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DECAY CHARACTERIZATION FOR SOLUTIONS TO DISSIPATIVE
EQUATIONS IN TERMS OF THE INITIAL DATUM

CESAR J. NICHE AND MARIA E. SCHONBEK

ABSTRACT. By examining the Fourier transform of the initial datum near the origin,
we define the decay character of the datum and provide a method to study the lower
and upper algebraic rates of decay of solutions to a wide class of dissipative system
of equations.

1. INTRODUCTION

We address the study of decay rates of solutions to nonlinear dissipative evolution
equations satisfying the energy inequality
1d
2dt
where a € (0,1]. The characterization of the decay rates is given first for a class of linear
_ systems by introducing the concept of decay character, a number associated to the initial
datum that describes its behavior near the origin in frequency space. We then study
nonlinear systems with the underlying linear systems for which we have already obtained
decay rates. The decay character and the Fourier Splitting method are then used to
obtain upper and lower bounds for decay of solutions to appropriate nonlinear dissipative
"equations, both in the incompressible and compressible case. The method derived in this
paper can be applied to most of the equations that satisfy (E). It works for systems like
Navier-Stokes, MHD, Quasi-Geostrophic equations and certain compressible systems.
We recall the original question of Leray: how does the L?-energy decay for weak
solutions of the Navier-Stokes equations?. We would like to use the decay character in
order to give a concise answer to this question not only for the solutions to the Navier-
Stokes equations, but for the class of all solutions to dissipative systems satisfying (E).
Our goal is to, given the decay character of the initial datum, know whether the solution’
with that initial datum has uniform decay or not and, if there is uniform decay, what are
the upper and lower bounds for these rates.
In this note we only present the results and give ideas of the proofs. The details can
be found in [6]. The main basis for the proofs are:

(E) lu(z, )2 dz < —C / [Veu(z, ) dz,
R3 R3
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(1) “Behavior of solutions for large time is determined by low frequencies of the ‘

solutions”;

(2) Use a time depending filter to study the low frequencies, this is the Fourier.

Splzttzng method [9), [10]

1.1. Background For the heat equation in R™ it is very easy to see that the decay
depends on the behavior of the data near the origin in frequency space. For completeness
we describe what happens for such solutions. Let u = u(x,t) be a solution to the heat
equation

— Au =0, uo(z) = u(z,0).
Then

(37 t) = Gy x up(x) = ¥ 1t) e 5 * up(z).

We study now the different possible decay rates.

1.1.1. Ezponential decay. Let up € L%(R™) and ug(¢) = 0, when |¢] < 6. Then

) —87l€12¢ |~/ 88?2
)2, = /m ) d < oo
>

1.1.2. Slow decay. Let B = {v :||v|lz = 1}. Let u)(z) = A\%e —mi2gh , then u}(z) € B.

However, the norm of the gradient scales as | Vu}|| r2 = mA||Vauol|zz, so when X\ gets
smaller, the norm of the gradient gets smaller too, so the right hand side of (E) produces

slow decay. Namely, for any fixed ¢ > 0, decay for solutions with data u} € B will not be

uniform, as ’
| [wr@lZ. ~ 1 o0

= > 1.
/\”2 14+ 4X%t

[lu
So, there exist solutions to the heat equation with data in L?(R™) decaying arbitrarily
slowly.

Proposition 1.1. Given r,T,e > 0, there erists ug with ||ug|lzz = r so that for the
solution to the heat equation with that initial datum.

lu(T)| 2
| luoll L2
1.1.3. Algebraic decay. This is easily seen when |ty (£)| ~ C|€|F and when [ty (¢)| > C > 0,
see [1]. '

1.2. Ideas for characterizing decay decay. To characterize the L2 and/or Sobolev
decay of solutions to dissipative equations, we will:

>1-—ce

(1) characterize the initial data;

(2) understand behavior of solution to the underlying linear equation;

(3) study influence of the non linear part;

(4) study of difference of linear and nonlinear solutions;

(5) use a reverse triangle inequality to obtain lower bounds of rates of decay.
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2. CHARACTERIZATION OF THE INITIAL DATUM

In this section we introduce the definitions of the decay ind'z'cator,'decay character,
s-decay indicator and s-decay character. '

2.1. Definitions.

Definition 2.1. ([1], {6]) Let up € L2(R™), r € (—%,00). The decay indicator Py(uo) of
ug is defined by

BT —2r—mn TN 2 .
Pu(uo) = lim p /B NEGIES
where B(p) = {¢ : |¢] < p}.

