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Abstract

In this paper we prove a fixed point theorem for widely more generalized hybrid
non-self mappings in Hilbert spaces. Furthermore we prove a mean convergence
theorem of Baillon’s type for widely more generalized hybrid non-self mappings in
Hilbert spaces.

1 Introduction

Let $H$ be a real Hilbert space and let $C$ be a non-empty subset of $H$ . In 2010, Kocourek,
Takahashi and Yao [14] defined a class of nonlinear mappings in a Hilbert space. A mapping
$T$ from $C$ into $H$ is said to be generalized hybrid if there exist real numbers $\alpha$ and $\beta$ such
that

$\alpha\Vert Tx-Ty\Vert^{2}+(1-\alpha)\Vert x-Ty\Vert^{2}\leq\beta\Vert Tx-y\Vert^{2}+(1-\beta)\Vert x-y\Vert^{2}$

for any $x,$ $y\in C$ . We call such a mapping an $(\alpha, \beta)$-generalized hybrid mapping. We
observe that the class of the mappings covers the classes of well-known mappings. For
example, an $(\alpha, \beta)$-generalized hybrid mapping is nonexpansive [19] for $\alpha=1$ and $\beta=0,$

that is, $\Vert Tx-Ty\Vert\leq\Vert x-y\Vert$ for any $x,$ $y\in C$ . It is nonspreading [16] for $\alpha=2$ and
$\beta=1$ , that is, $2\Vert Tx-Ty\Vert^{2}\leq\Vert Tx-y\Vert^{2}+\Vert Ty-x\Vert^{2}$ for any $x,$ $y\in C$ . It is also hybrid
[20] for $\alpha=\frac{3}{2}$ and $\beta=\frac{1}{2}$ , that is, $3\Vert Tx-Ty\Vert^{2}\leq\Vert x-y\Vert^{2}+\Vert Tx-y\Vert^{2}+\Vert Ty-x\Vert^{2}$ for
any $x,$ $y\in C$ . They proved fixed point theorems for such mappings; see also Kohsaka and
Takahashi [15] and Iemoto and Takahashi [9]. Moreover they proved a nonlinear ergodic
theorem. Furthermore they defined a more broad class of nonlinear mappings than the
class of generalized hybrid mappings. A mapping $T$ from $C$ into $H$ is said to be super
hybrid if there exist real numbers $\alpha,$

$\beta$ and $\gamma$ such that

$\alpha\Vert Tx-Ty\Vert^{2}+(1-\alpha+\gamma)\Vert x-Ty\Vert^{2}$

$\leq(\beta+(\beta-\alpha)\gamma)\Vert Tx-y\Vert^{2}+(1-\beta-(\beta-\alpha-1)\gamma)\Vert x-y\Vert^{2}$

$+(\alpha-\beta)\gamma\Vert x-Tx\Vert^{2}+\gamma\Vert y-Ty\Vert^{2}$
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for any $x,$ $y\in C$ . A generalized hybrid mapping with a fixed point is quasinonexpansive.

However a super hybrid mapping is not quasi-nonexpansive generally even if it has a fixed

point. Very recently, the author [12] also defined a class of nonlinear mappings in a Hilbert

space which covers the class of contractive mappings and the class of generalized hybrid

mappings. A mapping $T$ from $C$ into $H$ is said to be widely generalized hybrid if there

exist real numbers $\alpha,$
$\beta,$

$\gamma,$
$\delta,$ $\epsilon$ and $\zeta$ such that

$\alpha\Vert Tx-Ty\Vert^{2}+\beta\Vert x-Ty\Vert^{2}+\gamma\Vert Tx-y\Vert^{2}+\delta\Vert x-y\Vert^{2}$

$+ \max\{\epsilon\Vert x-Tx\Vert^{2}, \zeta\Vert y-Ty\Vert^{2}\}\leq 0$

for any $x,$ $y\in C$ . Furthermore the author [13] defined a class of nonlinear mappings in

a Hilbert space which covers the class of super hybrid mappings and the class of widely

generalized hybrid mappings. A mapping $T$ from $C$ into $H$ is said to be widely more
generalized hybrid if there exist real numbers $\alpha,$

$\beta,$
$\gamma,$

$\delta,$
$\epsilon,$

$\zeta$ and $\eta$ such that

$\alpha\Vert Tx-Ty\Vert^{2}+\beta\Vert x-Ty\Vert^{2}+\gamma\Vert Tx-y\Vert^{2}+\delta\Vert x-y\Vert^{2}$

