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Estimating the Markov-switching almost ideal demand systems:
maximum likelihood or a Bayesian estimation?

Satoshi KABE ! and Yuichiro KANAZAWA 2

Division of Policy and Planning Sciences,
Faculty of Engineering, Information and Systems,
University of Tsukuba

This talk is organized as follows: In Part I,we first examine structural change points due
to the food safety concerns in the Japanese meat market via MS-AIDS model proposed in
Allais and Nichéle (2007). We then discuss problems associated with maximum likelihood
estimation of Allais and Nichéle (2007).

In Part II, we instead propose a Bayesian estimation of MS-AIDS model. We run two
sets of simulations to confirm its validity. We take the proposed method to the same
Japanese meat market data as above and examine the regime shifts caused by the food
safety concerns. Finally we compare these two results and discuss their implications.

Part I
MS-AIDS model via maximum likelihood

Applied Demand Analysis

Demand analysis is an applied area in economics where there is a very well developed
consumer theory, that implies several parameter restrictions. Various econometric models
(logarithmic demand function, linear expenditure system, Rotterdam model,
translog model, and almost ideal demand system (AIDS) ) have been developed
in which it is possible to test at least some of these restrictions. See Figure 1 for its
genealogy.

From an econometric point of view, these models are interesting in that they involve
complete system estimation methods, however some of them involve nonlinearity.

It is important to understand that even when we are only interested in the demand for
a single good, there are still two goods involved: the good in which we are interested and
“all other goods.” We generally model this by thinking of the choice problem as a choice
between the good in question and money to be spend on all other goods. The change
in the demand for that good caused by its price change, is the result of two effects: a
substitution effect, the result of a change in the relative prices of that good and all other
goods; and an income effect, the effect of a change in price resulting in a change in the
consumer’s purchasing power.

The compensated or Hicksian demand function tells us what consumption bundle
achieves a target level of utility and minimum total expenditure. The Slutsky equation



1. Logarithmic demand function

2. Linear expenditure system (Stone 1954)

3. Rotterdam model (Theil 1965)

Second-order

Taylor expansion
- 4. Translog model
5. Almost ideal demand system

(Chistensen et al. 1975)

(Deaton and Muellbauer 1980)

6. MAIDS (1992), QUAIDS (1997), TVC-AIDS (2002)

GS-AIDS (2006,2010), and MS-AIDS (2007)

Figure 1: Demand System Model Genealogy
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shows how the compensated or Hicksian demand function changes when price of i-th prod-
uct changes. This changes is equal to the change in demand holding expenditure fixed
plus the change in demand when income changes times how much income has to change
to keep utility constant. In other words, the Slutsky equation decomposes the demand
change induced by a price change into two separate effects: the substitution effect and the
income effect.

Almost Ideal Demand System (AIDS) model

The Almost Ideal Demand System or AIDS was developed by Deaton and Muellbauer
(1980). It has a flexible functional form that has the added advantage that it can be
interpreted in terms of economic models of consumer behavior when estimated either with
aggregated (macroeconomic) or household survey data. This model is generally considered
to be the best functional form to estimate static systems of demand. No fundamental
advances have been made since 1980 on functional forms for demand systems, although
some refinements have been made. One such refinement is made by Allais and Nichéle

(2007).

Markov-Switching AIDS (MS-AIDS) model

Let us denote N be the number of products, ¢; be a quantity of i-th product demanded
by a representative consumer, p; be a price of i-th product, my be an expenditure (or
budget) of a representative consumer defined as

N
}:Pi%‘ = M.
i=1

Also suppose w; is a budget share of i-th product defined as

- _ Pidi
) mo -

Let s; be an unobserved random variable that takes an integer value in 1,2,..., K to
express “state” or “regime” at time t. The MS-AIDS model assumes that the budget
share has the following form

N
_ m
Wig = g, + Z Yijs; 108 Pjt + Bis, 10g (?zt) (1)

j=1

where P, is a price index defined by

N N N
1
log P, = o, + Y ks, J0g it + 5 3> Vkja log prelog pje (2)
k=1 k=1 j=1
and g s,, Ois,, Vij,se a0d Bis, (4,5 =1,2,..., N) are regime-dependent.

The f; s, parameters will be negative for necessities and positive for luzury goods.



The 7,5, Parameters measure the change in i-th budget share following a proportional
change to p;; where real income as measured by mg;/ P, is held constant.

The parameters in (1) and (2) will automatically satisfy “adding up”below, but both
“homogeneity”’and “symmetry”restrictions can be tested.

N N N
[Adding up] Zai,st =1, Z'Yij,st =0, Zﬁi,st =0, (3a)
i=1 i=1 i=1
N
[Homogeneity] Z7ij,st =0, (3b)
j=1
[Symmetry] Yijse = Viiyse- (3¢)

“Adding up” guarantees that the total expenditure is equal to the sum of expenditures
on the category of products under consideration. “Homogeneity” guarantees that if
prices of products increase to 7pis, ..., Tpn: for a scalar 7 > 0, representative consumer
has to increase his expenditure from mg; to 7mg; to keep his utility level. “Symme-
try” guarantees that the substitution effect in the Slutsky equation is symmetric, i.e.,
expenditure function C(p, ug) satisfies azac; 53;;3) — 32(;5:;;:3).

Following the previous studies (e.g., Ishida et al. 2010, Allais and Nichéle 2007), we
include trend t, seasonal effect d1; and do; and habit effect W;;—1 into o 4,:

N

Qi o = Olig, + Vs gt + 01,d1 ¢+ O2da s + Z GijWj -1 (4)

J=1

where d;; and dy; are dummy variables, for instance, for meat market,

1 iftis August 1 if ¢t is December
dig = dot =

0 otherwise 0 otherwise

and habit effect is defined as a linear function of one-lagged budget shares.

To satisfy "adding up” restriction on «; s, we include the one-lagged budget shares of
all products in the habit effect (Rickertsen 1996).

In order to satisfy the adding-up condition, we parameterize Zfil Qs = 1, Zi\i 1Vig, =
SN 6= 6, =0and SN #i; = 0. We also impose the restriction Z;N:l ¢i; =0
to avoid identification problem.

