theorem 3.1. Then, for any
n € N, it holds that

T

(3.7) // [Vi(z,t)|? dedt < 2E(uo),
0JQ

(3.8) SUp || AUsnl| o) < V2E (uo).

Proof. Fix T > 0 and n € N. For each ¢ = 1,--- ,n, it follows from (2.1)-(2.2) and the
minimality of u;, that

(3.9) Gin(tin) < Gin(Uiz1n) = E(ui—1p).
Hence we get

Pin(uin) < E(ui-10) — E(uin),
ie.,

1
2T,

(3.10) / (Ui — 1)’ do < Euiorn) — Busn).
Q

Combining (3.10) with definitions (2.3) and (2.6), we obtain

[ L[
- Volz,t)|° dzdt = = Vin(2)|* dzdt
s [0 e =33 [T [ v

< Z (E(ui—1,n) — E(uin)) = E(u) — E(unn) < E(uo),
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ie., (3.7).
By (3.9), we obtain that F(u;,) < E(ui_1,,) for each i =1,--- ,n, and then

(3.11) 3 [ (B de = Blusn) < Bluo).
Q
It is clear that (3.11) is equivalent to (3.8). O

By the definition of u;,, we see that
/ |A(ts  + €€))* dzx + —/ Ui — Ui—1,0 +€C)% d
/ |Au; . |? dz + —/ Uin — Uim1)° dT
for any € > 0 and ¢ € HZ(2) with ¢ > 0. This implies
/Q Au,; n A dz + ;;'/{z(um — Uim1n)Cdx >0,

so that
(3.12) fip = AUin + Vin >0

in the sense of the distribution. Hence p;,, is a measure in Q (e.g., see [15]).
When we restrict dimensions to N < 3, Proposition 3.1 implies that u;, is continuous.

Under such restriction, we define

(3.13) Cin:={x€Q: un(z) = f(z)},
(3.14) Nin i ={z€Q: un(z) > f(z)}.

It is clear that C;, UN;, = 2. We can show a relation between the support of y;, and
the sets.

Lemma 3.1. Let N < 3. If g € Nipn, then there exists a neighborhood W of o such
that p;n(W) = 0. Furthermore we have

(3.15) Supp fin S Cin-

Proof. Let N < 3 and fix z° € N, arbitrarily. Since A, is an open set, there exist a
constant § > 0 and a neighborhood W of z° such that

uin(z) — f(z) >6 forall zeW.

Notice that u;, satisfies

(3.16) / A A(Uin — @) dz < —/ Vin(uin — @) dz
Q Q



for any ¢ € K, for u;, is a solution of (M;,,). Then for any ¢ € C5°(W) with 0 < ¢ < 6/2,
the function

w:ui,n_g

belongs to K. Taking this ¢ as ¢ in (3.16), we have
/ [Aw; n AC + Vi o] dz < 0.
Q .

Since p;,, > 0, this asserts that

/ [Au; n AL + Vi (] dz = 0,
Q

ie, i, =0in W. O
Regarding the finiteness of 4;,, we have the following:

Theorem 3.3. ([13]) Let u;, be the solution of (M;,) obtained by Theorem 3.1. Then
Win defined in (3.12) is a measure in Q for each i = 1,--- ,n. Moreover there ezists a
positive constant C being independent of n such that

(3.17) T > Hin(2)? < C.
=1

Regarding the regularity of u;,, we obtain the following result:

Theorem 3.4. ([13]) Let N < 3. It holds that
(3.18) Ui, € WH2(Q)

for eachn € N and ¢ = 1,--- ,n. Moreover, for any R > 0 with B C Q, there ezist
positwe constants Cy and Cy being independent of n such that

n
(3.19) 7o 9 1 D%in| [y < C1+ Ca Aoy -

=1

4 Existence and regularity of solutions to (P)

In this section, we start with a convergence result of the piecewise linear interpolation wu,,.
We state several results without its proof. For the precise proof, see [13]. We first show
a convergence result which holds in any dimension N > 1.

Theorem 4.1. Let u, be the piecewise linear interpolation of {u;,}. Then there exists a

function
u € L([0, +00); HF(2)) N Hioo(0, +00; L2($2))
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such that
(4.1) u, = u in L*0,T; HZ(Q)NHY0,T; L*(Q)) as n— +oo,

up to a subsequence, for any 0 < T < +00. Moreover

T
//u?dxdtSQE(uo),
o Ja

u(z,t) > f(x) for a.e. x € Q and for every t € [0,+00), and for each o € (0,3) it holds
(4.2) U, = u in CO*([0,T);L*(Q)) as n— +o0.

