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1 Background

This note is based on a talk which the author gave at the RIMS conference.

The concept of anti-integrable limit was introduced to prove the existence of chaotic

orbits for the standard map by Aubry and Abramovici in 1990 [1], and has been devel-

oped (e.g. [9]) and applied to many areas of dynamical systems. For instance, it was

employed to prove the existence of invariant cantori for symplectic maps [16], breathers

for coupled oscillators [15], multibump and chaotic trajectories for time-dependent La-

grangian systems [5, 7], horseshoes for the H\’enon map and high dimensional H\’enon-like

maps [10, 18, 20], periodic and chaotic trajectories of the second species for the 3-body

problem [6], periodic and chaotic trajectories for two charges in a uniform magnetic field

[17], and to estimate lower bounds for the topological entropy of convex billiards with

small inner scatterers [11].

In [8], using the concept of anti-integrable limit, the author proved the following.

Theorem 1. For any given homotopy class with respect to the origin, there corresponds a

unique periodic orbit for the Sinai billiard provided the circular scatterer is small enough.

“The author is supported by NSC 102-2115-M-00l-009 and the NCTS.

数理解析研究所講究録

第 1901巻 2014年 47-54 47
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Figure 1: Continuation of a billiard orbit as the radius of the inner circular scatterer

varied.

Figure 1 illustrates the underlying ideas of Theorem 1. Think about the following

question: Given a periodic orbit of a Sinai billiard, does the orbit change continuously

within a topology when the radius of the inner disc changes? and what is the limiting

behaviour when the radius becomes zero?

It is well known that the topological entropy of the Sinai billiard is infinite and the Sinai

billiard is equivalent to the billiard system of a square table with a disc scatterer placed

in the centre of the square. This naturally motives us to consider another question: With

a fixed disc in the centre, what will happen to the topological entropy if we smooth out

the corners of a square billiard table? In other words, we ask that what is the topological

entropy of a convex billiard table having one inner circular scatterer? In [11], the author

obtained the following result.

Theorem 2. For any positive real number $\chi$ , for a generic convex billiard table with a

convex inner scatterer, the return map to the scatterer induced from the billiard flow has

topological entropy at least $\chi$ provided that the inner scatterer is sufficiently small.

Similar to the Sinai billiard case, we can also ask whether a periodic orbit of a convex

billiard table with an inner disc scatterer changes continuously within a topology when

the radius of the inner disc changes? and what is the limiting behaviour when the disc

becomes a point? Figure 2 illustrates one possibility. In the figure, the left or the middle

billiard system has an inner circular scatterer of non-zero radius, whereas the system

on the right has a point scatterer. Suppose there are three periodic orbits (two period-

2 orbits and one period-6 orbit) bou1lcing off the boundaries of the scatterer and the
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billiard table as indicated in the system on the left. Because all these orbits must collide

perpendicularly with the boundary curves, it is easy to see that all these three periodic

orbits persist when the inner disc scatterer becomes smaller and smaller (with the centre

of the disc fixed). In the limiting situation when the scatterer becomes a point, these

periodic orbits become piecewise straight lines, emanating from and return back to that

point, subject to the law of reflection on the boundary of the table.

Figure 2: Three continuous families of periodic orbits parameterised by radius of the inner

scatterer.

In Figure 3, the billiard table on the left has a point scatterer $O_{1}$ . In the table,

denote the oriented piecewise straight line segments emanating from point $O_{1}$ to point

$\Omega_{3}$ and return back to $O_{1}$ by $\Gamma_{1}$ . (Note that, by complying with the law of reflection, $\Gamma_{1}$

intersects perpendicularly with the boundary of billiard table at $\Omega_{3}.$ ) In the same table,

denote the oriented piecewise straight line segments emanating from $O_{1}$ to $\Omega_{1}$ then to $\Omega_{2}$

then back to $O_{1}$ by $\Gamma_{2}^{C)}$ , while the oriented piecewise straight line segments from $O_{1}$ to $\Omega_{2}$

then to $\Omega_{1}$ then return to $O_{1}$ by $\Gamma_{2}^{O}$ . An infinite product of $\Gamma_{1},$ $\Gamma_{2}^{O}$ and $\Gamma_{2}^{O}$ is called an

anti-integrable orbit. For example, $T_{1}=\cdots\cdot\Gamma_{1}\cdot\Gamma_{1}\cdot\Gamma_{1}\cdot\Gamma_{2}^{O}\cdot\Gamma_{2}^{C)}\cdot\Gamma_{2}^{C2}\cdots\cdot$ is a one, and

