Non-Hermitian Extension of Uncertainty Relation

Kenjiro Yanagi

Yamaguchi University

1 Introduction

Wigner-Yanase skew information

$$I_{\rho}(H) = \frac{1}{2} Tr \left[\left(i \left[\rho^{1/2}, H \right] \right)^{2} \right]$$

= $Tr[\rho H^{2}] - Tr[\rho^{1/2} H \rho^{1/2} H]$

was defined in [11]. This quantity can be considered as a kind of the degree for non-commutativity between a quantum state ρ and an observable H. Here we denote the commutator by [X,Y]=XY-YX. This quantity was generalized by Dyson

$$I_{\rho,\alpha}(H) = \frac{1}{2} Tr[(i[\rho^{\alpha}, H])(i[\rho^{1-\alpha}, H])]$$

= $Tr[\rho H^{2}] - Tr[\rho^{\alpha} H \rho^{1-\alpha} H], \alpha \in [0, 1]$

which is known as the Wigner-Yanase-Dyson skew information. Recently it is shown that these skew informations are connected to special choices of quantum Fisher information in [3]. The family of all quantum Fisher informations is parametrized by a certain class of operator monotone functions \mathcal{F}_{op} which were justified in [9]. The Wigner-Yanase skew information and Wigner-Yanase-Dyson skew information are given by the following operator monotone functions

$$f_{WY}(x) = \left(\frac{\sqrt{x+1}}{2}\right)^2,$$

$$f_{WYD}(x) = \alpha(1-\alpha)\frac{(x-1)^2}{(x^{\alpha}-1)(x^{1-\alpha}-1)}, \ \alpha \in (0,1),$$

respectively. In particular the operator monotonicity of the function f_{WYD} was proved in [10]. On the other hand the uncertainty relation related to Wigner-Yanase skew information was given by Luo [8] and the uncertainty relation related to Wigner-Yanase-Dyson skew information was given by Yanagi [12], respectively. Also these

uncertainty relations were generalized to the uncertainty relations related to quantum Fisher informations by using (generalized) metric adjusted skew information or correlation measure in [13, 14, 15]. In this paper we don't assume that observables are hermitian. Then we give the corresponding uncertainty relations by using generalized quasi-metric adjusted skew informations and generalized quasi-adjusted correlation measures. In particular we show how is the corresponding variance represented.

2 Operator Monotone Functions

Let $M_n(\mathbb{C})$ (resp. $M_{n,sa}(\mathbb{C})$) be the set of all $n \times n$ complex matrices (resp. all $n \times n$ self-adjoint matrices), endowed with the Hilbert-Schmidt scalar product $\langle A, B \rangle = Tr(A^*B)$. Let $M_{n,+}(\mathbb{C})$ be the set of strictly positive elements of $M_n(\mathbb{C})$ and $M_{n,+,1}(\mathbb{C})$ be the set of strictly positive density matrices, that is $M_{n,+,1}(\mathbb{C}) = \{\rho \in M_n(\mathbb{C}) | Tr\rho = 1, \rho > 0\}$. If it is not otherwise specified, from now on we shall treat the case of faithful states, that is $\rho > 0$.

A function $f:(0,+\infty)\to\mathbb{R}$ is said operator monotone if, for any $n\in\mathbb{N}$, and $A,B\in M_n$ such that $0\leq A\leq B$, the inequalities $0\leq f(A)\leq f(B)$ hold. An operator monotone function is said symmetric if $f(x)=xf(x^{-1})$ and normalized if f(1)=1.

Definition 2.1 \mathcal{F}_{op} is the class of functions $f:(0,+\infty)\to(0,+\infty)$ such that

- (1) f(1) = 1,
- (2) $tf(t^{-1}) = f(t)$,
- (3) f is operator monotone.