$+\epsilon\Vert x-Tx\Vert^{2}+\zeta\Vert y-Ty\Vert^{2}+\eta\Vert(x-Tx)-(y-Ty)\Vert^{2}\leq 0$

for any $x,$ $y\in C$ . Then we prove fixed point theorems for such new mappings in a Hilbert

space. Furthermore we prove nonlinear ergodic theorems of Baillon’s type in a Hilbert

space. It seems that the results are new and useful. For example, using our fixed point

theorems, we can directly prove Browder and Petryshyn’s fixed point theorem [5] for strictly

pseudocontractive mappings and Kocourek, Takahashi and Yao’s fixed point theorem [14]

for super hybrid mappings. On the other hand, Hojo, Takahashi and Yao [8] defined a

more broad class of nonlinear mappings than the class of generalized hybrid mappings. $A$

mapping $T$ from $C$ into $H$ is said to be extended hybrid if there exist real numbers $\alpha,$
$\beta$

and $\gamma$ such that

$\alpha(1+\gamma)\Vert Tx-Ty\Vert^{2}+(1-\alpha(1+\gamma))\Vert x-Ty\Vert^{2}$

$\leq(\beta+\alpha\gamma)\Vert Tx-y\Vert^{2}+(1-(\beta+\alpha\gamma))\Vert x-y\Vert^{2}$

$-(\alpha-\beta)\gamma\Vert x-Tx\Vert^{2}-\gamma\Vert y-Ty\Vert^{2}$

for any $x,$ $y\in C$ . Furthermore they proved a fixed point theorem for generalized hybrid

non-self mappings by using the extended hybrid mapping.
In this paper we prove a fixed point theorem for widely more generalized hybrid non-

self mappings in Hilbert spaces. Furthermore we prove a mean convergence theorem of

Baillon’s type for widely more generalized hybrid non-self mappings in a Hilbert space.

2 Preliminaries

Throughout this paper, we denote by $\mathbb{N}$ the set of positive integers and by $\mathbb{R}$ the set of

real numbers. Let $H$ be a real Hilbert space with inner product $\rangle$ and norm $\Vert\cdot\Vert$ and
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let $C$ be a non-empty subset of $H$ . We denote by $\overline{co}C$ the closure of the convex hull of $C.$

In a Hilbert space it is known that

$\Vert(1-\lambda)x+\lambda y\Vert^{2}=(1-\lambda)\Vert x\Vert^{2}+\lambda\Vert y\Vert^{2}-(1-\lambda)\lambda\Vert x-y\Vert^{2}$

for any $x,$ $y\in H$ and for any $\lambda\in \mathbb{R}$ ; see [19]. Furthermore in a Hilbert space we obtain
that

$2\langle x-y, z-w\rangle=\Vert x-w\Vert^{2}+\Vert y-z\Vert^{2}-\Vert x-z\Vert^{2}-\Vert y-w\Vert^{2}$

for any $x,$ $y,$ $z,$ $w\in H$ . Let $T$ be a mapping from $C$ into $H$ . We denote by $F(T)$ the set
of fixed points of $T$ . A mapping $T$ from $C$ into $H$ with $F(T)\neq\emptyset$ is said to be quasi-
nonexpansive if $1x-Ty\Vert\leq\Vert x-y\Vert$ for any $x\in F(T)$ and for any $y\in C$ . It is well known
that the set $F(T)$ of fixed points of a quasi-nonexpansive mapping $T$ is closed and convex;
see Ito and Takahashi [10]. It is not difficult to prove such a result in a Hilbert space; see,
for instace, [22]. Let $C$ be a non-empty closed convex subset of $H$ and $x\in H$ . Then, we
know that there exists a unique nearest point $z\in C$ such that $\Vert x-z\Vert=\inf_{y\in C}\Vert x-y$

We denote such a correspondence by $z=P_{C}x$ . The mapping $P_{C}$ is said to be the metric
projection from $H$ onto $C$ . It is known that $P_{C}$ is nonexpansive and

$\langle x-P_{C}x, P_{C}x-u\rangle\geq 0$

for any $x\in H$ and for any $u\in C$ ; see [19] for more details. For proving a mean convergence
theorem, we also need the following lemma proved by Takahashi and Toyoda [21].

