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Abstract
In this paper, we summarize the analytical results by Dockner and Feichtinger(1991)

on the existence of cyclical fluctuations in continuous time dynamic optimization models
with two state variables, and apply their analytical results to a particular economic

dynamic model, that is, a modified Gaskins model of dynamic limit pricing.
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l.Introduction

The dynamic optimization model with only one state variable is very popular in
dynamic economic analysis. It is well known, however, that usually such a model cannot
produce cyclical fluctuations but it produces monotonic convergence to the equilibrium

point. On the other hand, some economists studied the several economic models of
dynamic optimization with two state variables that can produce cyclical fluctuations.
Benhabib and Nishimura(1979), Benhabib and Rustichini(1990), and Asada and
Semmler(2004) are examples of such works. However, all of the above mentioned works
are studies of the particular economic models rather than the systematic studies of the
general mathematical principle. As far as we acknowledge, Dockner and
Feichtinger(1991) provided the most systematic investigation of the general

mathematical principle that produces cyclical fluctuations in continuous time dynamic

optimization model with two state variables. In this paper, we reconsider on the

contribution of Dockner and Feichtinger(1991) and the possibility of the economic
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application of their analytical results. It is worth noting that this paper is largely based
on the analytical results which were presented in Asada(2013).

In section 2, we summarize the analytical results of Dockner and Feichtinger(1991)

on the general theory of cyclical fluctuations in continuous time dynamic optimization

models with two state variables. In section 3, we introduce the application of
$Dockner\cdot$Feichtinger theorem to the particular dynamic economic model, that is, the

modified Gaskins limit pricing model that was presented by Asada(2013) for the first
time. Section 4 is devoted to the concluding remarks. In appendix, we take up two useful
theorems on the existence of the closed orbits in the general n-dimensional and
$four\cdot$dimensional system of linear and nonlinear differential equations, which is not
necessarily restricted to the dynamic optimization model.

2. Dynamic optimization Problem with Two State Variables
Let us consider the following continuous time dynamic optimization problem with two

state variables.

Maximize $\int_{0}^{\infty}F(k_{1},k_{2}, u_{1},u_{2}, \cdots, u_{n})e^{-rt}dt$ (1)

subject to

$\dot{k}_{1}=f(k_{1},k_{2},u_{1},u_{2}, \cdots,u_{n}),\dot{k}_{2}=g(k_{1},k_{2},u_{1},u_{2}, \cdots,u_{n};\mathcal{E})$ , (2)

$k_{1}(0)=k_{10}=$given, $k_{2}(0)=k_{20}=$ given, $r=$ constant $>0$ , (3)

where $k_{i}$ is $i’ th$ state variable, $u_{j}$ is $j’ th$ control variable, $r$ is the rate of discount,

and $\epsilon$ is a parameter. We assume that functions $F,$ $f$ , and $g$ are at least twice
continuously differentiable.
We can solve this type of dynamic optimization problem by using Pontryagin’s
maximum principle.1

Current value Hamiltonian of this system becomes as follows.
$H=F(k_{1}, k_{2},u_{1},u_{2}, \cdots,u_{n})+\int 4f(k_{1},k_{2}, u_{1}, u_{2},\cdots,u_{n})$

$+\mu_{2}g(k_{1},k_{2},u_{1},u_{2}, \cdots,u_{n};\epsilon)$ , (4)

where $\mu_{1}$ and $\mu_{2}$ are two $co\cdot$state variables. Then, the necessary conditions for
optimality are given by the following set of equations.

1 See Chiang(1992), Dixit(1990) and Gandolfo(2009) as for the expositions of
Pontryagin’s maximum principle.
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$\dot{k}_{i}=\frac{\partial H}{\partial\mu_{i}}(i=1,2)$ (5a)

$\dot{\mu}_{i}=r\mu_{i}-\frac{\partial H}{\partial k_{i}}(i=1,2)$ (5b)

$(u_{1},u_{2},\cdots,u_{n}){\rm Max} H$

(5c)

$\lim_{tarrow\infty}k_{i}\mu_{i}e^{-rt}=0(i=1,2)$
$(5d)$

We suppose that the condition (5c) is expressed by the following set of the first order

conditions, assuming that the second order conditions are also satisfied.