Proof. Recalling that u,(z, ) is absolutely continuous on [0, T, for all ¢1, t; € [0,7] with
1 < t9, Holder’s inequality and Fubini’s Theorem give us

L tza’u, 2 %
Un (- t2) — un (-, t = —L(z,t)dt ) dz
1) = )l = ([ Gt )

1
t2 ou 2 2 1
< / —(t) dt | (t2—1t1)2.
( e L3(R) )
Then it follows from (3.7) that
t2
(4.3) / / u? dz dt < 2E(uo)
t1 Q
and
(4.4) lun (- t2) = wn (-, 1)l gy < V2E(uo)(t2 — )7
Since (3.8) yields that
(4.5) sup ”Aun('7t)“L2(Q) < sup ”Aui,n“LZ(Q) < V2E(w),
te(0,T) 1<i<n

there exists a function u € L?(0,T; H3(f2)) such that u, — u in L?(0,T; H3(S2)) up to a
subsequence. On the other hand, the estimate (3.7) implies that

ouy, ou
(4.6) Vo=t 5
This means that du/8t € L?(0,T; L*(Q?)), i.e.,, u € H(0,T; L*(Q2)). Combining (4.4) with
Ascoli-Arzeld’s Theorem (see e.g. [3, Proposition 3.3.1]), we conclude (4.2).

Since (4.5) means that {u,(t)} is uniformly bounded in HZ(Q) with respect tot € [0, T
and n € N, we deduce from (4.2) that, for each t € [0, T

L*(0,T; L*(Q)).

(4.7) un(t) = u(t) in HZ(Q)
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up to a subsequence. This asserts that u € L*([0, T]; H2(Q)). Moreover, Proposition 3.1
implies that for each ¢ € [0, T

C(Q) for 0<y<1i if N=1,

Co(Q) for 0<y<2-& if N=23,
(4.8) Un(t) — u(t) in () for 0<y 2 !

Li(Q) for 0<g<+4oo if N =4,

LYQ) for 0<g<# if N>5.

In particular, if N > 4,
(4.9) un(t) > u(t) ae in Q

up to a subsequence. Since u,(t) > f a.e. in Q for each n € Nand t € [0,T], the fact
(4.8)-(4.9) yields that u(t) > f a.e. in Q for each ¢ € [0, T]. This completes the proof. [J

When N = 1, we can improve the convergence result obtained in Theorem 4.1

Theorem 4.2. ([13]) Let N = 1. Let u be the function obtained by Theorem 4.1. Then
it holds that u € L*(0,T; W>*(Q)) N C%([0, T]; C*(Q)) and

(4.10) Up = u weakly® in  L*(0,T;W3*(Q)) as n — oo,
(4.11) un —u in C%([0,T];C*()) as n— oo

for every o € (0,3) and B € (0,1522). Purthermore u(-,t) — ug in CH(Q) ast | 0.
When N = 2, 3, we can also improve the result obtained in Theorem 4.1:

Theorem 4.3. ([13]) Let N = 2, 3. Let u be the function obtained by Theorem 4.1. Then
it holds that u € L*(0,T; W(Q)) N C%([0, T]; C%(R)) and

(4.12) Up — u  weakly* in  L*(0,T;W3®(Q)) as n— +oo,
(4.13) Un —u in CY([0,T;,C%(Q) as n— +oo
for every

1 N v N
0<6<(§__8—)(1—2—N/2), 0<’}’<2—-2—

Furthermore u(:,t) — ug in C%7(Q) ast | 0.

Regarding the piecewise constant interpolation for {uin}, ie., i, defined in Definition
2.2, we can verify the following:

Lemma 4.1. Let i, be the piecewise constant interpolation of {uin}. If N =1, then

(4.14) Up —u in L®([0,T);C*(Q)) as n— +oo
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for every v € (0,1/2), where u is the function obtained in Theorem 4.1. If N = 2, 3, then
(4.15) Gn—u in L®([0,T;C*(Q)) as n— +oo
for every v € (0,2 — N/2). Furthermore, for any N > 1, it holds that
(4.16) At, — Au in L¥0,T;L*(Q)) as n — +oo.
Let us define p, as
(4.17) n(t) = pin if € [(§ = 1)Tn, i70).

We close the paper with an outline of proof of Theorem 1.1:

4.1 Proof of Theorem 1.1

Let u be the function in Theorem 4.1. Fix T > 0 and ¢ € C*(2 x (0,T)) with ¢ > 0
arbitrary. For each ¢ > 0, let w, be a unique minimizer of the functional Gf,, defined by

(4.18) Gin(v) == /Q B(Av)2 + %(v —Ui15)? +Y(v = f)]| dz,
where
A2 .
(4.19) %) = {? Ao
0 if A>0,
(4:20) 8.0 = 7).