Lemma 2.1. Let $C$ be a non-empty closed convex subset of H. Let $P$ be the metric
projection from $H$ onto C. Let $\{u_{n}\}$ be a sequence in H. If $\Vert u_{n+1}-u\Vert\leq\Vert u_{n}-u\Vert$ for any
$u\in C$ and for any $n\in \mathbb{N}$ , then $\{Pu_{n}\}$ converges strongly to some $u_{0}\in C.$

Let $\ell\infty$ be the Banach space of bounded sequences with supremum norm. Let $\mu$ be
an element of $(\ell^{\infty})^{*}$ (the dual space of $\ell^{\infty}$ ). Then we denote by $\mu(f)$ the value of $\mu$ at
$f=(x_{1}, x_{2}, x_{3}, \ldots)\in\ell\infty$ . Sometimes we denote by $\mu_{n}(x_{n})$ the value $\mu(f)$ . A linear
functional $\mu$ on $\ell\infty$ is said to be a mean if $\mu(e)=\Vert\mu\Vert=1$ , where $e=(1,1,1,$ . . A mean
$\mu$ is said to be a Banach limit on $l^{\infty}$ if $\mu_{n}(x_{n+1})=\mu_{n}(x_{n})$ . We know that there exists a
Banach limit on $p\infty$ . If $\mu$ is a Banach limit on $\ell\infty$ , then for $f=(x_{1}, x_{2}, x_{3}, \ldots)\in\ell\infty,$

$\lim_{narrow}\inf_{\infty}x_{n}\leq\mu_{n}(x_{n})\leq\lim_{narrow}\sup_{\infty}x_{n}.$

In particular, if $f=(x_{1}, x_{2}, x_{3}, \ldots)\in\ell\infty$ and $x_{n}arrow a\in \mathbb{R}$ , then we obtain $\mu(f)=\mu_{n}(x_{n})=$

$a$ . See [18] for the proof of existence of a Banach hmit and its other elementary properties.
Using means and the Riesz theorem, we have the following result; see [17] and [18].

Lemma 2.2. Let $H$ be a Hilbert space, let $\{x_{n}\}$ be a bounded sequence in $H$ and let $\mu$ be
a mean on $\ell\infty$ . Then there exists a unique point $z_{0}\in\overline{co}\{x_{n}|n\in \mathbb{N}\}$ such that

$\mu_{n}\langle x_{n}, y\rangle=\langle z_{0}, y\rangle$

for any $y\in H.$
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The author [13] proved by Lemma 2.2 the following fixed point theorem.

Theorem 2.1. Let $H$ be a real Hilbert space, let $C$ be a non-empty closed convex subset of
$H$ and let $T$ be an $(\alpha, \beta, \gamma, \delta, \epsilon, \zeta, \eta)$ -widdy more generalized hybrid mapping from $C$ into

itself which satisfies the following condition (1) or (2):

(1) $\alpha+\beta+\gamma+\delta\geq 0,$ $\alpha+\gamma+\epsilon+\eta>0$ and $\zeta+\eta\geq 0$ ;

(2) $\alpha+\beta+\gamma+\delta\geq 0,$ $\alpha+\beta+\zeta+\eta>0$ and $\epsilon+\eta\geq 0.$

Then $T$ has a fixed point if and only if there exists $z\in C$ such that $\{T^{\mathfrak{n}}z|n\in \mathbb{N}U\{O\}\}$ is

bounded. In particular, a fixed point of $T$ is unique in the case of $\alpha+\beta+\gamma+\delta>0$ on the

conditions (1) and (2).

As a direct consequence of Theorem 2.1, we obtain the following.

Theorem 2.2. Let $H$ be a real Hilbert space, let $C$ be a bounded closed convex subset of
$H$ and let $T$ be an $(\alpha, \beta, \gamma, \delta,\epsilon, \zeta, \eta)$ -widely more generalized hybrid mapping from $C$ into

itself which satisfies the following condition (1) or (2):

(1) $\alpha+\beta+\gamma+\delta\geq 0,$ $\alpha+\gamma+\epsilon+\eta>0$ and $\zeta+\eta\geq 0$ ;

(2) $\alpha+\beta+\gamma+\delta\geq 0,$ $\alpha+\beta+\zeta+\eta>0$ and $\epsilon+\eta\geq 0.$

Then $T$ has a fixed point. In particular, a fixed point of $T$ is unique in the case of $\alpha+\beta+$

$\gamma+\delta>0$ on the conditions (1) and (2).

