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\S 1. Notations and assumptions

For simplicity, let $D_{0}:=\mathbb{R}^{3}\backslash \{0\}$ , and we put $\mathbb{R}_{+}:=[0, \infty$ ). For every
$\alpha,$

$\beta\in \mathbb{C}^{3}$ , we use the symbol $\alpha\cdot\beta$ for the inner product, and we define $e_{x}$ $:=x/|x|$

for every $x\in D_{0}$ . In this article we consider the following deterministic nonlinear

integral equation:

$e^{\lambda t|x|^{2}}u(t, x)=u_{0}(x)+ \frac{\lambda}{2}\int_{0}^{t}dse^{\lambdas|x|^{2}}\int p(s, x, y;u)n(x, y)dy$

$+ \frac{\lambda}{2}\int_{0}^{t}e^{\lambda s|x|^{2}}f(s, x)d_{\mathcal{S}}$ , for $\forall(t, x)\in \mathbb{R}_{+}\cross D_{0}$ . (1)

Here $u\equiv u(t, x)$ is an unknown function: $\mathbb{R}_{+}\cross D_{0}arrow \mathbb{C}^{3},$ $\lambda>0$ , and $u_{0}:D_{0}arrow \mathbb{C}^{3}$

is the initial data such that $u(t, x)|_{t=0}=u_{0}(x)$ . Moreover, $f(t, x)$ : $\mathbb{R}_{+}\cross D_{0}arrow \mathbb{C}^{3}$

is.a given function satisfying $f(t, x)/|x|^{2}=:\tilde{f}\in L^{1}(\mathbb{R}_{+})$ . The integrand $p$ in (1)

is given by

$p(l, x, y;u)=u(x, y)\cdot e_{x}\{u(t, x-y)-e_{x}(u(t, x-y)\cdot e_{x}$ (2)

On the other hand, we consider a Markov kernel $K$ : $D_{0}arrow D_{0}\cross D_{0}$ . Actually, for
every $z\in D_{0},$ $K_{z}(dx, dy)$ lies in the space $\mathcal{P}(D_{0}\cross D_{0})$ of all probability measures
on a product space $D_{0}\cross D_{0}$ . When the kernel $k$ is given by $k(x, y)=i|x|^{-2}n(x, y)$ ,

then we define $K_{z}$ as a Markov kernel satisfying that for any positive measurable
function $h=h(x, y)$ on $D_{0}\cross D_{0},$

$\iint h(x, y)K_{z}(dx, dy)=\int h(x, z-x)k(x, z)dx$ (3)

Moreover, we assume that for every measurable functions $f,$ $g>0$ on $\mathbb{R}^{+},$

$\int h(|z|)v(dz)\int g(|x|)K_{z}(dx, dy)=\int g(|z|)\nu(dz)\int h(|y|)K_{z}(dx, dy)$ (4)

holds, where the measure $\nu$ is given by $v(dz)=|z|^{-3}dz.$
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\S 2. Main result

In this section we shall state our main result, which asserts the existence and

uniqueness of solutions to the nonlinear integral equation (1). As a matter of

fact, the solution $u(t, x)$ can be expressed as the expectation of a star-product

functional, which is nothing but a probabilistic solution constructed by making

use of the below-mentioned branching particle systems and branching models. Let

$M_{\star}( \omega)=\prod\star[x_{m}^{-}]^{-}-m^{1}.m_{3}[u_{0}, f](\omega)$ , (5)

be a probabilistic representation in terms of tree-based star-product functional

with weight $(u_{0}, f)$ . For the details of the definition, see the succeeding sections.

On the other hand, $M_{*}^{\langle U,F\rangle}(\omega)$ denotes the corresponding $*$-product functional with

weight $(U, F)$ . In fact, as to be seen in what follows, in a similar manner as the

case of a star-product functional we can construct $a(U, F)$-weighted $tree-$based $*-$

product functional $M_{*}^{\langle U,F\rangle}(\omega)$ , which is indexed by the nodes $(x_{m})$ of a binary tree.