The Markov switching mechanism switches regimes by the latent (unobserved) Marko-
vian random variables. We assume that transitions between regimes are governed by a
K-state Markov chain with transition probabilities:

Pr(st=j|st#1=i)———7rij, ’l:,j=].,2,...,K, (5)
and the transition matrix is defined as
T 721 ... TK1
T12 22 . TK2
n=| . . (6)

Tk Torg ... TKK
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Figure 2: Schematic Diagram of Transition when K =3

where my + e+ +mxg =1,1=1,2,..., K. See Figure 2 for the schematic diagram
of transition when K = 3.

Likelihood function of MS-AIDS Model

Let us denote w; as (N — 1) x 1 vector of budget shares at time ¢, Wy, ¢ = 1,2,..., N —1,
x; as vector of explanatory variables at time t, 8y as vector of regime-independent pa-
rameters, @, as vector of regime-dependent parameters, €2, as information set containing
all observations obtained through time t, Q; = {w;, w;_1,..., w1, Ts, Ti—1,..., &1}, St
as vector of lags of w; and observable explanatory variables obtained through time ¢,
Z, = {w_1,wi_o,..., w1, T4, Ty_1,...,&1}, T as vector of transition probabilities m;;,
i=12....,K,57=1,2,...,K — 1, © as a set of parameters such as ©® = {6, w} where
6= ({65 o (T}, ).

Suppose that distribution of w, conditional on ;, s; and 8 is defined as p(w;|x:, s:; 0),
the conditional log-likelihood function with respect to parameter set ® under all the
observations (wy, x:), t =1,2,...,T is

(®) = Z log p(w¢| Z+; ©) (7)

t=1



where
K

plw| Z4;0) = Zp('wtkvt, st;0) Pr(sy|2%_1; 0, 7). (8)
st=1
Allais and Nichéle (2007) differentiate the above with respect to @ and transition proba-
bilities m;; to obtain the score function.
According to Allais and Nichéle (2007), the score function with respect to @ is

0log p(wy| Z4; ©) _ = 0log p(ws|x¢, s¢; 0) .
20 = Z 50 Pr(st|ﬂt, @)

8t=1

PY Y dloer 0rl27 570 (r(s, 1025 0) — Pr(sr 102011 €)) (9

=1 8,=1

fort=2,3,...,T and when ¢t =1,

dlog p(w:|Z1;0) < dlogp(ws |z, s1;6) ,
=5 = 2;1 =0 Pr(s;/€21; ©). (10)

The score function with respect to a transition probability 7;; is

310gp(wt|zt; @)

87’(@'

= 7@1 Pr(s; = j, st-1 = 3|Q%; ©) — 1 Pr(s; = K, 84-1 = i|Q%; ©)

t-1
+ 77@31 Z = J, 8r—1 = 1|8%; @) - Pr(s, =7J,8-1= ilﬂt—l; 9)]

t—1
- 7T1K [Pr( =K,5,_; = ilﬂt; @) - Pr(sT =K,8,_1= ilﬂt—l; @)]
=2
X dlog Pr(s;;m)
1
+ 2_:1 e [Pr(s1|€; ©) — Pr(s1|%-1; O)] (11)

fori=1,2,...,.K,57=1,2,..., K—1andt=2,3,...,T, and when t = 1,

dlogp(wyi|21;0) <~ dlog Pr(sy; ) _ .
87T1;j - ; aﬂ_ij PI‘(Sllﬂl, @) (12)

Hamilton filter

The Hamilton filter is one of the filtering algorithms to estimate the probability of discrete
latent variables Pr(s; = j|€%; ©) based on the data obtained through time ¢, £2; and set
of parameters ©. The filtering algorithm obtains the estimates of unobserved variables
from iterating the two steps (“update” and “prediction” ).

For instance, conditional probabilities of s; = 1 (¢t = 1,2,...,T) for two regimes system
or K = 2 are iteratively estimated by the following two steps:
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[Update Step |

. . _ PI'(St = 1[Qt_1; @)p('wt|wt, St = 1,0)
PI‘(St = 1|Qt>@) - Zj PI‘(St — jlﬂt—ﬁ @)p('wt|wt,8t — 3,0)

[Prediction Step ]
Pr(sy1 = 1/€2;©) = Pr(s; = 1|Q4; ©)myy + Pr(s; = 2|Q; ©) ;.

Let Pr(s; = j|€%_1;©) be a conditional probability of being at regime j based on the
data obtained through time ¢t — 1 given the parameter set © = {@,7}. The conditional
joint density of w; and s; is given as

g(wy, s = j|Q_1, T; ©) = Pr(s; = j|Q-1; O)p(wy|:, 5: = 5; 6) (13)

for j =1,2,...,K. The density of w; conditional on the past observed data set £2;_; is

K
f('wt|fl>t, Q_1; @) = ZPT(St = j|Qt—1; G)P(’wt|-’17t, 8t = J; 0)~ (14)

j=1
From (13) and (14), we have by employing Bayes’ theorem

g(wt, St = j]ﬂt-l, T, 9)

=P =1 Q_ .
f('wtl-'l?t,ﬂt_l;e) r(st -7|wt’mt, t 1,@)

= Pr(s; = j|€%; ©). (15)

Collecting the conditional probabilities Pr(s; = j|€2:-1;©), j=1,2,...,K,ina K x 1
vector &, ; below and the conditional densities p(wi|xs, st = 5;0), 5 =1,2,...,K,in a
K x 1 vector 7, below, (13) can be rewritten in a matrix form:

g(wy, sy = 1|11, x4; O) Pr(s; = 1|€;-1;0) p(wi|xe, sy = 1;0)
g(wta St = QIQt—l,wt; @) . PI’(St = zlﬂt—l; 9) o P(wtlmt, 8t = 2; 9)
g(wi, st = K|, T4 ©) Pr(s; = K|Q:-1;0) p(wilxs, s¢ = K; 6)

= €t|t—1 O}/ M (16)

and (14) can be rewritten as
fwexs, Q415 ©) = 1) - (ét|t—1 © "7t) (17)

where 1g is a K x 1 vector whose elements are 1 and the symbol ® represents element-
by-element multiplication. ’
Using (16) and (17), (15) can be expressed in a matrix form as follows

étlt—l O}/2

1 - (étjt—l © ’7t> 19

ét\t =
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where )
Q(Wg,st=1|%_1,mé;@)
Pr(s; = 1|Q2;; © F(We|T:,3 8, 1;O)
. Prgsz = 2}9:; @g g(We3=28Y:i1,2:0)

tt =

- f(wtlwt,ﬁt—l;@)