Using Theorem 2.2, we prove a fixed point theorem for widely more generalized hybrid

non-self mappings in a Hilbert space; see [11].

Theorem 2.3. Let $H$ be a real Hilbert space, let $C$ be a non-empty bounded closed convex
subset of $H$ and let $T$ be an $(\alpha, \beta,\gamma, \delta, \epsilon, \zeta, \eta)$ -widely more generalized hybrid mapping from
$C$ into $H$ which satisfies the following condition (1) or (2):

(1) $\alpha+\beta+\gamma+\delta\geq 0,$ $\alpha+\gamma+\epsilon+\eta>0$ , and there exists $\lambda\in \mathbb{R}$ such that $\lambda\neq 1$ and
$(\alpha+\beta)\lambda+\zeta+\eta\geq 0$ ;

(2) $\alpha+\beta+\gamma+\delta\geq 0,$ $\alpha+\beta+\zeta+\eta>0$ , and there exists $\lambda\in \mathbb{R}$ such that $\lambda\neq 1$ and
$(\alpha+\gamma)\lambda+\epsilon+\eta\geq 0.$

Suppose that for any $x\in C$ there exist $m\in \mathbb{R}$ and $y\in C$ such that $0\leq(1-\lambda)m\leq 1$ and

$Tx=x+m(y-x)$ . Then $T$ has a fixed point. In particular, a fixed point of $T$ is unique

in the case of $\alpha+\beta+\gamma+\delta>0$ on the conditions (1) and (2).

Moreover, for proving a mean convergence theorem of Baillon’s type in a Hilbert space,

we need the following lemmas and theorems; see [11].

16



Lemma 2.3. Let $H$ be a real Hilbert space, let $C$ be a non-empty closed convex subset of
$H$ and let $T$ be an $(\alpha, \beta, \gamma, \delta, \epsilon, \zeta, \eta)$ -widely more generalized hybrid mapping from $C$ into
$H$ which has a fixed point and satisfies the condition:

$\alpha+\gamma+\epsilon+\eta>0, or\alpha+\beta+\zeta+\eta>0.$

Then $F(T)$ is closed.

Lemma 2.4. Let $H$ be a real Hilbert space, let $C$ be a non-empty closed convex subset of
$H$ and let $T$ be an $(\alpha, \beta, \gamma, \delta, \epsilon, \zeta, \eta)$ -widely more generalized hybrid mapping from $C$ into
$H$ which has a fixed point and satisfies the condition (1) or (2):

(1) $\alpha+\beta+\gamma+\delta\geq 0$ and $\alpha+\gamma+\epsilon+\eta>0_{j}$

(2) $\alpha+\beta+\gamma+\delta\geq 0$ and $\alpha+\beta+\zeta+\eta>0.$

Then $F(T)$ is convex.

Lemma 2.5. Let $H$ be a real Hilbert space, let $C$ be a non-empty closed convex subset of
$H$ and let $T$ be an $(\alpha, \beta, \gamma, \delta, \epsilon, \zeta, \eta)$ -widely more generalized hybrid mapping from $C$ into
$H$ which has a fixed point and satisfies the condition (1) or (2):

(1) $\alpha+\beta+\gamma+\delta\geq 0,$ $\alpha+\gamma>0$ and $\epsilon+\eta\geq 0$;

(2) $\alpha+\beta+\gamma+\delta\geq 0,$ $\alpha+\beta>0$ and $\zeta+\eta\geq 0.$

Then $T$ is quasi-nonexpansive.

Moreover we obtain the following.

Lemma 2.6. Let $H$ be a real Hilbert space, let $C$ be a non-empty closed convex subset of
$H$ and let $T$ be an $(\alpha, \beta, \gamma, \delta, \epsilon, \zeta, \eta)$ -widely more generalized hybrid mapping from $C$ into
$H$ which has a fixed point and satisfies the condition (1) or (2):

(1) $\alpha+\beta+\gamma+\delta\geq 0$ , and there exists $\lambda\in \mathbb{R}$ such that $0\leq(\alpha+\gamma)\lambda+\epsilon+\eta<\alpha+\gamma+\epsilon+\eta,\cdot$

(2) $\alpha+\beta+\gamma+\delta\geq 0$ , and there exists $\lambda\in \mathbb{R}$ such that $0\leq(\alpha+\beta)\lambda+\zeta+\eta<\alpha+\beta+\zeta+\eta.$

Then $(1-\lambda)T+\lambda I$ is quasi-nonexpansive.