$\frac{\partial H}{\partial u_{j}}=0(j=1,2, \cdots,n)$
(6)

Furthermore, we assume that we can obtain the unique set of the solution of equation

(6) with respect to $u_{j}$ as follows.

$u_{j}=u_{j}(k_{1},k_{2}, M, \mu_{2})(j=1,2, \cdots,n)$ (7)

Substituting equation (7) into equations (5a) and (5b), we obtain the following

four-dimensional linear or nonlinear system of differential equations.

$\dot{k}_{1}=G_{1}(k_{1}, k_{2}, \mu_{1}, \mu_{2};\epsilon)$ (8a)

$\dot{k}_{2}=G_{2}(k_{1},k_{2}, \mu_{1}, \mu_{2};\epsilon)$ (8b)

$\dot{\mu}_{\eta}=G_{3}(k_{1},k_{2}, M, \mu_{2};r, \epsilon)$
$(8_{C})$

$\dot{h}=G_{4}(k_{1},k_{2},l4,h;r, \epsilon)$ (8d)

Let us assume that the system (8) has a meaningful equilibrium solution

$(k_{1}^{*},k_{2}^{*},M^{*},\mu_{2}^{*})$ that ensures $\dot{k}_{1}=\dot{k}_{2}=\dot{\mu}_{1}=\dot{\mu}_{2}=0$ . In this case, the characteristic

equation of this system at the equilibrium point becomes as follows.2

$\Delta(\lambda)\equiv|\lambda I-J|=\lambda^{4}+a_{1}\lambda^{3}+a_{2}\lambda^{2}+a_{3}\lambda+a_{4}=0$ , (9)

$a_{1}=-$traceJ, $a_{2}=M_{2},$ $a_{3}=-M_{3},$ $a_{4}=\det J$, (10)

where $J$ is the $(4x4)$ Jacobian matrix of the dynamic system (8) at the equiltbrium

2 See Asada, Chiarella, Flaschel and Franke(2010) Mathematical Appendix.
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point, and $M_{j}$ is the sum of all principal j’th order minors of $J(j=2,3)$ .

Dockner and Feichtinger(1991) studied the mathematical structure of this particular

Jacobian matrix $J$ that is attached to this type of dynamic optimization problem. They

showed that the following properties are satisfied in case of this particular Jacobian
matrix.

trace$I=2r,$ $-M_{3}+rK=0,$ $K\equiv M_{2}-r^{2}$ (11)

Substituting the relationships (11) into a set of equalities (10), we have the following
expressions.

$a_{1}=-$traceI $=-2r<0,$ $a_{2}=r^{2}+K,$ $a_{3}=-rK,$ $a_{4}=\det I$. (12)

Dockner and Feichtinger(1991) proved that the following set of conditions ($DF$) is
equivalent to the condition (H2) in Theorem Al in Appendix.3

$\det J>(K/2)^{2},$ $(K/2)^{2}+r^{2}(K/2)-\det J=0.$ $(DF)$

In fact, they succeeded to provide the following complete mathematical
characterization of the solution of the particular characteristic equation (9).

Theorem 1. $(Dockner\cdot$Feichtinger Theorem, $cf.$ Dockner $and Feichtinger(1991)$ and
Feichtinger, Novak and Wirl(1994)$)$

The characteristic equation $\Delta\equiv|\lambda I-J|=0$ of the particular Jacobian matrix of the

system (8) has the following properties (1)–(4).

(1) The characteristic equation has two positive real roots and two negative real roots if
and only if
$K<0,0<\det J\leqq(K/2)^{2}$ (13)

(2) The characteristic equation has a pair of complex roots with positive real part and a

3 Asada and Yoshida(2003) proved that the condition ($DF$) is equivalent to the following
seemingly simpler set of conditions ($AY$).