Remark 2.1. The decay‘ indicator compares |tug(€)| with f(¢) = |£|” at £ = 0. O

Definition 2.2. ([1], [6]) Let ug € L2(R™). The decay character of u is 7* = *(uo), the
unique r € (—%,00) such that 0 < P,(uo) < 00, if this number exists. If it does not exist
then

. —2 if Py(up) = oo, for all 7 € (—%,00)
r*(uo) = §
0, if P, (uo) =0, for all 7 € (—%,00).
Definition 2.3. ([6]) Let up € L%(R"), s > 0, r € (—5 +8,00). The s-decay indicator
P2 (ug) of A®uy is defined as ‘
P(uw) = i o> [ Je )P bt
=0 B(p)

where B(p) = {£ : [¢] < p}.

Remark 2.2. The s-decay indicator compares |A®uo(¢)| with F(&) =" at £ =0. O

Definition 2.4. ([6]) The s-decay character of A®ug is r5 = 73 (uo), the unique r €
(—% + s,00) such that 0 < P?(up) < 0o, provided this number exists. If it does not exist
then

r*(uo) = o0, if P.(up) =0, for all ¢ € (—%+s,oo)
’ ~2 435, if P(up) =00, forallge (—%+s,00).

Remark 2.3. If ug € LP(R") N L*(R™),1 < p < 2, then r*(up) = —n (1-1). So, if
ug € L1(R™) N L2(R™), then r*(up) = 0. If up € L2(IR") but is not in any LP(R™), with
1 < p <2, then r*(up) = —%. a



2.2. Results. Here we state a theorem that shows the relation between the decay char-

acter and the s-decay character. Heuristically, if ug(¢) is like |¢|” near £ = 0, then 1/\;?0(5)
must be like |{|™** near £ = 0. Then the decay character 7*(uo) and the s-decay character
73 (uo) should be related through r* + s = r¥. :

Theorem 2.5. (Theorem 2.11, [6]) Let ug € H*(R™), s > 0.
(1) If =% < r*(ug) < 0o then —g + s < r;(ug) < 00 and r *(uo) = s+ r*(up).
(2) r%(up) = oo if and only ifr*(uo)
(3) m*(uo) = —% if and only if r(up) = r*(ua) +s=—-2+s.

3. LINEAR PART: EXAMPLES AND DECAY

3.1: Linear Part. Let £: X™ — (L?(R"™))" be a pseudodifferential operator on a Hilbert .

space X for which the symbol M(£) of £ is such that
M(&) = PTHEDE)PE),  £-ae.

where P(£) € O(n) and D(§) = —¢;|€|>*6;;, for ¢; > ¢ >0and0<a < 1. The Laplaman
and the fractional Laplacian are examples of such operators.”
Given the linear equation -

Ow = Lo
multiplying by v, int'egrating in space and using properties of £ we obtain
d —~~
IO e <=0 [ Jeel0e 02 d,
which is inequality (E). ' |

Ezample 3.1. Temam [11] introduced the following compressible approximation to Navier-
Stokes equations '

33

A 1 '
(3.1) ‘ us = Lu = Au + < Vdiv u, e>0
where the relation e¢p = ~divu eliminates the nonlocal relation between the Ppressure
and the velocity. The symbol for this operator is (M(€));; = —[¢[20;; — 1£:&;, with

D(€) = diag(~[¢[, —|¢[%, - (1 +£) ¢]?) and

: 1 —S283
P(¢) = Brg Vg O
. 1-¢2
0 1-¢32 &

- Then, the kernel is given by ‘
39) (MO o-tlePs . _ §

iJ K

e—tlé? _ e—(1+§)t;e|2) :

N

see Rusin [8].
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3.2. Decay of linear part. In this subsection we give the main decay theorems for the
linear equations and give the sketch of some of the proofs.

“Theorem 3.2. (Theorem 2.10, [6]) Let vo € L*(R™) have decay character r*(vo) = r*.
Let v(t) be a solution to the linear equation with initial datum vo. Then: :

1) if =2 < r* < 0o, there exist constants Cy,Ca > 0 such that
2 B
1+~ 53+) < o) 12: < Co(1 + 1)~ 3(F7);
(2) if r* = -2, there exists C = C(€) > 0 such that
lo@)lf: 2 CA+t)7,  Ve>0,

i.e. the decay of ||u(t)||%; is slower than any uniform algebraic rate;
(3) if r* = oo, there exists C > 0 such that

@3z < CAL+H)™™,  Ym>0,
i.e. the decay of ||v(t)||L2 is faster than any algebraic rate.