$\Upsilon_{2}=\cdots\cdot\Gamma_{1}\cdot\Gamma_{2}^{O}\cdot\Gamma_{2}^{O}\cdot\Gamma_{1}\cdot\Gamma_{2}^{O}\cdot\Gamma_{2}^{O}\cdots\cdot$ is another one. Given an anti-integrable orbit, does

there exist a true orbit close to the anti-integrable one in some topology when the inner

scatterer is a small disc? More specifically, given $T_{1}$ for the zero-radius disc scatterer

case (the anti-integrable limit), when the radius is not zero but small will there be a

heteroclinic orbits backwards asymptotic to a period-2 orbit and forwards asymptotic to

a period-3 orbit? (See the middle sub-figure of Figure 3.) Given the anti-integrable orbit

$T_{2}$ , will there be a period-8 orbit close to $T_{2}$ when the radius of inner scatterer is small?

(See the right sub-figure of Figure 3.) In [11], the author gave a positive answer to the

aforementioned questions. The answer implies that the complexity of a convex billiard
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table with small inner convex scatterers is at least as that of the anti-integrable orbits at

the anti-integrable limit.

Figure 3: Anti-integrable orbits and their continuations.

Based on the foregoing results on chaotic scattering on billiards, one principal aim

of this note is to provide an explanation, in terms of the anti-integrable limit, how the

chaotic orbits occur in chaotic scattering after the abrupt bifurcation found numerically

by Bleher, Ott, and Grebogi in 1989.

2 Abrupt bifurcation

In 1989, Bleher, Ott and Grebogi [4] investigated the motion of a particle scattered by a

potential $V$ : $\mathbb{R}^{2}arrow \mathbb{R}$ of the form

$V(x, y)=x^{2}y^{2}\exp(-(x^{2}+y^{2}$ (1)

When the total energy $E$ of the particle is slightly less than $E_{c}$ $:= \max_{(x,y)\in \mathbb{R}^{2}}V(x, y)$ ,

their study suggested that there exists a bounded hyperbolic invariant set of the form of a

suspension of a Cantor set in the energy level, on which chaotic scattering occurs, whereas

there are no bounded orbits when $E>E_{c}$ . They called the bifurcation at $E=E_{c}$ an

abrupt bifurcation. Note that there was a numerical computation which suggests that the

topological entropy jumps from ln3 down to $0$ when $E$ increases from below to above $E_{c}$

[14].

In oder to explain the phenomenon, they invoked results from the literatures [12, 13, 19]

about heteroclinic intersection of stable and unstable manifolds of periodic orbits, and

numerically verified a sufficient condition that guarantees the intersection [3].
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In [2], we developed a general rigorous approach to proving the abrupt bifurcation

in chaotic scatterings, in particular constructing hyperbolic suspensions of topological

Markov chains. The point is to show that the limit $Earrow E_{c}$ from below can be interpreted

as a non-degenerate anti-integrable limit and that a rigorous analysis is possible in general.

Our main result is described in the next section.

3 Setting and main results

The system considered is governed by a Lagrangian of the form

$L$ : $T\mathbb{R}^{2}arrow \mathbb{R},$ $(x, v) \mapsto L(x, v)=\frac{1}{2}|v|^{2}-V(x)$ ,

where the potential $V$ is $C^{4}$ in $x$ . We assume the system has properties as follows:

(V1) There is a finite set $O_{\max}$ of non-degenerate local maximum points for $V$ with equal

height $E_{c}$ , without loss of generality $E_{c}=0.$

(V2) There is a finite set $\{\Gamma_{k}\}_{k\in K}$ of non-degenerate hetero/homoclinic trajectories to

$O_{\max}$ for some finite index set $K.$

Define $M_{E}:=\{x\in \mathbb{R}^{2}|V(x)<E\}$ and let

$J( \gamma):=\int_{0}^{1}\sqrt{2(E-V(\gamma(s))}|\dot{\gamma}(s)|ds$

be the Maupertuis functional on the set of absolutely continuous curves $\gamma$ : $[0, 1]arrow M_{E}$

with fixed ends $\gamma(O)$ and $\gamma(1)$ .