$K>0,$ $(K/2)^{2}+r^{2}(K/2)-\det J=0$ . ($AY$)

The proof is quite straightforward. First, let us suppose that a set of conditions ($DF$) is
satisfied. Then, we have

$\det J=(K/2)^{2}+r^{2}(K/2)>(K/2)^{2},$ $(\#)$

which means that $K>0$ . This proves the causality $(DF)\Rightarrow(AY)$ . Next, let us suppose
that a set of conditions ($AY$) is satisfied. Also in this case we have the relationship $(\#)$ ,
which means that a set of conditions ($DF$) is satisfied. This proves the causality $(AY)\Rightarrow$

($DF$). Asada and Yoshida(2003) also showed that a set of conditions ($AY$) is equivalent to
a set of conditions (A2) in Appendix.
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pair of complex roots with negative real part ifand only if
$\det J>(K/2)^{2},$ $\det J-(K/2)^{2}-r^{2}(K/2)>0$ . (14)

(3) The characteristic equation has three roots with positive real parts and one negative

real root ifand only if
$\det J<0$ . (15)

(4) The characteristic equation has a pair of complex roots with positive real part and a
pair ofpure imaginary roots ifand only ifa set of the conditions ($DF$) is satisfied.

A set of conditions ($DF$) (or equivalently, a set of conditions ($AY$) in footnote 3) ensures
the existence of the closed orbits in the dynamic optimization problem with two state

variables that is characterized by equations (1) $-(3)$ .

3. An Application to Economics: Modified Gaskins Model of Dynamic Limit
Pricing

In this section, we shall apply the analytical results by Dockner and

Feichtinger(1991) that was summarized in the previous section to a particular economic

model, that is, the modified Gaskins model of dynamic limit pricing.

Original model of dynamic limit pricing by Gaskins(1971) is formulated as follows.

Maximize $W= \int_{0}^{\infty}(p-c)(a-bp-x)e^{-rt}dt$ (16)

subject to
$\dot{x}=\alpha(p-\overline{p}),$ $x(O)=$ given, (17)

where $a,$ $b,$ $c,$ $r,\overline{p}$ , and $\alpha$ are the parameters such that $a>0,$ $b>0,0<c<\overline{p},$ $r>$

$0$ and $\alpha>0.$

The rationale of this formulation is as follows. Let us consider the partial equilibrium

$micro\cdot$dynamic model of an industry in which one dominant large firm and many small
fringe firms exist, and let us suppose that the demand function for the product of this

industry is expressed by the following simple linear function.
$q=a-bp$, (18)

where $q$ is the demand for the product of this industry, and $p$ is the price of this

product.4 Dominant firm acts as the price leader subject to the threat of entry by the
fringe firms, and the entry dynamics of the fringe firms are expressed by the dynamic

4 Although Gaskins(1971) did not necessarily assumed that the demand function is
linear, we adopt the simplified version with linear demand function, which is due to
Dixit(1990) Chap. 10.
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equation (17), where $x$ is total output of the fringe firms. Ifthe dominant firm’s output
level is $(q-x)$ corresponding to the selected price level $p$, the discount present value

of the dominant firm’s net cash flow that is to be maximized is expressed by equation
(16). In this model, $p$ is the control variable and $x$ is the state variable for the

dominant firm.

The current value Hamiltonian of this dynamic optimization problem becomes
$H=(p-c)(a-bp-x)+\mu\alpha(p-\overline{p})$ , (19)

where $\mu$ is the $co\cdot$ state variable. $A$ set of necessary conditions for optimality becomes

as follows.

$\dot{x}=\frac{\partial H}{\partial\mu}$ , (20a)

$\dot{\mu}=r\mu-\frac{\partial H}{\partial x}$ , (20b)

$\lim_{tarrow\infty}x\rho oe^{-n}=0$ . (20c)

In this formulation, the initial condition $x(O)$ is $pre\cdot$determined, but the initial
condition $\mu(0)$ is not $pre\cdot$determined. Gaskins(1971) showed that the equilibrium point

of the two-dimensional system of dynamic equations (20a), (20b) becomes a saddle point,

and only the convergent path satisfies the ‘transversality condition’ $(20c)$ . This means
that the solution of this dynamic optimization problem produces only the monotonically

convergent path, and the cyclical fluctuation does not occur.
On the other hand, Asada(2013) presented the following modified version of Gaskins’

dynamic limit pricing model.