Example 2.1 Examples of elements of \mathcal{F}_{op} are given by the following list

$$f_{RLD}(x) = \frac{2x}{x+1}, \quad f_{WY}(x) = \left(\frac{\sqrt{x}+1}{2}\right)^2, \quad f_{BKM}(x) = \frac{x-1}{\log x},$$

$$f_{SLD}(x) = \frac{x+1}{2}, \quad f_{WYD}(x) = \alpha(1-\alpha)\frac{(x-1)^2}{(x^{\alpha}-1)(x^{1-\alpha}-1)}, \quad \alpha \in (0,1).$$

Remark 2.1 Any $f \in \mathcal{F}_{op}$ satisfies

$$\frac{2x}{x+1} \le f(x) \le \frac{x+1}{2}, \ x > 0.$$

For $f \in \mathcal{F}_{op}$ define $f(0) = \lim_{x\to 0} f(x)$. We introduce the sets of regular and non-regular functions

$$\mathcal{F}_{op}^{r} = \{ f \in \mathcal{F}_{op} | f(0) \neq 0 \}, \ \mathcal{F}_{op}^{n} \{ f \in \mathcal{F}_{op} | f(0) = 0 \}$$

and notice that trivially $\mathcal{F}_{op} = \mathcal{F}_{op}^r \cup \mathcal{F}_{op}^n$.

Definition 2.2 Let $g, f \in \mathcal{F}_{op}^r$ satisfy

$$g(x) \ge k \frac{(x-1)^2}{f(x)} \tag{2.1}$$

for some k > 0. We define

$$\Delta_g^f(x) = g(x) - k rac{(x-1)^2}{f(x)} \in \mathcal{F}_{op}$$

3 Generalized Quasi-Metric Adusted Skew Information and Correlation Measure

In Kubo-Ando theory of matrix means one associates a mean to each operator monotone function $f \in \mathcal{F}_{op}$ by the formula

$$m_f(A, B) = A^{1/2} f(A^{-1/2} B A^{-1/2}) A^{1/2},$$

where $A, B \in M_{n,+}(\mathbb{C})$. Using the notion of matrix means one may define the class of monotone metrics (also said quantum Fisher informations) by the following formula

$$\langle A, B \rangle_{\rho,f} = Tr(A^* \cdot m_f(L_\rho, R_\rho)^{-1}(B)),$$

where $A, B \in M_n(\mathbb{C}), L_\rho(A) = \rho A, R_\rho(A) = A\rho$.

Now we define generalized quasi-metric adjusted skew information and correlation measure for non-hermitian matrices $M_n(\mathbb{C})$.

Definition 3.1 For $A, B \in M_n(\mathbb{C})$ and $\rho \in M_{n,+,1}(\mathbb{C})$, we define the following quantities:

$$|Corr_{\rho}^{(g,f)}|(A,B) = k\langle i[\rho,A], i[\rho,B]\rangle_{\rho,f}, \quad |I_{\rho}^{(g,f)}|(A) = |Corr_{\rho}^{(g,f)}|(A,A),$$

$$|C_{\rho}^{f}|(A,B) = Tr[A^{*}m_{f}(L_{\rho},R_{\rho})B], \quad |C_{\rho}^{f}|(A) = |C_{\rho}^{f}|(A,A),$$

$$|U_{\rho}^{(g,f)}|(A) = \sqrt{(|C_{\rho}^{g}|(A) + |C_{\rho}^{\Delta_{g}^{f}}|(A))(|C_{\rho}^{g}|(A) - |C_{\rho}^{\Delta_{g}^{f}}|(A))},$$

The quantity $|I_{\rho}^{(g,f)}|(A)$ and $|Corr_{\rho}^{(g,f)}|(A,B)$ are said generalized quasi-metric adjusted skew information and generalized quasi-metric adjusted correlation measure, respectively.

Then we have the following proposition.

Proposition 3.1 For $A, B \in M_n(\mathbb{C})$ and $\rho \in M_{n,+,1}(\mathbb{C})$, we have the following relations, where we put $A_0 = A - Tr[\rho A]I$ and $B_0 = B - Tr[\rho B]$.

(1)
$$|I_{\rho}^{(g,f)}|(A) = |I_{\rho}^{(g,f)}|(A_0) = |C_{\rho}^g|(A_0) - |C_{\rho}^{\Delta_g^f}|(A_0),$$

(2)
$$|J_{\rho}^{(g,f)}|(A) = |C_{\rho}^{g}|(A_{0}) + |C_{\rho}^{\Delta_{g}^{f}}|(A_{0}),$$

(3)
$$|U_{\rho}^{(g,f)}|(A) = \sqrt{|I_{\rho}^{(g,f)}|(A) \cdot |J_{\rho}^{(g,f)}|(A)}$$
.