Proof We only sketch the proof of (1). We first prove lower bounds for decay. Using
the properties of the symbol of £, we obtain

o~ _ 2a o~ .
eM©Ot55(6)] > Cemet " D|55(¢)].
" Then

2c . Py “
lofe)lze 2 Cp e Oprn [ (giPag

B(p(t))
> Cp2r+n6—tp2°‘ (t) :

Choosing p(t) = po(1 +t)"2a we have

lo(®)l22 > C1+ )7+ (F77).
For the upper bounds, from
d 2 2c ~ 2
g lv®llze < =Co™ (1) [ (&)1° d¢,
L B<(p(t))
using the Fourier Splitting method we obtain
d a a A7)
—lv®172 + @) lv@)]22 < Cp? (t)/ [5(6)1? dé.

As P,(ug) < 0o, there are py > 0,C > 0 such that for 0 < p < po

p2r / T(6)? dt < C.
B(p(t))

Then . '
d a [0 4
(@) 32r () < CPTHIN ),



and choosing p(t) = m2s (1 +1 ~7, with m > r + 2 and using the integrating factor
2
h(t) = (1 +t)™, we obtain
d o
7 (A7 @)ll7.) <c+ym-i=ad. O

For the decay of derivatives in the case of solutions to linear equatlons we have the
following result.

Theorem 3.3. (Theorem 2.12, [6]) Let vo € H*(R™), with s > 0, have decay character
rs =15(v0). Then the solution of the linear equation with datum vy satisfies:

(1)- if *% < r* < oo, there exist constants C’l, Csy > 0 such that
G TEETT) <o), < Ga(1 +1)7E (),
(2) if ™ = oo, then

lv@lIF. <CA+8)7",  vr>0,

i.e. the decay of ||v(t)|| g is faster than any algebraic rate.

4. APPLICATIONS

4.1. Quasi-Geostrophic equations. In this section we study the upper and lower decay
rates for solutions to the Dissipative Quasi-Geostrophic (DQGE) equation. The DQGE
is given by
0r+u-VO+(-A)*0=0, 0<a<l
where 0 is the potential temperature of a fluid in R?, and
u= R0 = (—Ry0,R:0)

is its velbcity, where R; is the Riesz transform in z;. This eqﬁation models important
geophysical phenomena ([5], [7]) and when o = % it provides a good model for 3D Navier-
Stokes equations ([2], [4]). :

4.1.1. Results for DQGE. The following Theorem summarizes all our results.
Theorem 4.1. (16]) Let 6y € L*(R?), with decay character r* = r*(ug).
(1) Ifr* <1-— a, then there exists constants C1,Ca > 0 so that
CLl +6)7=CF) < [8(#)]132 < Co(1 + 1) 7=+,
(2) Ifr*>1-a, r* <min{1,2(1 — a)} then there ezist C1,Cy >0
C1(L+8)"3047) < J18(1)122 < Co(1 + 1)~ %2,
(3) If r* > 1 and r™* > 2(1 — @) we have that
| 16(t)I172 < Ca(1+ 1)~ =32,

We now give partial statements and sketches of proofs. \
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Theorem 4.2. (Theorem 3.1, [6]) Let 8y € L2(R?), let r* = r*(6p), —1 < r* < 00, and
0 < a<1. Let 8 be a weak solution to QGE with datd 68y. Then:

(1) Ifr* <1-a, then ,
1612, < C(t+ 1)~ =0+,

(2) if r* > 1—a, then ,

| 18822 < C(t+ 1)~ =,

Proof We give formal estimates, which have to be proven rigurously by taking approx- -
imations and passing to the limit. Let

_(eertiepe < 1O
B(t) = € € R 1€ < 3205

Through the Fourier Spli{:ting method we obtain
d N v
& FOIOIR:) < 7O [ e
: B(t)

. N N2
43)  <Cf() <|1@<t>u%z+ /B . ( /0 e-<t—8>'€"°‘is||ue(s,s)tzds) ds),

where © = is the solution to the linear part. First, we obtain a preliminary decay by
choosing f(t) = [In(e +¢)]**a, 0 < a < 1 or f(t) = [In(e +t)]3, for @ = 1. In this case

16132 < 18(t)]22 + Clin(e + )]~ (+2) < Clin(e + 1)) =(+4).
Now we bootstrap with the new choice f = (t +.1)#, 8>> 1. Plugging in the preliminary
decay in (4.3) and dividing by (t + 1)#~a%! we obtain
E+DEO@)2 < 6olla(t+ 1)~ B3 4 ot + 1) T
t (s+1)1-%

e eeE ¢TI ds

-+

Define '
B(t) = L+ O30, alt) = O+ 1P+ (1 +1)E~% 7,
b(t) = Clin(e + 8)](*#) (s + 1)1 2,
and then use Gronwall’s inequality to obtain final estimates. [J.
For the derivatives the decay result is the following.

