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1 Introduction

Wigner-Yanase skew information

L(H) = %Tr [(z’ [pl/z,H])z]
= TrlpH?) - Tr[p"*Hp'/*H]

was defined in [11]. This quantity can be considered as a kind of the degree for non-
commutativity between a quantum state p and an observable H. Here we denote the
commutator by [X,Y] = XY — Y X. This quantity was generalized by Dyson

LalH) = STr{(le® H)lo™, H])

= Tr[pH? - Tr[p"Hp'"*H],a € [0,1]

which is known as the Wigner-Yanase-Dyson skew information. Recently it is shown
that these skew informations are connected to special choices of quantum Fisher
information in [3]. The family of all quantum Fisher informations is parametrized
by a certain class of operator monotone functions F,, which were justified in [9].
The Wigner-Yanase skew information and Wigner-Yanase-Dyson skew information
are given by the following operator monotone functions
2
fiele) = (YSH)

(z—1)
@ = DE-1)
respectively. In particular the operator monotonicity of the function fiyyp was
proved in [10]. On the other hand the uncertainty relation related to Wigner-Yanase

skew information was given by Luo [8] and the uncertainty relation related to Wigner-
Yanase-Dyson skew information was given by Yanagi [12], respectively. Also these

fwyp(z) = o(1 - a) , a € (0,1),
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uncertainty relations were generalized to the uncertainty relations related to quan-
tum Fisher informations by using (generalized) metric adjusted skew information or
correlation measure in [13, 14, 15]. In this paper we don’t assume that observables are
hermitian. Then we give the corresponding uncertainty relations by using generalized
quasi-metric adjusted skew informations and generalized quasi-adjusted correlation
measures. In particular we show how is the corresponding variance represented.

2 Operator Monotone Functions

Let M,(C)(resp. M, ,,(C)) be the set of all n x n complex matrices (resp. all n x n
self-adjoint matrices), endowed with the Hilbert-Schmidt scalar product (A, B) =
Tr(A*B). Let M,, ,(C) be the set of strictly positive elements of M,,(C) and M, 4 1(C)
be the set of stricly positive density matrices, that is M, 4 1(C) = {p € M,(C)|Trp =
1, p > 0}. If it is not otherwise specified, from now on we shall treat the case of faith-
ful states, that is p > 0.

A function f : (0,+00) — R is said operator monotone if, for any n € N, and
A, B € M, such that 0 < A < B, the inequalities 0 < f(A) < f(B) hold. An
operator monotone function is said symmetric if f(z) = zf(z~!) and normalized if

f) =1

Definition 2.1 F,, is the class of functions f : (0,400) — (0,+00) such that
(1) f(1) =1,
(2) tf(t) = f(t),
(8) f is operator monotone.

Example 2.1 Ezamples of elements of Fo, are given by the following list

2 1\* -1
frup(z) = x—fl’ fwy(z) = (ﬁ; ) , Jerm(z) = Tog:r’
_1)2
fSLD(w) = x; 1’ fWYD(.'L') = a(l - a) (:I:“ —(:;.:)(:l:}z“ _ 1)’ a€ (07 1)'
Remark 2.1 Any f € F,, satisfies
;fl gf(x)sf;—l, z > 0.

For f € F,, define f(0) = lim,o f(x). We introduce the sets of regular and
non-regular functions

Fop = {f € Fopl (0) # 0}, FL{Sf € Fopl £(0) = 0}
and notice that trivially F,, = F, U Fz,.



Definition 2.2 Let g, f € F,, satisfy

9(z) > k (2.1)

for some k > 0. We define
(z—1)?
f(x)

3 Generalized Quasi-Metric Adusted Skew Infor-
mation and Correlation Measure |

A(z) = g(o) ~ k & Fp

In Kubo-Ando theory of matrix means one associates a mean to each operator mono-
tone function f € F,, by the formula

mg(A, B) = AV f(ATV/2BATY?) A2,

where A, B € M, (C). Using the notion of matrix means one may define the class
of monotone metrics (also said quantum Fisher informtions) by the following formula

(A, B)p,s =Tr(A" - my(L,, Rp)ﬁl(B))a

where A, B € M,(C), L,(A) = pA, R,(A) = Ap.
Now we define generalized quasi-metric adjusted skew information and correlation
measure for non-hermitian matrices M, (C).