(4)
$$|Corr_{\rho}^{(g,f)}|(A,B) = |Corr_{\rho}^{(g,f)}|(A_0,B_0).$$

Theorem 3.1 For $f \in \mathcal{F}_{op}^r$, it holds

$$|I_{\rho}^{(g,f)}|(A) \cdot |I_{\rho}^{(g,f)}|(B) \ge ||Corr_{\rho}^{(g,f)}|(A,B)|^2,$$

where $A, B \in M_n(\mathbb{C})$ and $\rho \in M_{n,+,1}(\mathbb{C})$.

Proof of Theorem 3.1. We define for $X, Y \in M_n(\mathbb{C})$

$$|Corr_{\rho}^{(g,f)}|(X,Y) = k\langle i[\rho,X], i[\rho,Y]\rangle_{\rho,f}.$$

Since

$$|Corr_{\rho}^{(g,f)}|(X,Y) = kTr((i[\rho,X])^* m_f(L_{\rho},R_{\rho})^{-1} i[\rho,Y])$$

$$= kTr((i(L_{\rho}-R_{\rho})X)^* m_f(L_{\rho},R_{\rho})^{-1} i(L_{\rho}-R_{\rho})Y)$$

$$= Tr(X^* m_g(L_{\rho},R_{\rho})Y) - Tr(X^* m_{\Delta_g^f}(L_{\rho},R_{\rho})Y),$$

it is easy to show that $|Corr_{\rho}^{(g,f)}|(X,Y)$ is an inner product in $M_n(\mathbb{C})$. Then we can get the result by using Schwarz inequality.

Theorem 3.2 For $f \in \mathcal{F}_{op}^r$, if

$$g(x) + \Delta_g^f(x) \ge \ell f(x) \tag{3.1}$$

for some $\ell > 0$, then it holds

$$|U_{\rho}^{(g,f)}|(A) \cdot |U_{\rho}^{(g,f)}|(B) \ge k\ell |Tr(\rho[A,B])|^2,$$
 (3.2)

where $A, B \in M_n(\mathbb{C})$ and $\rho \in M_{n,+,1}(\mathbb{C})$.

In order to prove Theorem 3.2, we need the following lemmas

Lemma 3.1 If (2.1) and (3.1) are satisfied, then we have the following inequality:

$$m_g(x,y)^2 - m_{\Delta_g^f}(x,y)^2 \ge k\ell(x-y)^2.$$

Proof of Lemma 3.1: By (2.1) and (3.1), we have

$$m_{\Delta_g^f}(x,y) = m_g(x,y) - k \frac{(x-y)^2}{m_f(x,y)}.$$
 (3.3)

$$m_g(x,y) + m_{\Delta_f^f}(x,y) \ge \ell m_f(x,y), \tag{3.4}$$

Therefore by (3.3), (3.4)

$$m_{g}(x,y)^{2} - m_{\Delta_{g}^{f}}(x,y)^{2}$$

$$= \left\{ m_{g}(x,y) - m_{\Delta_{g}^{f}}(x,y) \right\} \left\{ m_{g}(x,y) + m_{\Delta_{g}^{f}}(x,y) \right\}$$

$$\geq k \frac{(x-y)^{2}}{m_{f}(x,y)} \ell m_{f}(x,y)$$

$$= k \ell (x-y)^{2}.$$

Lemma 3.2 Let $\{|\phi_1\rangle, |\phi_2\rangle, \dots, |\phi_n\rangle\}$ be a basis of eigenvectors of ρ , corresponding to the eigenvalues $\{\lambda_1, \lambda_2, \dots, \lambda_n\}$. We put $a_{jk} = \langle \phi_j | A_0 | \phi_k \rangle$, $b_{jk} = \langle \phi_j | B_0 | \phi_k \rangle$, where $A_0 \equiv A - Tr[\rho A]I$ and $B_0 \equiv B - Tr[\rho B]I$ for $A, B \in M_n(\mathbb{C})$ and $\rho \in M_{n,+,1}(\mathbb{C})$. Then we have

$$\begin{split} |I_{\rho}^{(g,f)}|(A) &= \sum_{j,k} m_g(\lambda_j,\lambda_k) |a_{jk}|^2 - \sum_{j,k} m_{\Delta_g^f}(\lambda_j,\lambda_k) |a_{jk}|^2 \\ &= 2 \sum_{j < k} \left\{ (m_g(\lambda_j,\lambda_k) - m_{\Delta_g^f}(\lambda_j,\lambda_k) \right\} |a_{jk}|^2, \end{split}$$