Since w, satisfies

/ [Awemp N PR PR f)cp] dz =

we observe from the definition of 3 that

/[AwsAs0+1( — Ui_1,0)P }dﬂc— /ﬂe fpdz > 0.

Letting € — 0, the proof of Theorem 3.3 implies that

1
/ [Auz,nAcp + ;"(ui,n - ui—l,n)(,o] dz Z 0.
Q n

Integrating it over [0, 7] and using Definitions 2.1 and 2.2, we deduce that

(4.21) /o/n [Adin(z,t)Ap(z, t) + Vo, t)p(, t)] dedt > 0.
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It follows from (4.16) that

T T
//Aﬂn(:v,t)Ago(w,t)d:vdt—»//Au(x,t)Ago(x,t)dxdt as n — 400,
0 Jo 0 Ja

and while (4.6) gives us

T T
//Vn(a:,t)cp(a:,t)dwdt—»//ut(:r,t)cp(x,t) drdt as n — +oo.
0 Ja 0 Jo

Thus, letting n — 400 in (4.21), we observe that

T
(4.22) / / [Au(z, H)Ap(z, t) + w(z, )p(a, )] dzdt > 0.
0Ja
Since ¢ is arbitrary, (4.22) implies that
(4.23) A%u(z,t) + up(z,2) >0 ae in Qx(0,7),

where A%y is written in the distribution sense. Moreover, the regularity of u follows from
Theorems 4.1-4.3.
We now prove (1.7). By (4.17) and Theorem 3.3, we observe that

T 2
(4.24) lttn Il 220, 3 01002)) 3=/0 (/ﬂ dﬂn) dt

= i/m (/ d,ui,n>2dt =Th f:ui,n(ﬂ)Q <C.
Q@ i=1

i=1 Y (i—1)mn
This implies that
pn — 7 weakly in L?(0,T; M(Q))
up to a subsequence. Setting |
we o= A%+ uy,

we observe from (4.23) that u is a measure on © x (0,7), and it holds that I = p; by
uniqueness of the limit. Since p, converges to p: weakly in L2?(0,T; M(Q)), it follows
from (4.24) that

| ell 20,7010y < liminf || gn | 20,7 M) < C.
n—oo

This is equivalent to (1.7), and implies that y; is a positive Radon measure on  for a.e.
te(0,7).

Finally we prove that u is a solution of the problem (P). To prove this assertion, it is
sufficient to show that, if u > f, then A%y + u; = 0 holds. Let us set

N :={(z,t) e 2 x (0,T) : u(z,t) > f(x)}.
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Since u is continuous in Q x (0,7) by Theorems 4.2 and 4.3, N is an open set, so that,
for any (z°,t°) € N, there exist 6 > 0 and a neighborhood W X (t1,ts) of (z°,¢°) such
that

(4.25) u(z,t) — f(z) >6 in W x (t1,t2).
Lemma 4.1 implies that there exists a number N > 0 such that
Un(z,t) > u(z,t) — g in W X (t,t) forany n>N.
Combining this with (4.25), we have, for any n > N,
(4.26) Un(z,t) > f(z) +—g— in W x (t1,t2).
Let ¢ € CP(W x (t1,t2)) with 0 < ¢ < §/2. Then (4.26) asserts that
Y(z,t) = tn(z,t) — {(z,t) € K foreach te€[0,T)

Taking this 9 as ¢ in (3.16) and integrating it with respect to t on (0,7T’), we obtain

(4.27) /0 ! /Q Mg n(2)C(, 8) dadt < — /0 ! /Q Vin(2)C(, t) dadt.

From the definition (4.17), the inequality can be reduced to

(4.28) > / ’ / (z,t)dpndt < 0.
i—1 Y (1) JQ

Since py, > 0, we see that the integral in (4.28) must be equal to 0, i.e.,
(4.29) pn(W X (t1,t2)) = 0.
It follows from (4.24) that

T
| nll Mmcex 0,1)) 1=/ /dundt<C.
0o Ja

Thus we deduce that u, converges to u; weakly in M(Q x (0,T)), i.e.,

T T
/ / o(z, t)dupdt — / / p(x,t) dpedt
0JQ 0JQ

for any ¢ € C§°(2 x (0,T)). This fact also yields that

(4.30) |2l meexcomy) < lilfig ([ nl| mx 0,7) -
Combining (4.29) with (4.30), we conclude that

(4.31) (W X (t1,t2)) =0,

which completes the proof. |
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