Now, using the technique developed by Takahashi [17], by Lemmas 2.3, 2.4, 2.5 and
2.6 we obtain the following mean convergence theorems for widely more generalized hybrid
non-self mappings in a Hilbert space.

Theorem 2.4. Let $H$ be a real Hilbert space, let $C$ be a non-empty closed convex subset of
$H$ and let $T$ be an $(\alpha, \beta,\gamma, \delta, \epsilon, \zeta, \eta)$ -widely more generalized hybrid mapping from $C$ into
$H$ which has a fixed point and satisfies the condition (1) or (2):

(1) $\alpha+\beta+\gamma+\delta\geq 0,$ $\alpha+\gamma>0$ and $\epsilon+\eta\geq 0_{f}.$
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(2) $\alpha+\beta+\gamma+\delta\geq 0,$ $\alpha+\beta>0$ and $\zeta+\eta\geq 0.$

Then for any $x\in C(T;0)=\{z|T^{n}z\in C, \forall n\in \mathbb{N}\cup\{0\}\},$

$S_{n}x= \frac{1}{n}\sum_{k=0}^{n-1}T^{k_{X}}$

is weakly convergent to a fixed point $p$ of $T$ , where $P$ is the metric projection from $H$ onto
$F(T)$ and $p= \lim_{narrow\infty}PT^{\mathfrak{n}}x.$

Theorem 2.5. Let $H$ be a real Hilbert space, let $C$ be a non-empty dosed convex subset of
$H$ and let $T$ be an $(\alpha, \beta, \gamma, \delta, \epsilon, \zeta, \eta)$ -widely more generalized hybrid mapping from $C$ into
$H$ which has a fixed point and satisfies the condition (1) or (2):

(1) $\alpha+\beta+\gamma+\delta\geq 0$ , and there exists $\lambda\in \mathbb{R}$ such that $0\leq(\alpha+\gamma)\lambda+\epsilon+\eta<\alpha+\gamma+\epsilon+\eta$ ;

(2) $\alpha+\beta+\gamma+\delta\geq 0$ , and there exists $\lambda\in \mathbb{R}$ such that $0\leq(\alpha+\beta)\lambda+\zeta+\eta<\alpha+\beta+\zeta+\eta.$

Then for any $x\in C(T;\lambda)=\{z|((1-\lambda)T+\lambda I)^{n}z\in C, \forall n\in \mathbb{N}U\{0\}\},$

$S_{n}x= \frac{1}{n}\sum_{k=0}^{n-1}((1-\lambda)T+\lambda I)^{k_{X}}$

is weakly convergent to a fixed point $p$ of $T$ , where $P$ is the metric projection from $H$ onto
$F(T)$ and $p= \lim_{narrow\infty}P((1-\lambda)T+\lambda I)^{n}x.$

Moreover we obtain the following.

Theorem 2.6. Let $H$ be a real Hilbert space, let $C$ be a non-empty bounded closed convex
subset of $H$ and let $T$ be an $(\alpha, \beta,\gamma, \delta, e, \zeta,\eta)$ -widely more generalized hybrid mapping from
$C$ into $H$ which satisfies the following condition (1) or (2):

(1) $\alpha+\beta+\gamma+\delta\geq 0$ , and there exists $\lambda\in \mathbb{R}$ such that $0\leq(\alpha+\gamma)\lambda+\epsilon+\eta<\alpha+\gamma+\epsilon+\eta$;

(2) $\alpha+\beta+\gamma+\delta\geq 0$ , and there exists $\lambda\in \mathbb{R}$ such that $0\leq(\alpha+\beta)\lambda+\zeta+\eta<\alpha+\beta+\zeta+\eta.$

Suppose that for any $x\in C$ , there exist $m\in \mathbb{R}$ and $y\in C$ such that $0\leq(1-\lambda)m\leq 1$ and

$Tx=x+m(y-x)$ . Then for any $x\in C,$

$S_{n}x= \frac{1}{n}\sum_{k=0}^{n-1}((1-\lambda)T+\lambda I)^{k_{X}}$

is weakly convergent to a fixed point $p$ of $T_{f}$ where $P$ is the metric projection from $H$ onto
$F(T)$ and $p= \lim_{narrow\infty}P((1-\lambda)T+\lambda I)^{n}x.$
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3 Fixed point theorem