Pr(s; = K|Q; ©) g(wt,st:K|ﬂt_1,mt;@)
f(wtlwt»ﬂt—ﬁe)

Given an initial value € 1o and parameter set ©, the optimal inference and forecasts of
ét|t (t=1,2,...,T) can be found by iterating on the following pair of equations

[Update Step ] éﬂt = —,—gt‘ﬂ—-
1K'(£t|t—1®nt)
[Prediction Step ] ét+1|t =1II. étlt'

Wen we consider the number of regimes K = 2, conditional probabilities of s; = 1
(t=1,2,...,T) are estimated by iterating the following two steps:

[Update Step ]

PI'(St = lth—l; @)p(wt[azt, St = 1, 0)
Pr(et ;@) Z]- Pr(s; = j|Q:-1; O)p(we|x:, st = j; 6)

[Prediction Step ]

Pr(sy = 1{Q24;©) = Pr(s; = 1|192;; ©)m11 + Pr(s; = 2|Qy; O)my;.

Minor improvement over Allais and Nichéle (2007)

We make the following minor improvements over Allais and Nichéle (2007) when we
estimate MS-AIDS:

1) If transition probability m;; (0 < m; < 1, ZK=1 m;; = 1) has a boundary solution such

as m;; = 0 or 1, asymptotic normality of m;; does not hold. However, Allais and
Nichéle (2007) estimated ;; without any constraints;

2) Allais and Nichéle (2007) estimated parameters afj,s , in variance-covariance matrix X,
with other parameters in MS-AIDS model. However, the maximum log-likelihood
becomes infinite when |3,,| goes to zero (i.e., singularity problem) and a numerical
maximization algorithm breaks down.

U

1)’ We reparameterize the transition probabilities mi; a8 Aij = log (mi;/mik) (—o0 < Aij <
00), a natural sufficient statistic. Then we estimate the parameter Aij to calculate
the transition probability m;;.
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2)" We calculate a maximum likelihood estimator ﬁst after estimating all parameters
other than X,,.

More concretely, as for 1)’, we reparameterize the transition probability 7;; as follows
)\,-jzlog(mj/'lrm), i=1,2,...,K, j=1,2,...,K—1

and estimate the parameter \;; instead of the transition probability ;. Since m;; + mi2 +
- +mg =1 and m;; = Tk exp(Ni;), we have

Tir €xp(Xi1) + i exp(Ai2) + - - - + Tk exp(hig—1) + Tix = 1.
The transition probabilities m;x and 7;; are obtained as

1
- 1 + exp()\il) + GXp(Aig) + -+ exp()\,-K_l)

TiK
and

Tij = TGK exp()\ij)
_ exp(Ai;)
1+ exp()\ﬂ) + exp()\iz) +--+ exp()\iK_l) '

To calculate the score function with respect to the parameter A;;, we apply the chain
rule as follows

dlog p(w;| Z; ©) — Olog p(w,| Z4;©) % omy;

8)\1'3' on ij ax\ij
and the partial derivative of m;; with respect to A;; is obtained from
Oij 0
L= log (7 /mix)

871',5_7' 87"1'_7‘
__ Olog(m;) B Olog(m;x)

371',,— a’ﬂ'ij
Olog(m;) Olog(mik) Omik
= — X
37%' Omix 87Tij
1 1
= — 4 R
Tij  TiK

where:=1,2,...,K, j=12,..., K—-1.
As for 2), the maximum likelihood estimator of variance-covariance matrix 3, is
derived as follows: From (7) and (8), a first derivative of log-likelihood function with



respect to inverse variance-covariance matrix 2;1 of regime s; = j is

84(©)
9%, L,
1 Y, p(wi|xs, 51;0) Pr(s:|—1;0,7)
= - 26¢ p(we|@y, s¢;0) Pr(s:|Q—1; 0, 7) 62;_]
= Z 1 Op(w:|es, 8t = 7;0) Pr(ss = j|%—_1;0,w)
— 2, P(wi|®e, 5¢;0) Pr(se[—1;0, ) 32;*]
= Z p(wtlwty St = .7, 0) PI(St = j}nt—-l; 0,7") alog [p(wt]mt,st = ‘77 0) Pr(St = jlnt—l; 07‘"_)]
205, P(wi|xs, 545 0) Pr(s: |16, ) azs_t »
! — 5.
= 3" Pr(s, = j|; @) L08Rl 00 = 5i6)
t 62“_]

Assuming that
_N=-1 _1 1 _
plwe|xe, 5¢;0) = (2m) "2 |X,,|7 2 exp <~—e£Estlst) ,

2
we have
Olog p(w:|z:,s: =5;0) O [ N-1 1 101,
— — - log(27) + ——logIES |7 — se X5, et
82“_3 5!)33t = 2 ¢ 2 t
1610g|23z~1| 13(et2;_] )
T2 ezl 2 a3l
lalogm_”_][ 10tr {3, jecet}
IToEL, 2 om,
1
= ‘2'28t—] 25t5t
and .
o4(® . 1 1
62(_. ) ZPI‘(S: =Jlﬂt,®) [—2-Est=]- — Estsé] = 0.
st=j =1

Therefore we have
Yo Pr(s: = 5|9 ©)&:

Soims =
Zt:l PI'(St - ]|Qti e)

Estimation of parameters
The parameters of MS-AIDS model are estimated by iterating the following steps:
Step 0. Set the initial values of parameters and set g = 0.

Step 1. Given the parameters at g-th iteration, calculate the conditional probabilities
Pr(s; = j|€2; ©) from the Hamilton Filter.

Step 2. Calculate the score functions with respect to parameters.

Step 2a. Choose the parameter set @™V such that 4(©@U+Y) > ¢(©Y) by using the
BHHH algorithm (Berndt, Hall, Hall, and Hausman 1974).
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Step 2b. Find the MLE © (= ©U*) by using the random optimization method.
Step 3. Find the maximum likelihood estimates of parameters and set g = g + 1.

Step 4. Repeat Steps 1 - 3 until the log-likelihood does not change.

