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Abstract
Mitani and Saito introduced a geometric constant yx by using the notion of
y-direct sum. For ¢ € [0,1], the constant +yx  is defined as a supremumn taken over
all elements of in the unit sphere. It is proved that for a Banach space X with a
predual Banach space X, vxy can be calculated as the supremum can be taken
over all extreme points of the unit ball.

1. Introduction

Let X be a Banach space with dim X > 2. By Sx and By, we denote the unit sphere
and the unit ball of X, respectively. The von Neumann-Jordan constant (shortly, NJ
constant) Cny(X) is defined as the smallest constant C for which

1 llz+yl + e —y|?
=< <C
¢ 2=l + llvl®)

holds for all z,y € X, not both zero (Clarkson [2]). This constant has been considered
in many papers. It is known that 1 < Cn;(X) < 2 for any Banach space X. From
the parallelogram law it follows immediately that X is a Hilbert space if and only if
Cns(X) = 1 ([3]). Recall that a Banach space X is uniformly non-square provided
Cns(X) < 2 ([10]), where X is said to be unifomly non-square if there exists 6 > 0 such
that ||z 4+ y|| < 2(1 — 6) holds whenever ||z — y|| > 2(1 — ¢), =,y € Sx.

By the definition, the NJ constant is in the following form;

+yl” + [l - ylI?
Cns(X) =su {”:r; cz,y € X, (x,y 0,0) ;,
W) =50\ el ) (&9)# (0,0

and it can be reformulated as

z +tyl|? + ||z — ty||?
0 {1 I

; 2(1+¢?)
In 2006, the function yx was introduced by Yang and Wang [13];

t 2 T —t 2

:m,yESX,OStSI}.
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It is easy to see that the NJ constant Cy;(X) coincide with sup{yx(t)/(1+t?) : 0 <t < 1}.
Thus, the function 7yx is useful to calculate the NJ constant Cn;(X) for some Banach
spaces. In fact, they computed Cy;(X) for X being Day-James spaces {-¢; and -6,
by using the function yx.

In the same paper [13], they noted that, for a finite dimensional Banach space the
supremum can be taken over all extreme points of the unit ball. We obtained a general-
ization of this.

2. Preliminaries

Recall that a norm || - || on R? is said to be absolute if ||(z,y)|| = |||l |y|)|| for all
(z,y) € R?, and normalized if ||(1,0)|| = [|(0,1)]| = 1. The £,-norms || - ||, (1 < p < o0)
are basic examples;
([l +lyi)/P i 1<p<oo,
I, y)llp =
max{|z|,|y|} if p=oc.

The family of all absolute normalized norms on R? is denoted by AN,. As in Bonsall
and Duncan [1], AN, is in a one-to-one correspondence with the family ¥, of all convex
functions ¥ on [0, 1] with max{1 —¢,t} < ¢(t) < 1for all 0 < t < 1. Indeed, for any
|- | € AN, we put (t) = ||(1 — ¢,¢)||. Then ¢ € ¥;3. Conversely, for all ¥ € ¥, let

] ).
|+ if (z, 0,0),
(el + 1% () i () #0,0)
0 it (z,5) = (0,0).

Then || - ||y € AN,, and 9(t) = ||(1 — ¢,)||y (cf. [8]). The functions corresponding to the
¢y-norms || - |, on R? are given by

{Q=tp+}/? if 1<p< oo,

Iz, 9)llv =

pp(t) = .
max{1 —t,t} if p=oo0.

In [11], the notion of 9/-direct sum of Banach spaces was introduced. Let X and Y be
Banach spaces, and let ¢ € ¥,. The 7-direct sum X @y Y of X and Y is defined as the
direct sum X &, Y equipped with the norm

Iz, »)lle = Nzl DIl ((z,9) € X ®Y).

This notion has been investigated by several authors.

In [5], Mitani and Saito introduced a geometrical constant x4 of a Banach space X,
by using the notion of 1-direct sum. For a Banach space X and ¢ € ¥3, the function
vx, on [0, 1] is defined by

x»(t) =sup{||(z + ty, z — ty)lly : z,y € Sx}, (t€[0,1]).

One can easily have vx (t) = vx 4, (t)?/2, where 1), € ¥, is the function which corresponds
to the £y-norm || - ||2.
Mitani and Saito showed that
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Proposition 2.1. ([5])
(1) For any Banach space X, ¥ € ¥y and t € [0, 1],
1—-1 1
2 (15) < el <2049 (5).

(2) For a Banach space X, ¥ € ¥, and t € [0,1],
Yx(t) =sup{||(z + ty,z — ty)lly : 2,y € Bx}.

(3) Let v € Wy with ¥ # . Then a Banach space X is uniformly non-square if and
only if vx4(t) < 2(1 +t)(1/2) for any (or some) t with 0 < ¢ < 1.

They obtained some other results on yx 4 (cf. [5]).

3. Results

An element =z € Sx is called an extreme point of Bx if y,z € Sx and z = (y + 2)/2
implies z = y = z. The set of all extreme points of Bx is denoted by ext(Bx).
In [13], Yang and Wang noted that

Proposition 3.1. Let X be a finite dimensional Banach space. Then

; 2 — 112
vx(t) = sup { =+ tyl _g Il = tyl 1T,y € ext(BX)} .