Maximize $W= \int_{0}^{\infty}(p-c)(a-bp-x)e^{-rt}dt$ (21)

subject to
$\dot{x}=\alpha(p^{e}-\overline{p}),$ $x(O)=$ given, (22)

$\dot{p}^{e}=\beta(p-p^{e}),$ $p^{e}(0)=$ given, (23)

where $\beta>0$ is an additional parameter and $p^{e}$ is an additional state variable that is
the ‘expected price’ of the fringe firms. This means that the adaptive price expectation

formation by the fringe firms is introduced in this modified version.5 Also in this
model, $p$ is the control variable.

The current value Hamiltonian of this system becomes

5 Judd and Petersen(1986) and Asada and Semmler(2004) introduced other types of
modification of Gaskins model. In this paper, however, we do not consider their
contributions.
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$H=(p-c)(a-bp-x)+ \mu_{\eta}\alpha(p^{e}-\overline{p})+\int 1_{2}\beta(p-p^{e})$ , (24)

where $\mu_{1}$ and $\mu_{2}$ are two $co\cdot$ state variables. Then, a set of necessary conditions of

optimality becomes as follows.6

$\dot{x}=\frac{\partial H}{\partial\mu_{1}}=\alpha(p^{e}-\overline{p})$, $(25a)$

$\dot{p}^{e}=\frac{\partial H}{\partial\mu_{2}}=\beta(p-p^{e})$, $(25b)$

$\int\dot{4}=r\mu_{1}-\frac{\partial H}{\partial x}=r\mu_{\eta}+p-c$, (25c)

$f \dot{h}=r\mu_{2}-\frac{\partial H}{\partial p^{e}}=(r+\beta)\mu_{2}-\mu_{7}\alpha$, (25d)

$\frac{\partial H}{\partial p}=-2bp+a-x+bc+\mu_{2}\beta=0$, (25e)

$\lim_{tarrow\infty}x\mu_{7}e^{-rt}=0,$ $\lim_{arrow\infty}p^{e}\mu_{2}e^{-rt}=0.$ $(25f)$

This system of equations can be reduced to the following four dimensional hnear
system of differential equations together with the‘transversality conditions’ $(25\theta.$

$\dot{x}=\alpha(p^{e}-\overline{p})=G_{1}(p^{e};\alpha)$ , (26a)

$\dot{p}^{e}=\beta\{\frac{1}{2b}(a-x+bc+\mu_{2}\beta)-p^{e}\}=G_{2}(x,p^{e}, \mu_{2};\beta)$ , (26b)

$\dot{\mu}_{1}=r\mu J+\frac{1}{2b}(a-x+bc+\mu_{2}\beta)=G_{3}(x, \mu_{1}, \mu_{2};r,\beta)$ , (26c)

$\int h=(r+\beta)\mu_{2}-\mu_{\eta}\alpha=G_{4}(\hslash, h;r,\alpha,\beta)$ . (26d)

Asada(2013) showed that the equilibrium solution $(x^{*},p^{e*}, p^{*}, \mu_{1}^{*}, \mu_{2}^{*})$ of the
dynamic system (26) that ensures $\dot{x}=\dot{p}^{e}=i4=l\dot{h}=0$ is given by

$x^{*}=(a-2b \overline{p}+bc)-\frac{\overline{p}\alpha\beta}{r(r+\beta)}$ , (27a)

$p^{e*}=p^{*}=\overline{p}>0$, (27b)

$\mu_{1}^{*}=^{\underline{-\overline{p}}}<0$ , (27c)
$r$

$\mu_{2}^{*}=\frac{-\overline{\varphi}}{r(r+\beta)}=\frac{\alpha\mu_{\eta}^{*}}{r+\beta}<0$ . (27d)

We can easily show that we have $x^{*}>0$ for all $\beta>0$ if the parameter $a>0$ is

sufficiently large and the parameter $\alpha>0$ is sufficiently small (cf. Asada 2013, p. 218).