Definition 3.1 For A,B € M,(C) and p € M, +1(C), we define the following
quantities:

[Corri#D|(4, B) = k(ilp, Al, ilp, Bl)ys, |I¥DI(A) = [Corri#D|(A, A),

|ICI|(A, B) = Tr[A*ms(L,, R,)B], |CI|(A)=|C/|(A, A),

UN|(4) = v (1C21(4) + [C2F(A)) (Cc21(A) - [02F)(4)),

The quantity |IS|(A) and |Corr®|(A, B) are said generalized quasi-metric ad-
Justed skew information and generalized quasi-metric adjusted correlation measure,
respectively.

Then we have the following proposition.

Proposition 3.1 For A,B € M,(C) and p € M, 1(C), we have the following
relations, where we put Ag = A — Tr[pA]l and By = B — Tr[pB].
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(1) 119D1(4) = [197](Ao) = [CE1(4o) — IC2*|(Ao),
(2) 17971(4) = |C3](4o) + 1C2¥|(Ao),

3) [ULD)(A) = /112 01(4) - 1797 (4).
(4) |Corr®D|(A, B) = |Corr®)|(Aq, Bo).

Theorem 3.1 For f € F,, it holds
\I&D|(4) - |I#D|(B) > ||Corrl#D|(A, B)P,

where A, B € M,(C) and p € M, 1 1(C).

Proof of Theorem 3.1. We define for X,Y € M,(C)
(Corr@PN(X,Y) = k(ilp, X],4lp, Y])s-
Since

|Corr@P|(X,Y) = kTr((ilp, X])*ms(Ly, R,)"ilp, Y])
KTr((i(Ly — Rp)X)*my(Ly, Ry)'i(L, — R,)Y)
= Tr(X*my(L,, R,)Y) — Tr(X*mA{' (Lp, R,)Y),

it is easy to show that |Corr®/ )|(X,Y) is an inner product in M,(C). Then we can
get the result by using Schwarz inequality. O

Theorem 3.2 For f € F,, if
9(z) + A)(z) = £f(2) (3.1)
for some £ > 0, then it holds
U#D|(A) - [UED|(B) = k| Tr(plA, B, (3.2)
where A, B € M,,(C) and p € M, 1(C).
In order to prove Theorem 3.2, we need the following lemmas
Lemma 3.1 If (2.1) and (8.1) are satisfied, then we have the following inequality:

my(za y)2 - mAg(zi y)Z Z kﬂ(a; - y)2‘



Proof of Lemma 3.1: By (2.1) and (3.1), we have

mag o) = (o) ~ kD 3
mg(:L', y) + ma_{; (37’ y) 2> em.f(xa y)’ (3'4)
Therefore by (3.3), (3.4)
mg(iL', y)2 - mAg(x7 y)2
= {mg(a:, y) —mus (2, y)} {mg(w, y) +mps (2, y)}
(z —y)
kmf(z, y)émf(x, )
= ké(z —y)
O

Lemma 3.2 Let {|¢1),|d2), -, |dn)} be a basis of eigenvectors of p, corresponding
to the eigenvalues {\1, Ag, -+, An}. We put ajx = (| Ao|dk), bjx = (¢;|Bo|dk), where
Ay = A—Tr[pA|l and By = B — Tr[pB|I for A,B € M,(C) and p € M, 1(C).
Then we have

ED1A4) =D mg(h, Aw)lazl? ZmAf@Mk)'%k'

.k
= 23 {(my(x, 2 - mAgO,-,/\k)} Jael*
i<k
[JEDIA) = D mg(hg, Medlal + D mas (A, )lael?
ik Jik
> 2) {mg(Aj, M) +mas (X, /\k)} lajx|?,
<k