Food safety concerns in the Japanese meat market

In Japanese meat market, there have been serious food safety issues concerning the
Bovine Spongiform Encephalopathy (BSE) and Bird flu. On September 2001,
the Japanese government announced the first BSE case within the country. The con-
sumption of beef infected by BSE is suspected to cause variant Creutzfeldt Jacob Disease
(vCJID). On January 2004, the first infected case of bird with H5N1 virus in Japan was
confirmed in Yamaguchi prefecture. People infected with the H5N1 virus have died in
Southeast Asia (e.g., Vietnam, Indonesia, and Thailand etc.

Data

The Ministry of Internal Affairs and Communications in Japan provides us with the house-
hold expenditure survey data called the Family Income and Expenditure Survey. It
includes the monthly time-series average expenditure and price of meat and fish products
along with others. The number of products N = 4 ( beef, pork, chicken, fish ). The
number of observations T' = 108 months (Jan 1998 — Dec 2006).

Results
We estimate the following models and select a preferred model.
Model 1 a;,, = @i,
Model 2 «;4, = G5, + 01:d1,s + 02, doy
Model 3 o;,, = @5, + 01,d1s + 025d2: + Zj\r:l PijWjt—1
Model 4 a; 5, = @6, + Vis,t + 01,d1¢ + F25dat + Z;Vﬂ GijWjt—1
We calculate the average budget share of i-th product at each regime s; as

_ IZtT=1 Pr(s|Q; ©) @it
T Y Pr(si]€2;©)

and Table 2 shows the results of average budget shares.
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Figure 3: Plot of budget share data
Table 1: Model selection
Model Log-likelihood # of parameters AIC LR statics d.f.  x&o5(d.f)
1 1160.12 38 -2244.24 211.95 21 32.67
2 1188.27 44 -2288.55 155.64 15 25.00
3 1243.39 53 -2380.77 4541 13 12.59
4 1266.09 59 -2414.19 —_— 6 —_—

1) AIC : -2 log-likelihood + 2 ( # of parameters )

2) LR statics : 2 ( log-likelihood(null model) - log-likelihood(alternative model) )

3) d.f. : degree of freedom
4) The number of regimes K = 2

Table 2: Estimated average budget share
Regime 1 Regime 2

Beef 0.2155 0.1797
Pork 0.1781 0.2049
Chicken 0.0862 0.0955

Fish 0.5202 0.5199
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Figure 4: Probability of being regime 2, Pr(s; = 2|€2;, ©) and budget share data of beef and pork under
ML estimation.

Table 3: Estimated Parameters of MS-AIDS model

Regime 1 Regime 2

Estimate Sd. Error t-value Estimate Sd. Error t-value
a 0.4359 0.1507 2.8920 * * * an 0.2443 0.3114 0.7845
as 0.4840 0.0754 6.4184  * x* Qs 0.5429 0.1421 3.8199 xx %
as 0.2873 0.0944 3.0430 * *x as 0.2299 0.1074 2.1408  *x
Y11 0.0068 0.0657 0.1035 Y11 0.0552 0.0802 0.6879
Y2 | -0.0174 0.0485 -0.3596 Y2 | -0.0197 0.0347 -0.5677
Y13 | -0.0446 0.0384 -1.1592 v13 | -0.0372 0.0277 -1.3400
Ya2 | 0.0523 0.0364 1.4362 Yo2 0.0378 0.0301 1.2575
vo3 | -0.0373 0.0348 -1.0715 Y23 0.0065 0.0264 0.2467
v33 | 0.1042 0.0404 2.5807  *x Y33 0.0639 0.0297 2.1539  *x
b1 -0.0672 0.0325 -2.0659  *x B1 -0.0404 0.0675 -0.5980
B2 -0.0687 0.0167 -4,1228 k% % B2 -0.0761 0.0303 -2.5097  **
B3 | -0.0126 0.0180 -0.6970 B3 -0.0043 0.0231 -0.1875

1) Significant level : *x 5%, * * x 1%



Table 4: Estimated Parameters in Intercept term

Trend (Regime 1) Trend (Regime 2)
Estimate Sd. Error t-value Estimate Sd. Error t-value
v, (beef) -0.00039  0.00016 -2.4463 xx 1 (beef) 0.00022 0.00032 0.6876
va(pork) -0.00001 0.00009 -0.1515 va(pork) 0.00017 0.00016 1.0501
v (chicken) -0.00006 0.00006  -1.1065 v3(chicken) 0.00015 0.00011 1.4211
Seasonal (Aug) Seasonal (Dec)
Estimate Sd. Error t-value Estimate Sd. Error t-value
011 (beef) 0.0115 0.0055 2.0894  *x 621 (beef) 0.0186 0.0196 0.9480
d12(pork) -0.0048 0.0028 -1.6942 d22(pork) -0.0254 0.0120 -2.1287 %
&13(chicken) -0.0049 0.0029 -1.6673 d23(chicken) 0.0079 0.0124 0.6329
Transition
Habit effect probability
Estimate Sd. Error t-value Estimate Sd. Error t-value
@11 (beef) 0.1887 0.0709 2.6619  *x A1l 4.3297 0.1427 30.3483  x % x
¢22(pork) 0.0440 0.0831 0.5294 A2l -5.1701 1.1361 -4.5509  # x *
¢33(chicken) 0.3939 0.0747 5.2704  x

1) Significant level : % 5%, * * * 1%

Using the estimated parameters in Tables 3 and 4, we can calculate the Marshallian
price elasticity 7;; ;, and expenditure elasticity nf,, at regime s, as

N
Yigor _ By .
7]5.’& = —K;j + _1] s -z 8¢ Qs + Z’ij,st logpk,st , (19)
Wy En wi,st k=1
B',s
Mo = 222 41 (20)

where ki = 1 for 2 = j and «;; = 0 for 7 # j, and Py, is an average price at regime s;.

Conclusion of Part 1

We capture one abrupt structural change point coinciding with timing of the first reported
case of BSE in Japan, but not of bird flu (see Figure 4). We find that average budget
share of beef declines after the first BSE case, while average budget share of pork increases
significantly (see Table 2). We find that elasticities changed for beef and pork after the
first BSE case: Oun-price elasticities of beef and pork are significant in pre-BSE period,
however own-price elasticity of beef in post-BSE period is not significant (see Table 5);
This shift in regime 2 is likely to be the reflection of fact that safety of beef became very
important for some Japanese consumers, but for other Japanese consumers who had kept
consuming beef, price of beef did not matter very much.