Here we suppose that $U=U(x)$ $($resp. $F=F(t, x))$ is a non-negative measurable

function on $D_{0}$ (resp. $\mathbb{R}_{+}\cross D_{0}$ ) respectively, and also that $F$ x) $\in L^{1}(\mathbb{R}_{+})$

for each $x$ . Indeed, in construction of the $*$-product functional, the product in

question is taken as ordinary multiplication $*$ instead of the star-product $\star$ in the

definition of star-product functional.

$T$heorem 1. Suppose that $|u_{0}(x)|\leq U(x)$ for $\forall x$ and $|\tilde{f}(t, x)|\leq F(t, x)$ for
$\forall t,$ $x$ , and also that for some $T>0$ ( $T>>1$ sufficiently large),

$E_{T,x}[M_{*}^{\langle U,F\rangle}]<\infty$ , ae. $-x$ (6)

Then there exists $a(u_{0}, f)$-weighted tree-based star $\star$-product functional $M_{\star}^{\langle u_{0},f\rangle}(\omega)$ ,

indexed by a set of node labels accordingly to the tree structure which a binary crit-

ical branching process $Z^{K_{x}}(t)$ determines. Furthermore, the function

$u(t, x)=E_{t,x}[M_{\star}^{\langle uo,f\rangle}]$ (7)

$give\mathcal{S}$ a unique solution to the integral equation (1). Here $E_{t,x}$ denotes the expecta-

tion with respect to a probability measure $P_{t,x}$ as the time-reversed law of $Z^{K_{x}}(t)$ .

\S 3. Branching model

In this section we consider a continuous time binary critical branching process
$Z^{K_{x}}(t)$ on $D_{0}$ , whose branching rate is given by a parameter $\lambda|x|^{2}$ , whose branch-

ing mechanism is binary with equi-probability, and whose descendant branching

particle behavior (or distribution) is determined by the kernel $K_{x}$ . Next, taking
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図 1: Binary Branching

notice of the tree structure which the process $Z^{K_{x}}(t)$ determines, we denote the
space of marked trees

$\omega=(t, (t_{m}), (x_{m}), (\eta_{m}), m\in \mathcal{V})$ (8)

by $\Omega$ . Furthermore, we write the time-reversed law of $Z^{K_{x}}(t)$ being a probability
measure on $\Omega$ as $P_{t,x}\in \mathcal{P}(\Omega)$ . Here $t$ denotes the birth time of common ancestor,

and the particle $x_{m}$ dies when $\eta_{m}=0$ , while it generates two descendants $x_{m1},$ $x_{m2}$

when $\eta_{m}=1$ . On the other hand,

$\mathcal{V}=\bigcup_{p\geq 0}\{1, 2\}^{\ell}$

is a set of all labels, namely, finite sequences of symbols with length $\ell$ , which

describe the whole tree structure given. For $\omega\in\Omega$ we denote by $\mathcal{N}(\omega)$ the totality
of nodes being branching points of tree, and let $N_{+}(\omega)$ be the set of all nodes $m$

being a member of $\mathcal{V}\backslash \mathcal{N}(\omega)$ , whose direct predecessor lies in $\mathcal{N}(\omega)$ and which
satisfies the condition $t_{m}(\omega)>0$ , and let $N_{-}(\omega)$ be the same set as described
above, but satisfying $t_{m}(\omega)\leq 0$ . Finally we put

$N(\omega)=N_{+}(\omega)\cup N_{-}(\omega)$ . (9)

\S 4. Star-product functional and $*$-product functional
In what follows we shall intoduce a tree-based star-product functional in

order to construct a probabilistic solution to the class of integral equations (1).