There exists some infinite-dimensional Banach spaces whose unit ball has no extreme
point. However, from the Banach-Alaoglu Theorem and Krein-Milman Theorem, we have
that for any Banach space, the unit ball of the dual space is the weakly* closed convex
hull of its set of extreme points.

For ¢ € Wy, the dual function %* of v is defined by

) (1—s)(1—1t)+ st
v (b) tzl[?)l,)l] w(t)

for s € [0,1] ([4]). Then we have ¢* € ¥, and that || -
easy to see that ¢¥** = 1.

Suppose that X is a Banach space with the predual Banach space X,. Then the unit
ball Bx is the weakly* closed convex hull of ext(Bx), and the direct sum X @, X is
isomorphic to the dual of X, @y« X.. Based on these facts, we obtain the following result.

»+ 1s the dual norm of || - ||y. It is

Theorem 3.2. [6] Let X be a Banach space with the predual Banach space X,.. Then
Yx(t) =sup {||(z + ty,z — ty)|ly : z,y € ext(Bx)}

for any v € ¥y and any t € [0, 1].
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In [9], Takahashi introduced the James and von Neumann-Jordan type constants of
Banach spaces. For p € [—00,00) and t > 0, the James type constant is defined as

tyllP — tyllP 1/p
sup{(”“ P + 1z yn) :z,yesx} £ pot —oo

Ixp(t) =
sup{min(||z + ty||, ||z — ty||) : z,y € Sx} if p=-00

(cf. [12, 14]). The von Neumann-Jordan type constant is defined as

2
C,,(X)=sup{i1)5_’f_(—2—:0§t§1}.

For p € [1,00) and t € [0,1], it is easy to see that Jx,(t) = 27/Pyxy, (t). Thus we
have the following results on the James and von Neumann-Jordan type constants.

Corollary 3.3. Let X be a Banach space with the predual Banach space.
(1) For any p € [1,00) and any t € [0, 1],

/ tull? — tyliP 1/p
Jx p(t) = sup { (“J; + ty ; l= = tyl ) (x,Y € ext(Bx)}

(2) For any p € [1,00),

_ (e + tyll + ll= — tylP)*P
C,,(X)—sup{ 2e(1 + 8 :xz,y €Eext(Bx),0<t<15.

In particular, on the modulus of convexity and the NJ constant, one can easily have

px(t) = Jxa(t) — 1= %)- -1

for any ¢ € [0, 1], and

Cni(X) = Ca(X) =sup{-g—({1’l/’i(—g—; 0<t< 1}.

Hence we obtain

Corollary 3.4. Let X be a Banach space with the predual Banach space. Then,

“ t P _t
px(t) = sup { =+ 2l ; l= — ] —-1:z,y€ ext(BX)}

for allt € [0,1], and

|z + ty||® + ||z — tyl|?
2(1+t2)

CNJ(X)=sup{ : z,y € ext(Bx), Ogtgl}.



4. Examples

For p, q with 1 < p, ¢ < 0o, the Day-James space £,-¢, is defined as the space R? with the

norm .
(@1, z)llpy i 2122 20,

(z1, 22)||pq = .
) @)l i zm, <O

Yang and Wang [13] calculated the von NJ constant of the Day-James spaces £.-¢; and
¢5-¢1 by using the notion of yx(t).

Remark that ¢,-¢; and ¢5-¢; have the predual spaces ¢;-f, and ¢5-£,, respectively
(cf. [7]). Thus, from Theorem 3.2, we obtain

Yx,0(t) = sup{||(z + ty, z — ty)lly : 7,y € ext(Bx)}
for X being l,.-¢, or £y-¢;.
Example 4.1. Let X be the Day-James space loy-£1, 1 € ¥y and t € [0,1]. Then
ext(Bx) = {£(1,1), (£1,0), (0,%£1)},

Txu(t) = (2 + t) max {TP (2_1-L_t> X (%—1—_;> } '

Example 4.2. Let X be the Day-James space ly-¢1, 1 € ¥y and t € [0,1]. Then

and hence

ext(Bx) = {(x1, 2 :w2+x2=1,x1x220 ,
1 2

and so
Vx5 (t)
_ —s 1+¢ ) V14122
A+t 1H)ma'x{lp(1+t+\/1+t2 Y 1+t+V1+2 ) [

We note that some geometric constants does not necessarily coincide with the supre-
mum taken over all extreme points of the unit ball. The constant

T+ yllllzr—vy
010 =sup {FEtlE o e x, @ 2 0.0

was introduced by Zbiganu [15]. As in the von Neumann-Jordan constant, this constant

is reformulated as

Iz + tyllllz — tyll
1+ ¢

CZ(X)=sup{ :x,yGSX,OStgl}.

Example 4.3. Let X be the Day-James space £o.-¢1. Then

z+tulllle — ¢
sup { Iz + lyﬂ-”:? yl 1x,y € ext(Bx), 0<t< 1} < Cz(X).
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From [9], the Zbdganu constant Cz(X) coincide with the von Neumann-Jordan type
constant Co(X). Hence, for any ¢ € U,, the Zbdganu constant Cz(X) can not be
expressed by the means of yx .

For any ¢ less than 1, can we obtain a Banach space X in which the von Neumann-
Jordan type constant C,(X) does not coincide with the supremum taken over all extreme
points of the unit ball By ?
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