Discussion of Part I

In the Family Income and Ezpenditure Survey, 8,076 two-or-more-person households and
745 one-person households from 168 cities, towns and villages are selected based on the
three-stage—the municipality (i.e. city, town and village), the survey unit area and the
household—stratified sampling method. The sampling units at three stages are: primarily
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Table 5: Price elasticities and Expenditure elasticities

88

Regime 1 Price (nf; Ezpenditure (nF)
Beef Pork Chicken Fish
Beef -0.815  xx 0.062 -0.164 0.229 0.688 *x x *
(-2.311) (0.227) (-0.749) (0.848) (3.801)
Pork 0.091 -0.529 sk *x % -0.156 -0.020 0.615 % %%
(0.384) (-3.143) (-0.981) (-0.146) (7.563)
Chicken -0.445 -0.366 0.228 -0.271 0.854 * **
(-1.132) (-1.106) (0.507) (-1.539) (4.529)
Fish -0.034 -0.126 = -0.082  *xx -1.043  x*x % 1.285 %%
(-0.367) (-1.947) (-2.317) (-11.017) (18.381)
Regime 2 Price (nf) Ezxpenditure (nF)
Beef Pork Chicken Fish
Beef -0.618 0.006 -0.181 0.016 0.776  xx
(-1.582) (0.025) (-1.078) (0.059) (2.064)
Pork 0.032 -0.624 x x* 0.074 -0.110 0.629  * % *
(0.181) (-3.429) (0.573) (-0.893) (4.241)
Chicken -0.373 0.091 -0.324 -0.347 0.953 *x x*
(-1.365) (0.309) (-1.012) (-1.589) (3.930)
Fish -0.076 -0.167  x % * -0.090  *x -0.899  x *x x 1.232  **x*
(-1.185) (-3.118) (-2.350) (-16.677) (16.388)

1) t-value in parentheses
2) Significant level : * 10%, ** 5%, * * x 1%



the municipality (i.e. city, town and village), secondly the survey unit area and thirdly
the household. It is a good but exzpensive survey available only monthly. Demand analysis
of this sort cannot expect to be able to use abundant data. We believe meaningful analysis
should not go too far back in time when the lifestyle was fundamentally different. We
hardly believe the regime transition depicted in Figure 4: It was so abrupt with no tendency
to revert to the original regime. Should we try something different?

Part 11
Bayesian estimation of MS-AIDS model

Numerical optimization methods (e.g., Newton-Raphson method) have to depend on sen-
sible selection of initial values of parameters to avoid singularity points on the parameter
space and calculation of score functions is computationally intensive in maximum likeli-
hood estimation of Allais and Nichéle (2007) and Kabe and Kanazawa (2012) as we saw
in Part L.

In Bayesian estimation, we can incorporate prior information on variance-covariance
matrices to avoid singularity problem (Hamilton 1991) and we can use of conjugate priors
and standard algorithm such as Gibbs sampler to generate posterior (parameter) distribu-
tions in the standard formula (e.g., multivariate normal and inverse Wishart distributions).

Framework

Given the value of price index F; in (2), the MS-AIDS model in (1) can be first rewritten
by separating the parts that depend on regimes and by including the error term &;; as

N-1
_ _ Dj Mo
Wit = Qi 5, + J; Yij,s: 108 (ﬁ\;) + Bis; log (“}f) + Vis,t

N-1
+015d1 + Ogiday + Z G5 (Wjp—1 — ONg—1) + €t (21)

j=1
and thus can further be rewritten as the matrix form:
wy = X0, + X6, + &, (22)

where g, ~ N (0, X,,) and X,, is also regime-dependent parameter such that ¥,, = ¥; if
time ¢ belongs to regime j. The size of the matrices X §1) and X §°) are (N—1) x [3(N —
)+ NN —-1)/2]and (N — 1) x (N —1)(N +1).
Let us consider the case that the number of products N is four. Then 3 x 15 matrix
X §1> is defined as
xM=[1, P, M, T,]
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where I3 is a 3 x 3 identity matrix,

log(“52) 0 t 0
Mt = log(ﬂPgL) s Tt = t ’
0 log("8 0 t
and it P2t pat
log(p“ ) log( Lo ) log(Ex) 0 0 0
P, = 0 log(%t) 0 log(22) log(2¢) 0
0 0 log(B) 0  log(£2) log(t)

The 3 x 15 matrix X §°) is defined as
x0 = [Dy; Dy Wi Wy Wy

where
du. 0 ds. 0
Dy, = dig y Doy = da ;
0 dit 0 da
and
Wj—1 — Wat—1 0
W= Wjg—1 — Wat-1
0 Wjg—1 — Wae—1

The 15 element parameter vector 8, is defined as

dSt
— | Vs
6. = |
8t
Vg,
— _— — — — 7 —_— ! pr—
where ast = [ al,st a2,st aS,sg ] ) 73t = [ '711,.9t 712,st 713,.% '722,3; 723,.% '733,.% ] ) ﬁst = [,Bl,st

B2, Ba,s, | and v, = | Vise V2,8 V3o |-

The 15 element parameter vector @y is defined as

where 61 = [ 511 512 513 ]’, 62 = [ (521 622 623 ]/ and ¢j = [ ¢1j (;52_7- ¢3j],-
Recall (22):
w; = X§1>03t + X§0)00 +e:, e~N(0X,,)

and we can rewrite (22) as

w; = XtO* + &q. (23)



The matrix X in (23) is defined as
Xo=[1{se=1}XP s, =2XP - 1s=K}XP X0

and parameter vector 8* is defined as

0*

n

We assume that likelihood function £(-|-) can be decomposed as
5(9, 7f|yT, Sr, XT) = £(7|8T)£(3[yT,ST, XT) (24)
where

OE{00,01a02,"')61{a21>22,'"72K}a
WE{TF”Z,‘]=].,2,,K}

Given a prior distribution of the form p(8, 7) = p(0)p(7), we obtain the posterior distri-
butions with respect to @ and to 7 as

p(e, nyT, Sr, XT) X £(6> W,yT, Sr, XT)P(O, 7")
= L(m|Sr)p(w) x L(8|Yr, ST, Xr)p(6)
x p(m|Sr) x p(8|Yr, St, Xr). (25)

Gibbs sampler algorithm
Gibbs sampler with conjugate priors except for Step 1 in each stage is set up as follows:

Step 0. Set the initial values of parameters and g = 0.