$$|J_{\rho}^{(g,f)}|(A) = \sum_{j,k} m_g(\lambda_j, \lambda_k) |a_{jk}|^2 + \sum_{j,k} m_{\Delta_g^f}(\lambda_j, \lambda_k) |a_{jk}|^2$$

$$\geq 2 \sum_{i \leq k} \left\{ m_g(\lambda_j, \lambda_k) + m_{\Delta_g^f}(\lambda_j, \lambda_k) \right\} |a_{jk}|^2,$$

$$|U_{\rho}^{(g,f)}|(A)^{2} = \left(\sum_{j,k} m_{g}(\lambda_{j},\lambda_{k})|a_{jk}|^{2}\right)^{2} - \left(\sum_{j,k} m_{\Delta_{g}^{f}}(\lambda_{j},\lambda_{k})|a_{jk}|^{2}\right)^{2}$$

and

$$\begin{split} &|Corr_{\rho}^{(g,f)}|(A,B)\\ &= \sum_{j,k} m_g(\lambda_j,\lambda_k) \overline{a_{jk}} b_{jk} - \sum_{j,k} m_{\Delta_g^f}(\lambda_j,\lambda_k) \overline{a_{jk}} b_{jk}\\ &= \sum_{j< k} \left(m_g(\lambda_j,\lambda_k) - m_{\Delta_g^f}(\lambda_j,\lambda_k) \right) \overline{a_{jk}} b_{jk} + \sum_{j< k} \left(m_g(\lambda_k,\lambda_j) - m_{\Delta_g^f}(\lambda_k,\lambda_j) \right) \overline{a_{kj}} b_{kj}. \end{split}$$

We are now in a position to prove Theorem 3.2.

Proof of Theorem 3.2: At first we prove (3.3). Since

$$Tr(\rho[A, B]) = \sum_{j,k} (\lambda_j - \lambda_k) a_{jk} b_{kj},$$

$$|Tr(\rho[A, B])| \le \sum_{j,k} |\lambda_j - \lambda_k| |a_{jk}| |b_{kj}|.$$

Then by Lemma 3.1, we have

$$|k\ell|Tr(\rho[A, B])|^{2} \le \left\{ \sum_{j,k} \sqrt{k\ell} |\lambda_{j} - \lambda_{k}| |a_{jk}| |b_{kj}| \right\}^{2}$$

$$\le \left\{ \sum_{j,k} \left(m_{g}(\lambda_{j}, \lambda_{k})^{2} - m_{\Delta_{g}^{f}}(\lambda_{j}, \lambda_{k})^{2} \right)^{1/2} |a_{jk}| |b_{kj}| \right\}^{2}$$

$$\le \left\{ \sum_{j,k} \left(m_{g}(\lambda_{j}, \lambda_{k}) - m_{\Delta_{g}^{f}}(\lambda_{j}u, \lambda_{k}) \right) |a_{jk}|^{2} \right\} \left\{ \sum_{j,k} \left(m_{g}(\lambda_{j}, \lambda_{k}) + m_{\Delta_{g}^{f}}(\lambda_{j}, \lambda_{k}) \right) |b_{kj}|^{2} \right\}$$

$$= |I_{\rho}^{(g,f)}|(A)|J_{\rho}^{(g,f)}|(B).$$

By the similar way, we also have

$$|I_{\rho}^{(g,f)}|(B)|J_{\rho}^{(g,f)}|(A) \ge k\ell |Tr(\rho[A,B])|^2.$$

Hence we have the desired inequality (3.2).