First of all, we denote by the symbol $Proj^{z}$ a projection of the objective element

25



onto its orthogonal part of the $z$ component in $\mathbb{C}^{3}$ , and we define a $\star$-product of
$\beta,$

$\gamma$ for $z\in D_{0}$ as
$\beta\star_{1z]}\gamma=-i(\beta\cdot e_{z})Proj^{z}(\gamma)$ . (10)

We shall define $\Theta^{m}(\omega)$ for each $\omega\in\Omega$ realized as follows. When $m\in N_{+}(\omega)$ , then
$\Theta^{m}(\omega)=\tilde{f}(t_{m}(\omega), x_{m}(\omega))$ , while $\Theta^{m}(\omega)=u_{0}(x_{\mathfrak{m}}(\omega))$ if $m\in N_{-}(\omega)$ . Then we
define

$\Xi_{m_{2}^{1}.m_{3}}^{rn}(\omega)\equiv\Xi_{m_{2}^{1},m_{3}}^{m}[u_{0}, f](\omega):=\Theta^{m_{2}}(\omega)\star_{[x_{m_{1}}]}\Theta^{m_{3}}(\omega)$ , (11)

where as for the product order in the star-product $\star$ , when we write $m\prec m’$

lexicographically with respect to the natural order $\prec$ , the term $\Theta^{m}$ labelled by $m$

necessarily occupies the left-hand side and the other $\Theta^{m’}$ labelled by $m’$ occupies

the right-hand side by all means. And besides, as abuse of notation we write

$-m,\emptyset m\equiv_{-,\emptyset[u_{0}}, f](\omega):=\Theta^{m}(\omega)$ , (12)

especially when $m\in \mathcal{V}$ is a label of single terminal point in the restricted tree

structure in question.

図 2: Example: A realized Tree

Under these circumstances, we consider a random quantity which obtained by

executing the star-product $\star$ inductively at each node in $\mathcal{N}(\omega)$ , and we call it a
tree-based $\star$-product functional, and we express it symbolically as

$M_{\star}^{\langle u_{0},f\rangle}( \omega)=\prod\star_{1x_{\tilde{m}}]}三_{}m_{2}^{1}.m_{3}^{m}[u_{0}, f](\omega)$ , (13)
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where $m_{1}\in \mathcal{N}(\omega)$ and $m_{2},$ $m_{3}\in N(\omega)$ , and by the symbol $\prod\star$ (as a product

relative to the star-product) we mean that the star-products $\star$ ’s should be suc-
ceedingly executed in a lexicographical manner with respect to $X_{m}^{-}$ such that $\tilde{m}\in$

$\mathcal{N}(\omega)\cap\{|\tilde{m}|=\ell-1\}$ when $|m_{1}|=\ell.$

Example 1. Now let us suppose that a tree structure $\omega_{1}(\in\Omega)$ has been realized

here (see Figure 2).

図 3: Classification of Nodes

Next we shall classify those nodes in the realized tree $\omega_{1}$ . As a matter of fact, as
to those two particles located at $x_{11}$ and $x_{12}$ with nodes of the level $|m|=\ell=2$

accompanied by the pivoting node $x_{1}$ , we can construct

$-11,121$
by a star-product $u_{0}(x_{11}(\omega_{1}))\star_{[X_{1}]}u_{0}(x_{12}(\omega_{1}))$ in accordance with the rule, because
both $m_{1}=11$ and $m_{2}=12lie$ in $N_{-}(\omega)$ . As to the node $x_{21}$ , how to construct
$—(\omega_{1})$ is the almost same thing as described above. In fact, it goes similarly because
$x_{211}$ lies in $N_{+}(\omega_{1})$ and $x_{212}$ lies in $N_{-}(\omega_{1})$ . According to the rule, it follows that

$\Theta^{211}(\omega_{1})=\tilde{f}(t_{211}(\omega_{1}), x_{211}(\omega_{1}))$ and $\Theta^{212}(\omega_{1})=u_{0}(x_{212}(\omega_{1}))$ ,
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hence $\Xi_{211,212}^{21}(\omega_{1})$ is given by $\tilde{f}(t_{211}(\omega_{1}), x_{211}(\omega_{1}))\star_{[x_{21}]}u_{0}(x_{212}(\omega_{1}))$ , see Figure 3.
Consequently, we obtain finally

$M_{\star}^{\langle u0f\rangle}(\omega_{1})=\cdot(u_{0}(x_{11})\star_{[x_{1}]}u_{0}(x_{12}))\star_{[x_{\phi}]}$