Step 1. Generate {si" "}, from p({s:}7; | {65 }o, {57 Mo, {miP }50)-
Step 2. Generate {7r§f+1) i1 from p({m;;} 5, | {sEOTNT ).

Step 3. Generate {9§g+1)}§{=0 from p({60;}5, | {559“)}3;1, {Egg)}ﬁil).

Step 4. Generate {2§g+1)}§<=1 from p({Z;}5, | (st {0§9+1)}§{=0).

Step 5. Repeat Steps 1 - 4 with g =g + 1.
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Now we are in a position to describe in more detail how we carry out each of these
steps.

Step 1 : Sampling of latent variables {s;}7_,

Given the data obtained through time ¢, Q, = {J}, A;} and set of parameters © =
{6, 7}, we carry out the following steps:

Step 1-0 : sr ~ Pr(s7|Q7, ©)
Step 1-1 : Fort=T-1,T-2,...,1,
PI‘(St+1|St) Pr(st|ﬂt, @)

s¢ ~ Pr(sy|ss41, 2, ©) = : (26)
t R K, Pr(siy1]s:) Pr(s,/82, ©)

Note that a) Pr(s;;1]s:) is a transition probability in (5), b) Pr(s;|€2, ®) can be derived
from the Hamilton filter (Hamilton 1989), and c¢) this sampling algorithm is called
multi-move sampler (Carter and Kohn 1994, Chib 1996).

Step 2 : Sampling of transition probabilities 7;;

Given the latent variables sy, s, . . ., s7, posterior distribution of 7; = |7y 7 - -+ k)
is derived from

K
p(milSr) oc [ [ a7 x (wisn ™t -z
j=1

— 7.{.?111-%%1 7.[.:1212+u12 .. ﬂ.:llz{x-l-uzx . (27)
where n;; is the total number of transitions from 3 to j, 7; = [m; ™2 - -+ ™k, ny; is the
total number of transitions from ¢ to j, the prior is m; ~ Dir(u;, i, ..., Uik ), and the
posterior is wilST ~ Dir(nﬂ ~+ Uz1, N2 + Uso, ..., Ny + uiK).

Step 3 : Sampling of parameters 0y, 0, j = 1,2,..., K

Posterior distribution of 8" conditional on {X;}/, is derived from
p(e*lyTa ST» XT’ {2]}5(:_—1)

<11 on) 2 o { - - X0 - x|

< [V exp {—%(e* —uyVer - u)}
o exp {(0* —b)B~' (6" — b)}.

where the prior is 8" ~ N (p, V'), the posterior is 8*|Vr, Sz, Xr, {Z;}£,; ~ N (b, B) with
b=B (L, XS w.+ V7u)and B = L XX, + VL

Step 4 : Sampling of parameters X;, j =1,2,..., K



Posterior distribution of X; conditional on 0" is derived from

* _ N1 _1 1 _
p(zjlyT’STy/YTae ) & H [(2%) N2 ’23| éexp <-§€;2-j lgt)]

te{t:sg=5}

Vit (N-1)+1 1 _
X |3,] = exp <—§tr {Zj 1Aj})

T
YA =D14ny 1 _ .
e |2]| 3 exp (—51’,1' {Ej 1 (E E«'tE;l{St = .7} + AJ) })
t=1

where n; is the total number of time ¢ belonging to regime j, the prior is 3; ~ IW (v;, A;),
the posterior is X;|Vr, St, X1, 8* ~ IW (I/j + n;, Z;{:l eie}1{s; = j} + Aj).

Simulation

We conduct two sets of simulations. They share the following common setting: the
number of iterations : 80,000 (Burn-in period : 40,000); the number of products N = 4,
the number of regimes K = 2; the price data of four products pi;, pat, P3:, and pys
generate from the uniform py; ~ U(240,380), pa ~ U(130,150), ps: ~ U(90,100), and
pat ~ U(120, 200), the total expenditure (or budget) on four products, me; generates from
U(7500, 16000), and the prior distributions are set up as

0* ~ N(0,10%I,), X; ~IW(10,107%1;),
m1 ~ Beta(5,2), Tae ~ Beta(5,2).

To estimate the parameters for the different regimes, we find that we need a sufficient
number of data in each regime to avoid identification problem within the Gibbs sampler.
In the following two simulation studies, we find out that when the number of observation
fell below 240 out of 800 and 270 out of 900 (30%) data points in each regime respectively,
the generated samples from the Gibbs sampling algorithm did not converge in terms of
the Geweke’s convergence diagnostic at 5% significance level. On the other hand, when
the number of observations exceeds 320 out of 800 and 360 out of 900 data points (40%)
respectively, all parameters converged successfully. Hence 40% threshold restriction is
imposed on the latent variables s;,t = 1,2,...,T: If generated sample of s; satisfied this
restriction, we updated the latent variables within the Gibbs sampler; otherwise we did
not update them.

Simulation Result: Case 1

Regime shift occurs once during the period from regime one to two

The number of observations is 7' = 800. We specify unobserved latent variables S =
{s1,82,...,57} such that s, =1 if 1 <¢ < 400, and s; = 2 if 401 < ¢ < 800. See Figure 5

below.
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Figure 5: The left panel shows probability of s; = 1, while the right panel shows the probability of s; = 2
(Case 1)

Simulation Result: Case 2

Regime switches from one to two, and reverts to regime one again

The number of observations T' = 900. We specify unobserved latent variables St =
{s1,82,...,87} such that s, = 1if 1 <t <200, s, = 2 if 201 < ¢ < 600, and s, = 1 if
601 <t <900. See Figure 6.