6 Equation (25e) is the first order condition for the maximization of $H$ with respect to
$p$ . Since $\partial^{2}H/\partial p^{2}=-2b<0$ , the $second\cdot$order condition is satisfied.
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We assume that these conditions are in fact satisfied. Then, the Jacobian matrix of the

system (26) becomes

$J=[- \frac{0\beta}{02b2b1}$ $-\beta\alpha 00$
$-\alpha 0r0$

$r \beta\frac{\beta^{2}0}{\frac{2b\beta}{2b+}}\ovalbox{\tt\small REJECT}$ . (28)

In this case, the characteristic equation of this system is given by

$\Delta(\lambda)\equiv|\lambda I-J|=\lambda^{4}+a_{1}\lambda^{3}+a_{2}\lambda^{2}+a_{3}\lambda+a_{4}=0$, (29)

where

$a_{1}=-$traceJ $=-2r<0$ , (30)

$a_{2}=M_{2}=- \frac{0\beta}{2b}$ $- \alpha\beta|+|-\frac{o_{1}}{2b}$ $r0_{+}00$ $r+\beta 0|+|_{0}^{-\beta}$ $r0$

$+^{-\beta}$ (31)
$0$

$r \beta\frac{\beta^{2}}{2b,+}|+|_{-\alpha}r$ $r^{\frac{\beta}{2b+}} \beta^{=r^{2}}+\beta(\frac{\alpha}{b}-r-\beta)$ ,

$a_{3}=-M_{3}=-$(sum of all principal third-order minors of 1), (32)

$a_{4}= \det J=\frac{\alpha\beta r(r+\beta)}{2b}>0$ . (33)

Then, we obtain the following relationships by using the symbols that are introduced
by Dockner and Feichtinger(1991).

$K \equiv M_{2}-r^{2}=\beta(-\beta+\frac{\alpha}{b}-r)\equiv K(\beta)$, (34)

$\Omega(\beta)\equiv(K/2)^{2}-\det J$

$= \frac{\beta}{2}[\frac{1}{2}\beta^{3}+(r-\frac{\alpha}{b})\beta^{2}+\{\frac{1}{2}(r-\frac{\alpha}{b})^{2}-\frac{\alpha}{b}\}\beta-\frac{cv^{2}\prime}{b}]$ , (35)

$\Psi(\beta)\equiv(K/2)^{2}+r^{2}(K/2)-\det J$

$= \beta[\beta^{3}+\frac{1}{2}(r-\frac{\alpha}{b})\beta^{2}+\frac{\alpha}{b}(\frac{\alpha}{b}-4r)\beta-r^{3}]$. (36)

Let us select the parameter $\beta$ as a bifurcation parameter. Then, it is clear that only

the parameter value $\beta_{0}$ that satisfies the following relationships can satisfy the

condition ($AY$) in the footnote 3, which ensures the existence of the closed orbits because
of the Hopf Bifurcation.7

7 The system (26) is a system of linear differential equations, so that the Hopf
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$0< \beta_{0}<\frac{\alpha}{b}-r,$ (37)

$\beta_{0}^{3}+\frac{1}{2}(r-\frac{\alpha}{b})\beta_{0}^{2}+\frac{\alpha}{b}(\frac{\alpha}{b}-4r)\beta_{0}-r^{3}=0$. (38)

More accurately, Asada(2013) proved the following three propositions by applying

Dockner Feichtinger theorem (Theorem 1) to the system (29).

Proposition 1.

Suppose that $0<r< \frac{\alpha}{b}$ . Then, we have the following properties (1) $-(2)$ .

(1) The characteristic equation (29) has a pair of complex roots with positive real part

and a pair of complex roots with negative real part for all sufficiently small values of
$\beta>0$ . In this case, the equilibrium point becomes a complex roots type saddle point,

and the cyclical convergence to the equilibrium point occurs.
(2) Equation (29) has two positive real roots and two negative real roots for all

sufficiently large values of $\beta>0$ . In this case, the equilibrium point becomes a real

roots type saddle point, and the monotonic convergence to the equilibrium point

occurs.

Proposition 2.