UeD|(A)? = (ng(/\ja/\k)lajklz) - (ZmA;‘()\ja’\k”%klz)

gk Jsk
and
(CorrioD)(4, B)

= Z mg(Aj, Ae)@kbje — Z mAg()\j, Ak)@ixbiik
gk gk

= 3 (s M) = mpg (g, 20 ) Tt + 3 (s Ag) = mpg (ks A5) ) Tass

i<k i<k
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We are now in a position to prove Theorem 3.2.
Proof of Theorem 3.2: At first we prove (3.3). Since

Tr(p[A, B]) = Z(/\j — Me)@jkbi;,

gk

ITr(plA, B))| <D 1A; = Nellaelbisl-
ik
Then by Lemma 3.1, we have

kT (plA, B])I*

2
< {Z VEL|\; — /\k”ajk”bkj|}
ik

2
1/2
< {E (mg(A,-,Ak)z—mAg()\j,M)z) |a,-k||bk,-|}

.k
< {Z (mg(/\j, M) = mar(Aju, /\k)) 'ajk|2} {Z (mg()\j, M) + s (A, /\k)) l%l"’}
sk gk

= I D|(A)IED|(B).
By the similar way, we also have
[ID|(B)|JED|(A) = keI Tr(plA, B])I.

Hence we have the desired inequality (3.2). m]

4 Examples

Example 4.1 When

o) =23, j)=at- 0 S k=L e-2

and A, B € M,(C), we give the following:
(z —1)?

() = g(z) —
AJ(=) = ole) — k-5

1
= E(l'a + .Tl_a) Z 0

9(z) + &f(z) — £f(x)
1

e HEe (@ DETY 1)~ da(l o)z - 1)} 2 0
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Then
|[I591(A4) = 1179 (40)
1 1 * 1 (¢4 — A% 1 a Ax 11—«
= §Tr[pA0AS] + §TT[[)A0A0] — ETT[[) Aopl AO] - 'é'TT‘[p Aopl Ag]
In particular for o =1/2,
1 * 1 * *
L721(4) = 19| (A0) = S Tr(pAoAf) + S TrlpATAo] = Trlp"* Ao > A7)

Then the corresponding variance is given by

VAA(4) = STrp(1Aal + |4317)].

Example 4.2 When

o) = (Y5 s —at- S

and A, B € M,(C), we assume k = f(0)/8 and £ = 3/2, then we have the following.

B -1° _ (1+vz\* 1, ., e _
Aj@) = @) - kEh < (BE) — e -y -

= S{O+ VP + @2 4202 20

(@) + A)(z) - £7(z)
= 2(z) - 5 - DE - 1) - /(@)
> Sol@) - 5la® = (@ - 1)

— %(xaﬂ +g(-0)/2)2 >

Example 4.3 When




and A, B € M,(C), we give the following: Let

r\ 1/r
F(x,r)=(1+x) .
2
Since F(z,r) is concave in T € [1/2,1] (see [15]),
3 1 1 1
Hy> = Z 2.
Then 3 ]
That is Y \ \
o (142 _(VE-1 59 vz +1 .
2 2 2
Then since y )
1+z°\7" [(Vz-1
so=(57) - (%)
we have

9(z) + Aj(z) > 2f(x).

Example 4.4 When

r<1)

OOICJ'I

oo = (55) "7, ¢ <

f(x)=<1—+2@>2, p=dO_ 1y

8 3
we give the following. Since F(z,r) is concave in 1 € [1/2 3/4] (see [15]),
5) 1

> —F(z, )+ F(a: )

F(z, 8) 2

Then

1
2F(z,r) > 2F(x, g) > F(z, )+ F(&, g)

(%2) {xzqﬁ+(vijl>2}

Y

_ %(véjl)_+;x+1
SO (5]
1
2

- (Y5 )2+ (7
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Thus we have
9(z) + &l (z) > 2/ ().
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