4 Examples

Example 4.1 When

$$g(x) = \frac{x+1}{2}, \quad f(x) = \alpha(1-\alpha)\frac{(x-1)^2}{(x^{\alpha}-1)(x^{1-\alpha}-1)}, \quad k = \frac{f(0)}{2}, \quad \ell = 2,$$

and $A, B \in M_n(\mathbb{C})$, we give the following:

$$\Delta_g^f(x) = g(x) - k \frac{(x-1)^2}{f(x)} = \frac{1}{2} (x^{\alpha} + x^{1-\alpha}) \ge 0.$$

$$g(x) + \Delta_g^f(x) - \ell f(x)$$

$$= \frac{1}{2(x^{\alpha} - 1)(x^{1-\alpha} - 1)} \{ (x^{2\alpha} - 1)(x^{2(1-\alpha)} - 1) - 4\alpha(1-\alpha)(x-1)^2 \} \ge 0.$$

Then

$$\begin{split} &|I_{\rho}^{(f,g)}|(A) = |I_{\rho}^{(f,g)}|(A_0) \\ &= \frac{1}{2} Tr[\rho A_0 A_0^*] + \frac{1}{2} Tr[\rho A_0^* A_0] - \frac{1}{2} Tr[\rho^{\alpha} A_0 \rho^{1-\alpha} A_0^*] - \frac{1}{2} Tr[\rho^{\alpha} A_0^* \rho^{1-\alpha} A_0]. \end{split}$$

In particular for $\alpha = 1/2$,

$$|I_{\rho}^{(f,g)}|(A) = |I_{\rho}^{(f,g)}|(A_0) = \frac{1}{2}Tr[\rho A_0 A_0^*] + \frac{1}{2}Tr[\rho A_0^* A_0] - Tr[\rho^{1/2} A_0 \rho^{1/2} A_0^*].$$

Then the corresponding variance is given by

$$|V_{\rho}|(A) = \frac{1}{2} Tr[\rho(|A_0|^2 + |A_0^*|^2)].$$

Example 4.2 When

$$g(x) = \left(\frac{\sqrt{x}+1}{2}\right)^2, \quad f(x) = \alpha(1-\alpha)\frac{(x-1)^2}{(x^{\alpha}-1)(x^{1-\alpha}-1)}.$$

and $A, B \in M_n(\mathbb{C})$, we assume k = f(0)/8 and $\ell = 3/2$, then we have the following.

$$\Delta_g^f(x) = g(x) - k \frac{(x-1)^2}{f(x)} = \left(\frac{1+\sqrt{x}}{2}\right)^2 - \frac{1}{8}(x^{\alpha} - 1)(x^{1-\alpha} - 1)$$
$$= \frac{1}{8}\{(1+\sqrt{x})^2 + (x^{\alpha/2} + x^{(1-\alpha)/2})^2\} \ge 0.$$

$$g(x) + \Delta_g^f(x) - \ell f(x)$$

$$= 2g(x) - \frac{1}{8}(x^{\alpha} - 1)(x^{1-\alpha} - 1) - \frac{3}{2}f(x)$$

$$\geq \frac{1}{2}g(x) - \frac{1}{8}(x^{\alpha} - 1)(x^{1-\alpha} - 1)$$

$$= \frac{1}{8}(x^{\alpha/2} + x^{(1-\alpha)/2})^2 \geq 0.$$

Example 4.3 When

$$g(x) = \left(\frac{x^{\gamma} + 1}{2}\right)^{1/\gamma} \quad (\frac{3}{4} \le \gamma \le 1), \quad f(x) = \left(\frac{\sqrt{x} + 1}{2}\right)^2,$$
 $k = \frac{f(0)}{4}, \quad \ell = 2,$

and $A, B \in M_n(\mathbb{C})$, we give the following: Let

$$F(x,r) = \left(\frac{1+x^r}{2}\right)^{1/r}.$$

Since F(x,r) is concave in $r \in [1/2,1]$ (see [15]),

$$F(t, \frac{3}{4}) \ge \frac{1}{2}F(t, 1) + \frac{1}{2}F(t, \frac{1}{2}).$$

Then

$$2F(x,r) \ge 2F(x,\frac{3}{4}) \ge F(x,1) + F(x,\frac{1}{2}),$$

That is

$$2\left(\frac{1+x^r}{2}\right)^{1/r} - \left(\frac{\sqrt{x}-1}{2}\right)^2 > 2\left(\frac{\sqrt{x}+1}{2}\right)^2.$$