Suppose that $0<r< \frac{\alpha}{b}$ and $r$ is sufficiently small. Then, there exist the parameter

values $\beta_{j}(j=1,2,3,4)$ such that $0< \beta_{1}<\frac{\alpha/b-r}{2}<\beta_{2}<\frac{\alpha}{b}-r<\beta_{3}\leqq\beta_{4}<\infty$ which

satisfy the following properties (1) $-(4)$ .
(1) The characteristic equation (29) has a pair of complex roots with positive real part

and a pair of complex roots with negative real part for all $\beta\in(0,\beta_{1})\cup(\beta_{2},\beta_{3})$ .
(2) Equation (29) has four roots with positive real parts for all $\beta\in(\beta_{1}, \beta_{2})$ .
(3) Equation (29) has a pair of complex roots with positive real part and a pair of pure

imaginary roots at two points $\beta=\beta_{1}$ and $\beta=\beta_{2}$ . These points are the

degenerated type Hopf Bifurcation points, so that the closed orbits exist at these

points.8

Bifurcation in this case is the degenerated type. In other words, the closed orbits exist
only at the point $\beta=\beta_{0}.$

8 It must be noted that a set of‘transversality conditions’ $(25\theta$ is satisfied at the closed
orbit.
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(4) Equation (29) has two positive real roots and two negative real roots for all
$\beta\in[\beta_{4}, \infty)$ .

Proposition 3.

Suppose that $r \geqq\frac{\alpha}{b}$ . Then, there exists a parameter value $\overline{\beta}\in(0, \infty)$ that satisfy

the following properties (1) $-(2)$ .
(1) The characteristic equation (29) has a pair of complex roots with positive real part

and a pair of complex roots with negative real part for all $\beta\in(0,\overline{\beta})$ .
(2) Equation (29) has tw$0$ positive real roots and two negative real roots for all

$\beta\in[\overline{\beta}, \infty)$ . The point $\beta=\overline{\beta}$ is not the Hop Bifurcation point.

4. Concluding Remarks
In this paper, we summarized the complete mathematical characterization by

Dockner and Feichtinger(1991) on the existence of cyclical fluctuations in continuous
time dynamic optimization models with two state variables, and then introduced an
example of the application of the analytical results by Dockner and Feichtinge(1991) to
dynamic economics, which was presented by Asada(2013) for the first time. Although

mathematical proofs are omitted in this paper, the detailed mathematical proofs of
three propositions in section 3 of this paper are contained in Asada(2013). The method
of the proofs is the straightforward application of $Dockner\cdot$Feichtinger theorem to the
system (29).

Appendix: Two Useful Theorems
The following two theorems are quite useful for the investigation of the existence of

cyclical fluctuations in the general $n$ -dimensional or four $-$ dimensional system of linear
and nonlinear differential equations, which is not necessarily restricted to the dynamic
optimization model that is studied in the text.

Theorem Al. (Hopf Bifurcation Theorem for an $n$-dimensional system, cf. Asada,
Chiarella, Flaschel and Franke(2010) Mathematical Appendix and Gandolfo(2009)

Chap. 24)

Let $\dot{x}=f(x;\epsilon)$ , $x\in R^{n},$ $\epsilon\in R$ be an n-dimensional system of differential
equations depending upon a parameter $\mathcal{E}$ . Suppose that the following conditions $(H1)-$
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(H3) are satisfied.
(Hl) The system has a smooth curve of equilibria given by $f(x^{*}(\mathcal{E});\epsilon)=0.$

(H2) The characteristic equation $|\lambda I-U(x^{*}(\mathcal{E}_{0});\mathcal{E}_{0})|=0$ has a pair of pure

imaginary roots $\lambda(\epsilon_{0}),\overline{\lambda}(\epsilon_{0})$ and no other roots with zero real parts, where

$lY(x^{*}(\epsilon_{0});\epsilon_{0})$ is the Jacobian matrix of the above system at $(x^{*}(\mathcal{E}_{0}), \mathcal{E}_{0})$ with

the parameter value $\epsilon_{0}.$

(H3) $\frac{d\{{\rm Re}\lambda(\mathcal{E})\}}{d\epsilon}$ $\neq 0$, where
$\epsilon-\epsilon_{0}$

${\rm Re}\lambda(\epsilon)$ is the real part of $\lambda(\epsilon)$ .

Then, there exists a continuous function $\mathcal{E}(\gamma)$ with $\mathcal{E}(0)=\mathcal{E}_{0}$ , and for all

sufficiently small values of $\gamma\neq 0$ there exists a continuous family of $non\cdot constant$

periodic solution $x(t, \gamma)$ for the above dynamic system.