Let $H$ be a real Hilbert space and let $C$ be a non-empty subset of $H$ . A mapping $T$ from
$C$ into $H$ was said to be widely more generalized hybrid if there exist $\alpha,$

$\beta,$
$\gamma,$

$\delta,$
$\epsilon,$

$\zeta,$ $\eta\in \mathbb{R}$

such that

$\alpha\Vert Tx-Ty\Vert^{2}+\beta\Vert x-Ty\Vert^{2}+\gamma\Vert Tx-y\Vert^{2}+\delta\Vert x-y\Vert^{2}$

$+\epsilon\Vert x-Tx\Vert^{2}+\zeta\Vert y-Ty\Vert^{2}+\eta\Vert(x-Tx)-(y-Ty)\Vert^{2}\leq 0$

for any $x,$ $y\in C$ ; see Introduction. Such a mapping $T$ is said to be $(\alpha, \beta, \gamma, \delta, \epsilon, \zeta, \eta)-$

widely more generalized hybrid; see [13]. An $(\alpha, \beta, \gamma, \delta, \epsilon, \zeta, \eta)$-widely more generaJized
hybrid mapping is generalized hybrid in the sense of Kocourek, Takahashi and Yao [14] if
$\alpha+\beta=-\gamma-\delta=1$ and $\epsilon=\zeta=\eta=0$ . Moreover it is an extension of widely generalized
hybrid mappings in the sence of Kawasaki and Takahashi [12]; see also [11].

Theorem 3.1. Let $H$ be a real Hilbert space, let $C$ be a non-empty bounded closed convex
subset of $H$ and let $T$ be an $(\alpha, \beta,\gamma, \delta, \epsilon, \zeta,\eta)$ -widely more generalized hybrid mapping from
$C$ into $H$ which satisfies the following condition (1) or (2):

(1) $\alpha+\beta+\gamma+\delta\geq 0,$ $\alpha+\gamma+\epsilon+\eta>0$ , and there exists $\lambda\in \mathbb{R}$ such that $\lambda\neq 1$ and
$(\alpha+\beta)\lambda+\zeta+\eta\geq 0$;

(2) $\alpha+\beta+\gamma+\delta\geq 0,$ $\alpha+\beta+\zeta+\eta>0_{f}$ and there exists $\lambda\in \mathbb{R}$ such that $\lambda\neq 1$ and
$(\alpha+\gamma)\lambda+\epsilon+\eta\geq 0.$

Let

$M=\{\begin{array}{ll}[0, \infty) , if\lambda<1,(-\infty, 0], if \lambda>1.\end{array}$

Suppose that for any $x\in C$ there exist $m\in M$ and $y\in C$ such that $Tx=x+m(y-x)$ . Then
$T$ has a fixed point. In particular, a fixed point of $Ti_{\mathcal{S}}$ unique in the case of $\alpha+\beta+\gamma+\delta>0$

on the conditions (1) and (2).

As a direct consequence of Theorem 3.1, we obtain the following fixed point theorem
for generalized hybrid mappings as an extension of [8, Theorem 3.4].

Theorem 3.2. Let $H$ be a real Hilbert space, let $C$ be a non-empty bounded closed convex
subset of $H$ and let $T$ be an $(\alpha, \beta)$ -generalized hybrid mapping from $C$ into H. Suppose
that for any $x\in C$ there exist $m\in[0, \infty$ ) and $y\in C$ such that $Tx=x+m(y-x)$ . Then
$T$ has a fixed point.

Example 3.1. Let $H=\mathbb{R}$ , let $C=[0, \frac{\pi}{2}]$ , let $Tx=(1+2x)\cos x-2x^{2}$ and let $\alpha=1,$

$\beta=\gamma=11,$ $\delta=-22,$ $\epsilon=\zeta=-12$ and $\eta=1$ . Then $T$ is an $(\alpha, \beta, \gamma, \delta, \epsilon, \zeta, \eta)$-widely
more generalized hybrid mapping from $C$ into $H$ . Moreover $\alpha+\beta+\gamma+\delta=1\geq 0$ and
$\alpha+\gamma+\epsilon+\eta=1>0$ hold. Let $\lambda=\frac{2+3\pi}{3(1+\pi)}$ . Then we obtain $( \alpha+\beta)\lambda+\zeta+\eta=\frac{\pi-3}{1+\pi}\geq 0.$