Empirical study on Japanese meat market: Estimation Framework

We use the data in Part I with the proposed Bayesian estimation method. The number
of iterations is 30,000 with Burn-in period of 5,000, the number of regimes is K = 2, and
the following prior distributions

0* ~ N(0,10*15), =; ~IW(10,107%I,),
m1 ~ Beta(5,2), w2 ~ Beta(5,2).
We set up four candidate models listed below:
Model 1 «;,, = & s,;
Model 2 a5, = G4, + 01,d1,: + 02iday;
Model 3 ajs, = 0, + 01,:d1: + 02:da s + Z;il GijWit—1;

Model 4 Qs = &i,st + Vi,stt + (51,1' dl,t + (52,,' d2,t + Zjil d),-ju‘)j,t_l.
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Figure 6: The left panel shows probability of s; = 1, while the right panel shows the probability of s; = 2
(Case 2)

Empirical study on Japanese meat market: Results

Table 6: Log-Marginal Likelihood and Log-Bayes Factor

Model 1 Model 2 Model 8  Model 4
Model 1 1098.416 — — —
Model 2 18.927 1117.343 — —
Model 3 62.157 43.230 1160.573 —
Model 4 63.452 44.525 1.295 1161.868

Table 6 shows the logarithmic marginal likelihood of model ¢, log-ML; (i = 1,2,3,4)
as diagonal elements and logarithmic Bayes factors, log-BF;; for model ¢ against model j
as off-diagonal elements. Logarithmic Bayes factor for model 4 against model 3, log-BF 43
(= 1.295) indicates “positive” (Kass and Raftery 1995) evidence in favor of model 4.

See Tables 7 and 8 for parameter estimates for regimes 1 and 2 respectively. We
estimate the trend, seasonal, and habit effects to be as in Tables 9, 10, and 11 respectively
as well.

To compare our proposed Bayesian estimation with the ML estimation employed in
Part I, we calculate the mean squared errors (MSEs) for estimated budget shares in
Table 12. Note that the MSEs of Bayesian estimation are evaluated by the posterior
means of estimates of budget shares generated within the Gibbs sampler.

We calculate the average budget share of i-th product at regime s; = j as

Do = > L{se = j}ie
L8t=] T T . :
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Table 7: Estimated Parameters of MS-AIDS model in Regime 1

Mean SD 2.5% 50% 97.5% CD
& 0.2866 0.1262 0.0416 0.2850 0.5373 0.6055
(a2 0.6046 0.0925 0.4118 0.6074 0.7780 -0.3348
a3 0.3285 0.0794 0.1694 0.3290 0.4824 -0.7486
Y11 0.0245 0.0613 -0.1131 0.0350 0.1229 -0.0015
Y12 -0.0039 0.0437 -0.0701 -0.0129 0.0951 0.3383
713 -0.0549 0.0335 -0.1315 -0.0534 0.0060 -0.4092
Y22 0.0335 0.0473 -0.0693 0.0368 0.1174 -0.1208
Y23 -0.0110 0.0403 -0.0947 -0.0096 0.0653 -0.7934
Y33 0.0891 0.0480 -0.0020 0.0879 0.1892 0.7943
B -0.0301 0.0265 -0.0817 -0.0301 0.0226 -0.6585
B2 -0.0936 0.0193 -0.1320 -0.0936 -0.0553 -0.0383
B3 -0.0195 0.0170 -0.0524 -0.0198 0.0147 0.7026
0‘%1 0.000061 0.000013 0.000041 0.000060 0.000091 1.3920
o2 -0.000003 0.000008 -0.000018 -0.000003 0.000013  -0.5299
o135 -0.000008 0.000007 -0.000022 -0.000008 0.000006 -0.1079
o’%z 0.000035 0.000008 0.000024 0.000034 0.000053 0.4690
023 0.000006 0.000005 -0.000004 0.000006 0.000016 0.2985
0'§3 0.000029 0.000006 0.000019 0.000028 0.000044 1.1468

Table 8: Estimated Parameters of MS-AIDS model in Regime 2

Mean SD 2.5% 50% 97.5% CD
& 0.1926 0.1858 -0.1418 0.1817 0.5981 -0.4185
Qo 0.6542 0.1255 0.3993 0.6593 0.8891 -0.4349
as 0.2838 0.1017 0.0812 0.2843 0.4830 -0.6659
Y11 0.1032 0.0682 -0.0267 0.1056 0.2270 -0.1384
Y12 -0.0484 0.0355 -0.1164 -0.0489 0.0185 0.4018
713 -0.0560 0.0299 -0.1154 -0.0555 0.0011 0.9316
Y22 0.0432 0.0417 -0.0368 0.0425 0.1272 0.0669
Yo3 0.0236 0.0343 -0.0436 0.0234 0.0923 -0.3294
Y33 0.0628 0.0399 -0.0146 0.0620 0.1429 -1.1898
51 -0.0329 0.0385 -0.1131 -0.0318 0.0392 0.8659
B2 -0.0949 0.0246 -0.1421 -0.0954 -0.0454 0.5194
B3 -0.0112 0.0210 -0.0529 -0.0111 0.0301 0.0316
U%l 0.000161 0.000045 0.000096 0.000154 0.000267 -0.7579
012 -0.000033 0.000018 -0.000074 -0.000031 -0.000004 0.2701
o3 -0.000029 0.000015 -0.000062 -0.000027 -0.000003 0.3091
0'%2 0.000045 0.000010 0.000030 0.000044 0.000069 -1.0053
023 0.000004 0.000008 -0.000011 0.000004 0.000020 -0.0595
U§3 0.000042 0.000010 0.000027 0.000041 0.000065 -1.3308
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Table 13 shows that regime 1 is characterized by a higher beef budget share relative to

that of pork, while regime 2 is characterized by the reversal of these two budget shares.
Probability of being regime 2, Pr{s; = 2} and budget share data of beef and pork

under the proposed Bayesian framework is in Figure 7.



Table 9: Trend Effect in MS-AIDS model

Mean SD 2.5% 50% 97.5% CD

Regimel

v11(beef) -0.00038 0.00014 -0.00064 -0.00040 -0.00007 0.2165
vo1 (pork) 0.00003  0.00010  -0.00018 0.00004 0.00021 -0.9640
v31(chicken) 0.00002  0.00008  -0.00016 0.00002 0.00017 -0.6504
Regime2

v12(beef) 0.00016  0.00022  -0.00029 0.00017 0.00058  0.9870
Va2 (pork) 0.00019  0.00012  -0.00005 0.00019 0.00044 -0.0507

vz (chicken) 0.00015  0.00012  -0.00009 0.00015 0.00038 -1.7246

Table 10: Seasonal Effect in MS-AIDS model

Mean SD 2.6% 50% 97.5% CcD

August

511(beef) 0.0108 0.0040 0.0031 0.0108 0.0189 -0.1119
512(pork) -0.0040 0.0026 -0.0093 -0.0040 0.0010 0.8173
413 (chicken) -0.0054 0.0024 -0.0101 -0.0054 -0.0006 0.7323
December