Theorem 4.3. (Theorem 3.5, [6]) Let 1 < a < 1, a < s and 8o € H*(R?). For
r* = r*(8y) the solutions to QGE satisfy
(1) ifr* <1—q, then ,
16@IF, < O+ 172+,
(2) ifr* > 1—a, then
1813, < Ot +1)7=(F27e),



We now state the Theorem that deals with the decay of the difference between the
linear and the nonlinear parts.

Theorem 4.4. (Theorem 3.2, [6]) Let 0 <a <1, 6 € L?(R?). Then
(1) if —1<r* <a-—1 then

16(t) — O(1)[122 < C(1 + )~ ¥@—atr),
(2) fa-1<r*<1-a then
1) = 6@)”%2 <C(1+ t)—% min{2,2-a+r*},
(3) ifr* > 1—a, then
16(t) = O(t)||2 < C(1 + £)= & min{s-20:2)

Proof The main term to estimate is

<IVO®)llollo®)I3 < C(L +1)77 = h(2).

/ O(u- Vb)dzx
R2

For the proof of this theorem we use Fourier splitting and follow the ideas in (3. O
The bounds for the difference between the linear solution and the nonlinear one, com-
bined with the bounds of the linear solution yields the lower bounds of decay.

Theorem 4.5. (Theorem 3.3, [6]) Let 0 < a < 1, §p € L2(R?),r* = r*(6). Then, for
‘0<ac<i and -1 <r*<1lori<a<land—-1<r*<2(l-a) we have that

16(8)]22 > C(1 + )~ &1+,
Proof Follows from the reverse triangle inequality -
181172 2 1872 ~ 10(8) — ©®)[32,
provided that the linear part has slower decay than the difference between the solutions

and the linear part. [J.

4.2. Approximation for compressible Navier-Stokes. In the Navier-Stokes equa-
tions, the pressure is a nonlocal function of the velocity. This poses important problems
when using numerical methods to study solutions to this system. Temam [11] introduced
a compressible approximation to Navier-Stokes by relating the pressure and the velocity
through V- u = —ep. In order to have an energy inequality, he stabilized the equation by
introducving a term of the form %(dz’v u) u. Then, the system obtained is

1 1
ug + (v - V)u® + 5 (divu®) u® = Au® + ;de'v us,
ug(z) = u(z,0).

The linear part of this system, i.e.
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uy =Ly = Au—f——i—V-divuzO,
_ el SkG (e —(142)teP
(MG(E’t))kl € 6kl |£|2 (e € ) )

fits exactly in our setting, see Example 3.1. As the nonlinear part

(u-V)u—i—%(divu) u=V(u®u)—%(divu) u.

has a structure similar to Navier-Stokes and the compressible part can be easily handled
since

1
/ wu-Vude = —= [ |uf’divudsz,
R3 2 R3 :
we have the energy inequality of the form (E).

Remark 4.4. Rusin [8] proved existence of weak solutions to these system with u§ in
L?(R3). He also proved that when e goes to zero, the solutions converge to suitable
solutions of the Navier-Stokes system. (]

4.2.1. Results for the compressible approzimation to Navier-Stokes. Here we just list the
results and for details refer the reader to [6]. The methods and techniques for the proofs
are similar to those for the DQGE.

Theorem 4.6. ([6]) Let u§ € L2(R%),r* = r*(ug). Then for —3 < r* < 1, there exist
C]_,Cg > 0 such that

| Cr(1+ 1)~ G) < us®)]22 < Co(1+ 1)~ (B4,
If r* > 1, then
lus@))2s < C(1 +1)7 5.
Theorem 4.7. (Theorem 8.14, [6]) Let ug € H™(R3),r > 1, r* = r*(ug). Then, for

1<s Sf we have that

lu@®)l e < C(1L+ 1)~ 4 (ermintdr7+8)),
|

Theorem 4.8. (Theorem 3.10, [6]) Let ¢ > 0, ng € L?(R®), and r* = r*(uo) with
-2 <r* < o00. Then

lut(®) - @(®)llFa < O+ )~ mntoa+T
Theorem 4.9. (Theorem 8.11, [6]) Let u§ € L?(R3),7* = r*(ug). Then for -3 < r* < 1

we have that

lus@®)]|22 > c(1 + )~ (),



Remark 4.5. The estimates for this compressible approximation are the same as those
obtained by Bjorland and M.E. Schonbek [1] for the Navier-Stokes equations. Hence, the
stabilizing nonlinear damping term -21-(div u®)u® provides enough dissipation to have an
energy inequality, but does not alter the range of values of r* for which the linear part
has slower decay. g

5. FINAL COMMENTS

(1) The decay character classifies the L? data for dissipative equations, at least when
the linear part has slower decays. The linear part has to be studled first, then
the whole nonlinear system.

(2) We are able to obtain information on both upper and lower decay rates, sometimes
sharply characterizing the decay in terms of the initial data.
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