Let $m=1+\pi$ and $y=x+ \frac{(1+2x)(cosx-x)}{1+\pi}$ for any $x\in C$ . Then we obtain $y\in C$ and
$Tx=x+m(y-x)$ . Therefore by Theorem 3.1 $T$ has a unique fixed point.
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Example 3.2. Let $H=\mathbb{R}^{2}$ , let $C=[0, \frac{\pi}{2}]\cross[0, \frac{\pi}{2}]$ , let

$T (\begin{array}{l}x_{1}x_{2}\end{array})=((1+x_{1}+x_{2})\cos\frac{x_{1}+x_{2}}{2}-\frac{(x_{1}+x_{2})^{2}2x_{1}x_{2}}{2}(1+2\sqrt{x_{1}x_{2}})\cos\sqrt{x_{1^{X}2}}-)$

and let $\alpha=1,$ $\beta=\gamma=11,$ $\delta=-22,$ $\epsilon=\zeta=-12$ and $\eta=1$ . Then $T$ is an
$(\alpha, \beta, \gamma, \delta, \epsilon, \zeta, \eta)$-widely more generalized hybrid mapping from $C$ into $H$ . Moreover $\alpha+$

$\beta+\gamma+\delta=1\geq 0$ and $\alpha+\gamma+\epsilon+\eta=1>0$ hold. Let $\lambda=\frac{2\pi}{3(\pi)}$ . Then we obtain

$( \alpha+\beta)\lambda+\zeta+\eta=\frac{\pi-3}{1+\pi}\geq 0$ . Let $m=1+\pi$ and

$y=(_{x_{2}+}x_{1}+ \frac{\frac{}{}(1+2\sqrt{x_{1}x_{2}})\cos\sqrt{x_{1}x_{l}}-2x_{1}x_{2}-x_{1}(1+x1+x\prime z)\cos_{22}^{x+(x+x)}rightarrow^{x}A-\mapsto^{2}-x_{2}1+\pi}{1+\pi})$

for any $x=(\begin{array}{l}x_{1}x_{2}\end{array})\in C$ . Then we obtain $y\in C$ and $Tx=x+m(y-x)$ . Therefore by

Theorem 3.1 $T$ has a unique fixed point.

4 Mean convergence theorem

In this section we prove a mean convergence theorem of Baillon’s type in a Hilbert

space.

Theorem 4.1. Let $H$ be a real Hilbert space, let $C$ be a non-empty bounded closed convex

subset of $H$ and let $T$ be an $(\alpha, \beta, \gamma, \delta, e, \zeta, \eta)$ -widely more generalized hybrid mapping from
$C$ into $H$ which satisfies $F(T)\neq\emptyset$ and the following condition (1) or (2):

(1) $\alpha+\beta+\gamma+\delta\geq 0$ , and there exists $\lambda\in \mathbb{R}$ such that $0\leq(\alpha+\gamma)\lambda+\epsilon+\eta<\alpha+\gamma+\epsilon+\eta$ ;

(2) $\alpha+\beta+\gamma+\delta\geq 0$ , and there exists $\lambda\in \mathbb{R}$ such that $0\leq(\alpha+\beta)\lambda+\zeta+\eta<\alpha+\beta+\zeta+\eta.$

Let

$M=\{\begin{array}{ll}[0, \infty) , if\lambda<1,(-\infty, 0], if\lambda>1.\end{array}$

Suppose that for any $x\in C$ there exist $m\in M$ and $y\in C$ such that $Tx=x+m(y-x)$ .
Then for any $x\in C,$

$S_{n}x= \frac{1}{n}\sum_{k=0}^{n-1}((1-\lambda)T+\lambda I)^{k_{X}}$

is weakly convergent to a fixed point $p$ of $T$, where $P$ is the metric projection from $H$ onto

$F(T)$ and $p= \lim_{narrow\infty}P((1-\lambda)T+\lambda I)^{\mathfrak{n}}x.$
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As a direct consequence of Theorem 4.1, we obtain the following mean convergence
theorem for super hybrid mappings [8, Theorem 4.2].