Then since

$$\Delta_g^f(x) = \left(rac{1+x^r}{2}
ight)^{1/r} - \left(rac{\sqrt{x}-1}{2}
ight)^2,$$

we have

$$g(x) + \Delta_g^f(x) \ge 2f(x).$$

Example 4.4 When

$$g(x) = \left(\frac{1+x^r}{2}\right)^{1/r}, \ (\frac{5}{8} \le r \le 1)$$
$$f(x) = \left(\frac{1+\sqrt{x}}{2}\right)^2, \quad k = \frac{f(0)}{8} = \frac{1}{32}, \quad \ell = 2.$$

we give the following. Since F(x,r) is concave in $r \in [1/2, 3/4]$ (see [15]),

$$F(x, \frac{5}{8}) \ge \frac{1}{2}F(x, \frac{1}{2}) + \frac{1}{2}F(x, \frac{3}{4})$$

Then

$$2F(x,r) \ge 2F(x,\frac{5}{8}) \ge F(x,\frac{1}{2}) + F(x,\frac{3}{4})$$

$$\ge F(x,\frac{1}{2}) + \frac{1}{2} \left\{ \frac{x+1}{2} + \left(\frac{\sqrt{x}+1}{2} \right)^2 \right\}$$

$$= \frac{3}{2} \left(\frac{\sqrt{x}+1}{2} \right)^2 + \frac{1}{2} \frac{x+1}{2}$$

$$= \frac{3}{2} \left(\frac{\sqrt{x}+1}{2} \right)^2 + \frac{1}{2} \left\{ \left(\frac{\sqrt{x}-1}{2} \right)^2 + \left(\frac{\sqrt{x}+1}{2} \right)^2 \right\}$$

$$= 2 \left(\frac{\sqrt{x}+1}{2} \right)^2 + \frac{1}{2} \left(\frac{\sqrt{x}-1}{2} \right)^2$$

$$g(x) + \Delta_g^f(x) \ge 2f(x).$$

References

- [1] Furuichi, S., Yanagi, K., Schrödinger uncertainty relation, Wigner-Yanase-Dyson skew information and metric adjusted correlation measure, J. Math. Anal. Appl., 388, 1147-1156(2012)
- [2] Gibilisco, P., Imparato, D., Isola, T., Uncertainty principle and quantum Fisher information, II, J. Math. Phys., 48, 072109 (2007)
- [3] Gibilisco, P., Hansen, F., Isola, T., On a correspondence between regular and non-regular operator monotone functions, Linear Algebra and its Applications, 430, 2225-2232 (2009)
- [4] Gibilisco, P., Hiai, F., Petz, D., Quantum covariance, quantum Fisher information, and the uncertainty relations, IEEE Trans. Information Theory, 55, 439-443(2009)
- [5] Gibilisco, P., Isola, T., On a refinement of Heisenberg uncertainty relation by means of quantum Fisher information, J. Math. Anal. Appl., 375, 270-275 (2011)
- [6] Hansen, F., Metric adjusted skew information, Proc. Nat Acad. Sci., 105, 9909-9916 (2008)
- [7] Kubo, F., Ando, T., Means of positive linear operators, Math. Ann., 246, 205-224 (1980)
- [8] Luo, S., Heisenberg uncertainty relation for mixed states, Phys. Rev., A 72, 042110 (2005)
- [9] Petz, D., Monotone metrics on matrix spaces, Linear Algebra and its Applications, 244, 81-96 (1996)
- [10] Petz, D., Hasegawa, H., On the Riemannian metric of α -entropies of density matrices, Lett. Math. Phys., 38, 221-225 (1996)
- [11] Wigner, E. P., Yanase, M. M., Information content of distribution, Proc. Nat. Acad. Sci., 49, 910-918 (1963)
- [12] Yanagi, K., Uncertainty relation on Wigner-Yanase-Dyson skew information, J. Math. Anal. Appl., 365, 12-18 (2010)

- [13] Yanagi, K., Metric adjusted skew information and uncertainty relation, J. Math. Anal. Appl., 380, 888-892(2011).
- [14] Yanagi, K., Generalized metric adjusted skew information and uncertainty relation, Proceedings of the International Symposium on Banach and Function Spaces IV, 425-432(2013).
- [15] Yanagi, K., Furuichi, S., Kuriyama, K., Uncertainty relations for generalized metric adjusted skew information and generalized metric adjusted correlation measure, J. Uncertainty Analysis and Applications, 1, 1-12(2013).

Division of Applied Mathematical Science Graduate School of Science and Engineering Yamaguchi University Ube 755-8611 Japan E-mail address:yanagi@yamaguchi-u.ac.jp

山口大学大学院理工学研究科 柳 研二郎