821 (beef) 0.0119 0.0124 -0.0111 0.0114 0.0375 0.0939
dao(pork) -0.0142 0.0104 -0.0355 -0.0137 0.0045 -0.3565

d23(chicken) 0.0128 0.0079 -0.0028 0.0128 0.0281  -0.6845

Table 11: Habit Effect in MS-AIDS model

Mean SD 2.5% 50% 97.5% CD

@11 (beef) 0.3183 0.0772 0.1636 0.3197 0.4696 -0.0619
¢22(pork) 0.0510  0.0776 -0.1010 0.0513  0.2030 0.0906
¢33(chicken) 0.4454 0.1158 0.2136 0.4478 0.6683 -1.1871

Table 12: Mean squared errors (MSEs)

Beef Pork Chicken Fish
Bayes 0.805 x10~% 0.172x 10~% 0.152 x 10~% 0.603 x 10~2
MLE 1177 x10™% 0264 x10~% 0.158 x 10™% 0.657 x 104

Table 14 shows that posterior means of transition probabilities 7r1; and o9 are relatively
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Table 13: Posterior mean of average budget share

Regime 1 Regime 2

Beef 02075 0.1799
Pork 0.1825  0.2071
Chicken ~ 0.0878  0.0961
Fish 05222 0.5170

Probability of being Regime2
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Figure 7: Probability of being regime 2, Pr{s; = 2} and budget share data of beef and pork under
the proposed Bayesian estimation. Two vertical dashed lines indicate the first BSE case in Japan on
September 2001 and the first BSE case in U.S. on December 2003.

Table 14: Estimated Transition Probabilities

Mean SD 2.5% 50% 97.5% CD
w11 0.9520 0.0282 0.8830 0.9572 0.9911 -0.1400
w2 0.9619 0.0300 0.8868 0.9689 0.9979 1.0742




high. This implies that there is little chance for switching from regime 1 to regime 2 and
from regime 2 to regime 1. Also significant differences exist in terms of price elasticities

between regimes 1 and 2 as seen in Table 15.

Table 15: Price elasticities and Expenditure elasticities

Regime 1 Price (nf)) Expenditure (nF)
Beef Pork Chicken Fish
Beef -0.817 0.060 -0.242 0.144 0.855
(-1.468, -0.344)  (-0.284, 0.546) (-0.593, 0.053) (-0.175,0.511)  (0.609,1.109)
Pork 0.148 -0.514 0.027 -0.149 0.487
(-0.230,0.721)  (-1.064,0.036)  (-0.440,0.445)  (-0.449,0.175)  (0.278,0.694)
Chicken -0.558 0.003 0.067 -0.291 0.779
(-1.490,0.141)  (-0.976,0.878)  (-0.967,1.220)  (-0.803,0.325)  (0.405,1.169)
Fish -0.029 -0.196 -0.093 -0.957 1.274
(-0.168,0.126)  (-0.320,-0.070) (-0.181,0.015) (-1.176,-0.774)  (1.151,1.392)
Regime 2 Price (nf) Ezpenditure (nf)
Beef Pork Chicken Fish
Beef -0.336 -0.168 -0.292 -0.021 0.817
(—1.046,0.370) (—0.557,0.238) (-0.618,0.028) (-0.452,0.431) (0.369,1.218)
Pork -0.096 -0.505 0.181 -0.122 0.542
(-0.410,0.221)  (-0.936,-0.062) (-0.146,0.517)  (-0.383,0.136)  (0.317,0.780)
Chicken -0.559 0.319 -0.310 -0.333 0.884
(-1.189,0.030)  (-0.400,1.056)  (-1.113,0.524) (-0.778,0.113)  (0.451,1.314)
Fish -0.089 -0.199 -0.099 -0.882 1.269
(-0.262,0.069)  (-0.335,-0.081) (-0.186,-0.015) (-1.053.-0.700)  (1.128,1.412)

Notes: 95% credible interval in parentheses

Conclusion of Part II

We find via two simulations—the case where regime shift occurs once during the period
from regime one to two and the case where regime switches from one to two, and reverts
to the original regime once again—that the proposed Bayesian estimation method works.
We find that the proposed Bayesian estimation improves upon the ML estimation in terms
of the MSEs for all meat products (see Table 12).

Between the ML and Bayesian estimations, we find both contrasting and similar find-
ings: Contrasting finding is that the probability of being regime 2 estimated via Bayesian
estimation shows a nuanced two step regime shifts—the first and second waves arrive
when the first BSE cases were reported in Japan in September 2001 and in U.S. in De-
cember 2003 respectively (see Figure 7), while a one step abrupt regime shift via ML
estimation (see Figure 4); Similar findings include: posterior mean of average budget
share of beef declines after the first BSE case, while that of pork increases sig-
nificantly (see Table 13); The own-price elasticities of beef and pork are significant in
regime 1, however own-price elasticity of beef in regime 2 includes zero within
95% credible interval (see Table 15).
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Discussion of Part 11

In Table 6, we employ logarithmic Bayes factor to justify Model 4. We can employ
Bayes factor to find covariate selection for linear regression because variable selection
via Bayes factors employing Zellner’s g-prior (1986) is consistent from Fernandez et al.
(2001) and Liang et al. (2008). However, as noted in Liang et al. (2008), large spread
of the prior induced by the noninformative choice of g forces the Bayes factor to
favor the smallest model, regardless of the information in the data,”—"Bartlett’s
paradox.” Bayes factors are known to be sensitive to the choice of the prior on
the parameters within each model. Even asymptotically, the influence of prior does not
vanish (see Kass and Raftery, 1995; Ferndndez et al., 2001).

Future Direction

I came away from O-Bayes 2013 thinking that a deep philosophical difference exists be-
tween prediction-based or log-score model selection such as AIC and DIC—models
are just a convenient tools to uncover quantifiable relationships—vis-a-vis consistency
based model selection such as BIC and Bayes factor—a true model exists and a good
model selection should be able to choose that model at least asymptotically. My organi-
zational behavior and criminology research belongs to the former, while demand analysis
and discrete choice problems belong to the latter. For this problem, I am leaning to-
wards finding a model selection criterion based on the Generalized BIC by Konishi et.
al. (2004) because with demand analysis, one always has to work with few data and thus
small sample characteristics are very important. However, remember AIDS and its vari-
ants including MS-AIDS employed here are close to being linear, but not quite because of
the price index terms.
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