Theorem 4.2. Let $H$ be a real Hilbert space, let $C$ be a non-empty closed convex subset
of $H$ and let $T$ be an $(\alpha, \beta, \gamma)$ -super hybrid mapping from $C$ into itself with $F(T)\neq\emptyset.$

Suppose that $\gamma\geq 0$ . Then for any $x\in C,$

$S_{n}x= \frac{1}{n}\sum_{k=0}^{n-1}(\frac{1}{1+\gamma}T+\frac{\gamma}{1+\gamma}I)^{k}x$

is weakly convergent to a fixed point $p$ of $T$, where $P$ is the metric projection from $H$ onto
$F(T)$ and $p= \lim_{narrow\infty}P(\frac{1}{1+\gamma}T+\frac{\gamma}{1+\gamma}I)^{n}x.$

Example 4.1. Let $H=\mathbb{R}$ , let $C=[0,$ $\frac{\pi}{2}]$ , let $Tx=(1+2x)\cos x-2x^{2}$ and let $\alpha=1,$

$\beta=\gamma=11,$ $\delta=-22,$ $\epsilon=\zeta=-12$ and $\eta=1$ . Then $T$ is an $(\alpha, \beta, \gamma, \delta, \epsilon, \zeta, \eta)$-widely
more generalized hybrid mapping from $C$ into $H$ . Moreover $\alpha+\beta+\gamma+\delta=1\geq 0$ and
$\alpha+\gamma+\epsilon+\eta=1>0$ hold. Let $\lambda=\frac{2+3\pi}{3(1+\pi)}$ . Then we obtain $0 \leq(\alpha+\gamma)\lambda+\epsilon+\eta=\frac{\pi-3}{1+\pi}<$

$1=\alpha+\gamma+\epsilon+\eta$ . Let $m=1+\pi$ and $y=x+ \frac{(1+2x)(\cos x-x)}{1+\pi}$ for any $x\in C$ . Then we obtain
$y\in C$ and $Tx=x+m(y-x)$ . Therefore by Theorem 4.1 for any $x\in C,$

$S_{n}x= \frac{1}{n}\sum_{k=0}^{n-1}((1-\lambda)T+\lambda I)^{k}x$

is weakly convergent to a fixed point $p$ of $T$ , where $P$ is the metric projection from $H$ onto
$F(T)$ and $p= \lim_{narrow\infty}P((1-\lambda)T+\lambda I)^{n}x.$

Example 4.2. Let $H=\mathbb{R}^{2}$ , let $C=[0,$ $\frac{\pi}{2}]\cross[0,$ $\frac{\pi}{2}]$ , let

$T (\begin{array}{l}x_{1}x_{2}\end{array})=((1+x_{1}+x_{2})\cos\frac{x1+x_{2}}{2}-\frac{(x_{1}+x_{2})^{2}2x_{1}x_{2}}{2}(1+2\sqrt{x_{1}x_{2}})\cos\sqrt{x_{1}x_{2}}-)$

and let $\alpha=1,$ $\beta=\gamma=11,$ $\delta=-22,$ $\epsilon=\zeta=-12$ and $\eta=1$ . Then $T$ is an
$(\alpha, \beta, \gamma, \delta, \epsilon, \zeta, \eta)$-widely more generalized hybrid mapping from $C$ into $H$ . Moreover $\alpha+$

$\beta+\gamma+\delta=1\geq 0$ and $\alpha+\gamma+\epsilon+\eta=1>0$ hold. Let $\lambda=\frac{2+3\pi}{3(1+\pi)}$ . Then we obtain
$0 \leq(\alpha+\gamma)\lambda+\epsilon+\eta=\frac{\pi-3}{1+\pi}<1=\alpha+\gamma+\epsilon+\eta$ . Let $m=1+\pi$ and

$y=(x_{2}x_{1}+ \frac{\frac{(1+2\sqrt{xx})\cos\sqrt{x1x_{2}}-2x1x_{2}-x1}{(1+x1+x_{2})\cos^{\underline{x}_{\Delta^{+x}\lrcorner}}2-2\mapsto)^{2}1+\pi}-x_{2}\prime}{1+\pi}+.)$

for any $x=(\begin{array}{l}x_{1}x_{2}\end{array})\in C$ . Then we obtain $y\in C$ and $Tx=x+m(y-x)$ . Therefore by

Theorem 4.1 for any $x\in C,$

$S_{n}x= \frac{1}{n}\sum_{k=0}^{n-1}((1-\lambda)T+\lambda I)^{k}x$
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is weakly convergent to a fixed point $p$ of $T$ , where $P$ is the metric projection from $H$ onto
$F(T)$ and $p= \lim_{narrow\infty}P((1-\lambda)T+\lambda I)^{n}x.$
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