Let

$\Omega=\Omega(M_{0,e0,1}OO_{e}) :=\{\gamma: [0, 1]arrow M_{0}|\gamma(0)=O_{e0},\gamma(1)=O_{e}1\}$

be the space of absolutely continuous curves with fixed endpoints $O_{e0},$ $O_{e_{1}}\in O_{\max}$ . The

condition that $\gamma$ is a non-degenerate heteroclinic orbit connecting $O_{e0}$ to $O_{e1}(\gamma$ is a

homoclinic orbit if $O_{e_{1}}=O_{e0}$ ) is satisfied provided that $\gamma$ is a non-degenerate critical

point of the Maupertuis functional $J$ on the subset of elements belonging to $\Omega$ with the

parametrization $|\dot{\gamma}|^{2}/2+V(\gamma)=0.$

An anti-integrable trajectory is defined to be a bi-infinite product of curves . . . . $\Gamma_{k_{i-1}}$

$\Gamma_{k_{i}}\cdot\Gamma_{k_{i+1}}\cdots\cdot$ with $k_{i}\in K$ and subject to $\lim_{tarrow\infty}\Gamma_{k_{i}}(t)=\lim_{tarrow-\infty}\Gamma_{k_{i+1}}(t)$ for every

$i\in \mathbb{Z}$ . Define $O_{e_{i}}= \lim_{tarrow\infty}\Gamma_{k_{i}}(t)=\lim_{tarrow-\infty}\Gamma_{k_{i+1}}(t)\in O_{\max}$ , and

$\xi_{k_{i}}^{+}:=\lim_{tarrow\infty}\frac{\dot{\Gamma}_{k_{i}}(t)}{|\dot{\Gamma}_{k_{i}}(t)|}, \xi_{k_{i}}^{-}:=\lim_{tarrow-\infty}\frac{\dot{\Gamma}_{k_{i}}(t)}{|\dot{\Gamma}_{k_{i}}(t)|}.$
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Let $O$ be a non-degenerate maximum point of $V$ : $\mathbb{R}^{2}arrow \mathbb{R}$ . The potential is said to

be elliptic around $O$ if $D^{2}V(O)$ has distinct eigenvalues, otherwise it is said to be circular

around $O.$

Definition 3. An anti-integrable trajectory . . . . $\Gamma_{k_{-1}}\cdot\Gamma_{k_{0}}\cdot\Gamma_{k_{1}}\cdots\cdot,$ $k_{i}\in K$ , is called

admissible for $E<0$ (resp. $E>0$) if, for every $i\in \mathbb{Z}$ , we have

$\langle\xi_{k_{i}}^{+},$ $\xi_{k_{i+1}}^{-}\rangle<0$ (resp. $>0$ ) (2)

when $O_{e_{i}}$ is circular. When $O_{e_{i}}$ is elliptic, besides (2) we require that both $\xi_{k_{i}}^{+}$ and $\xi_{k_{i+1}}^{-}$

are tangent to the “long axis”’ of the elliptic maximum point $O_{e_{i}}.$

By the admissibility condition, the collection of all anti-integrable trajectories over

$\{\Gamma_{k}\}_{k\in K}$ admissible for $E<0$ (resp. $E>0$ ) determines a topological Markov graph $G_{K}^{-}$

(resp. $G_{K}^{+}$ ) with vertices belonging to $K.$

In [2], we proved

Theorem 4. There exist $\epsilon^{-}<0<\epsilon^{+}$ such that for any $\epsilon^{-}<E<0$ $($resp. $0<E<\epsilon^{+})$ ,

on a cross section on the energy level of $E$ , there is a uniformly hyperbolic invariant set

$\mathcal{A}_{E}$ for a Poincar\’e map $\mathcal{P}_{E}$ . The restriction of $\mathcal{P}_{E}$ to $\mathcal{A}_{E}$ is topologically conjugate to the

topological Markov chain $G_{K}^{-}$ (resp. $G_{K}^{+}$).
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