$\{(u(x_{212}))\star_{[x_{2}]}\tilde{f}(t_{22}, x_{22})\}$ . (14)

口

\S 5. Outline of proof: tree-based star-product functional as a solution

In this section we are first going to construct $a(U, F)$-weighted tree-based
$*$-product functional $M_{*}^{\langle U,F\rangle}(\omega)$ , which is indexed by the nodes $(x_{m})$ of a binary

tree. Here recall that $U=U(x)$ $($resp. $F=F(t, x))$ is a non-negative measurable

function on $D_{0}$ (resp. $\mathbb{R}_{+}\cross D_{0}$ ) respectively, and also that $F$ $x$ ) $\in L^{1}(\mathbb{R}_{+})$

for each $x$ . Moreover, in construction of the functional, the product is taken as
ordinary multiplication $*$ instead of the star-product $\star.$

In what follows we shall give an outline of the proof of Theorem 1. We need the
following technical lemma, which plays an essential role in the proof.

Lemma 2. For $0\leq t\leq T$ and $x\in D_{0}$ , the function $V(t, x)=E_{t,x}[M_{*}^{\langle U,F\rangle}(\omega)]$

satisfies

$e^{\lambda t|x|^{2}}V(t, x)=U(x)+ \int_{0}^{t}ds\frac{\lambda|x|^{2}}{2}e^{\lambda s|x|^{2}}\{F(s, x)+\int V(s, y)V(s, z)K_{x}(dy, dz)\}.$

(15)

As a matter of fact, the mapping : $[0, T]\ni t\mapsto e^{\lambda|x|^{2}}tV(t, x)\in\overline{\mathbb{R}}_{+}$ is non-
decreasing, so that, it proves to be that

$E_{t,x}[M_{*}^{\langle U,F\rangle}(\omega)]<\infty$ (16)

holds for $\forall t\in[0, T]$ and $x\in E_{c}$ , where $E_{c}$ is a measurable set on which the validity
of $E_{t,x}[M_{*}^{\langle U,F\rangle}]<\infty$ may be kept. Another important aspect for the proof consists
in establishment of the following $M_{*}$-control inequality. That is to say, we have

$|M_{\star}^{\langle u0,f\rangle}(\omega)|\leq|M_{*}^{\langle U,F\rangle}(\omega)|$ (17)

because of the validity of a simple inequality

$|w\star_{[x]}v|\leq|w|\cdot|v|$ for $w,$
$v\in \mathbb{C}^{3}$ and $x\in D_{0}.$

On the other hand, it is derived that the space of solutions to (1) is formed by the

condition

$\int_{0}^{T}ds\int|u(s, y)|\cdot|u(\mathcal{S}, z)|K_{x}(dy, dz)<\infty$ for $x\in E_{c}.$
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A similar discussion as above leads to

$u(t, x)=E_{t,x}[M_{\star}^{\langle u_{0},f\rangle}( \omega)]=e^{-\lambda t|x|^{2}}u_{0}(x)+\int_{0}^{t}ds\lambda|x|^{2}e^{-\lambda(t-s)|x|^{2}}\cross$

$\cross\frac{1}{2}\{\tilde{f}(s, x)+\iint E_{s,x_{1}}[M_{\star}]\star_{[x]}E_{s,x_{2}}[M_{\star}]K_{x}(dx_{1}, dx_{2})\}$ . (18)

Finally we can deduce that $u(t, x)=E_{t,x}[M_{\star}^{\langle u0,f\rangle}(\omega)]$ satisfies the integral equation

(1), and this $u(t, x)$ is a solution lying in the space $\mathcal{D}$ . Actually, $\mathcal{D}$ is a space of

all functions $\varphi$ : $\mathbb{R}_{+}\cross D_{0}arrow \mathbb{C}^{3}$ , being continuous in $t$ and measurable such that

$\int_{0}^{\infty}d_{\mathcal{S}}\int|p(s, x, y;\varphi)|K_{x}(dy, dz)<\infty$ , ae. $-x.$
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