Theorem A2. $(Asada^{-}$Yoshida Theorem for a four-dimensional system, cf. Asada and
Yoshida(2003) and Gandolfo(2009) chap. 24)

(1) Consider the characteristic equation

$\lambda^{4}+b_{1}\lambda^{3}+b_{2}\lambda^{2}+b_{3}\lambda+b_{4}=0$. (Al)

Then, we have the following results (i) and (ii).

(i) The characteristic equation (Al) has a pair of pure imaginary roots and two

roots with nonzero real parts if and only if either of the following set of

conditions (A2) or (A3) is satisfied.

$b_{1}b_{3}>0,$ $b_{4}\neq 0,$ $\Phi\equiv b_{1}b_{2}b_{3}-b_{1}^{2}b_{4}-b_{3}^{2}=0$. (A2)

$b_{1}=b_{3}=0,$ $b_{4}<0$ . ($A$3)

(ii) The characteristic equation (Al) has a pair of pure imaginary roots and two

roots with negative real parts ifand only ifthe following set of conditions (A4)

is satisfied.

$b_{1}>0,$ $b_{3}>0,$ $b_{4}>0,$ $\Phi\equiv b_{1}b_{2}b_{3}-b_{1}^{2}b_{4}-b_{3}^{2}=0$. (A4)

(2) Consider the characteristic equation

$\lambda^{4}+b_{1}(\epsilon)\lambda^{3}+b_{2}(\epsilon)\lambda^{2}+b_{3}(\mathcal{E})\lambda+b_{4}(\epsilon)=0$, (A5)

where it is assumed that the coefficients $b_{j}$ $(j=1,2,3,4)$ are the continuously
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differentiable functions of a parameter $\mathcal{E}$ . Then, we have the following propositions
(i) and (ii).

(i) Suppose that we have $b_{1}(\mathcal{E}_{0})b_{3}(\mathcal{E}_{0})>0,$ $b_{4}(\epsilon_{0})\neq 0$, and

$\Phi(\mathcal{E}_{0})\equiv b_{1}(\epsilon_{0})b_{2}(\epsilon_{0})b_{3}(\mathcal{E}_{0})-b_{1}(\mathcal{E}_{0})^{2}b_{4}(\epsilon_{0})-b_{3}(\mathcal{E}_{0})^{2}=0$ at $\epsilon=\mathcal{E}_{0}$ . Then, the

condition (H3) in Theorem Al is equivalent to the following condition (A6).

$\frac{d\Phi(\mathcal{E})}{d_{\mathcal{E}}}\epsilon=\epsilon_{0}\neq 0$ . ($A$6)

(ii) Suppose that we have $b_{1}(\mathcal{E}_{0})=0,$ $b_{3}(\mathcal{E}_{0})=0$ , and $b_{4}(\mathcal{E}_{0})<0$ at the point

$\mathcal{E}=\epsilon_{0}$ . Then the condition (H3) in Theorem Al is equivalent to the following

condition (A7).

$[b_{2}(\epsilon_{0})+\sqrt{b_{2}(\epsilon_{0})^{2}-4b_{4}(\epsilon_{0})}]b_{1}’(\epsilon_{0})-2b_{3}’(\epsilon_{0})\neq 0$ . (A7)

Remarks on Theorem A2.
(1) The condition $\Phi=0$ is always satisfied if a set of conditions (A3) is satisfied.
(2) The inequality $b_{2}>0$ is always satisfied if a set of conditions (A4) is satisfied.
(3) We can derive Theorem A2(1)(ii) from Liu’s theorem on the $n$ -dimensional system

that is due to Liu(1994) as a special case with $n=4$, although other parts of
Theorem A2 cannot be derived from Liu’s theorem.

Theorem Al (Hopf Bifurcation Theorem) establishes the existence of the closed
orbits and the cyclical fluctuations in a general nonlinear $n\cdot$dimensional system of
differential equations, which is not necessarily restricted to the dynamic optimization
model. Theorem A2 provides a complete mathematical characterization of the Hopf

Bifurcation in a $four\cdot$dimensional system of differential equations. Part (1) of Theorem
A2 is called $Asada\cdot$Yoshida Theorem’ by Gandolfo(2009) p. 483.
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