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1 Introduction

We first review the (full-information) best-choice problem originally stud-
ied by Gilbert and Mosteller (1966, Sec.3) as a variation of the secretary
problem. A known number, $n$ , of objects appear one at a time. Let
$X_{k},$ $1\leq k\leq n$ , denote the value of the $kth$ object and suppose that
$X_{1},$ $X_{2}$ , . .. , $X_{n}$ are independent and identically distributed random vari-
ables with a known continuous distribution $F$ . We can assume without loss
of generality that $X_{1},$ $X_{2}$ , . . . , $X_{n}$ are uniformly distributed on the interval
$(0,1)$ . As each object appears, we observe its value and decide either to
select or reject it based on the values observed so far. Once an object is
chosen, the process terminates. The objective of the problem is to find
a stopping rule which maximizes the probability of choosing the best, i.e.
stopping with the largest of $X_{1},$ $X_{2}$ , . . . , $X_{n}$ and compute the probability of
choosing the best under an optimal stopping rule.

Let $L_{k}= \max(X_{1}, \ldots, X_{k})$ , $1\leq k\leq n$ , and call the $kth$ object (or
$X_{k})$ candidate if it is relatively best, i.e. $X_{k}=L_{k}$ . Obviously an optimal
stopping rule only stops with a candidate except for the last stage. Consider
now a class of stopping rules of the form

$\tau_{n}=\tau_{n}(a)=\min\{k : X_{k}\geq a_{k}, X_{k}=L_{k}\}\wedge n$ , (1)

where a $=(a_{1}, a_{2}, \ldots, a_{n})$ is a given sequence of thresholds satisfying the
monotone condition $1\geq a_{1}\geq a_{2}\geq\cdots\geq a_{n}\geq$ O. This rule is simply
referred to as a monotone rule (with thresholds a). Gilbert and Mosteller
(1966) showed that, in their Theorem 4, the probability of choosing the best
object under a monotone rule $\tau_{n}(a)$ is calculated as

$v_{n}( a)=\frac{1-a_{1}^{n}}{n}+\sum_{j=1}^{n-1}[\sum_{k=1}^{j}\frac{a_{k}^{j}}{j(n-j)}-\sum_{k=1}^{j}\frac{a_{k}^{n}}{n(n-j)}-\frac{a_{j+1}^{n}}{n}]$

and that the optimal stopping rule is within the class of monotone rules and,
in effect, the monotone rule with particular thresholds $a^{*}=(a_{1}^{*}, a_{2}^{*}, \ldots, a_{n}^{*})$
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gives an optimal stopping rule, where $a_{n}^{*}=0$ and $a_{k}^{*},$ $k<n$ , is a unique root
$x\in(0,1)$ of the equation $\sum_{j=1}^{n-k}(x^{-j}-1)/j=1$ . An explicit expression

for the limiting optimal probability was given by Samuels (1982). If we

introduce the exponential-integral functions

$I(c)= \int_{1}^{\infty}\frac{e^{-cx}}{x}dx, J(c)=\int_{0}^{1}\frac{e^{cx}-1}{x}dx.$

and define $c^{*}(\approx O.80435)$ as a solution $c$ to the equation $J(c)=1$ , then

$v^{*}= \lim_{narrow\infty}v_{n}^{*}=e^{-c^{*}}+(e^{c^{*}}-c^{*}-1)I(c^{*})\approx O.580164.$

Besides the best-choice problem, there are many optimal stopping prob-

lems having the property that the selection is resricted to a candidate except

for the last stage and the optimal rule falls under the class of monotone rules.

The problem along this line is henceforth referred to as a $cand\iota date$-choice
problem (CCP). See Section 2 for more detail of the CCP. Denote by $(k, x)$

the state of the process of a given CCP, where we have just observed the
$kth$ object to be a candidate having value $x$ , i.e. $X_{k}=L_{k}=x,$ $1\leq k\leq$

$n,$ $0<x<1$ . The problem is specified by $p_{k}(x)$ defined as the payoff earned
by stopping in state $(k, x)$ . One of the aims of this note is to give unified
formulae for calculating $v_{n}(a)$ of the CCP.

Ferguson et al.(1992, Section 3.1 and Section 3.2) showed that both the

duration problem and the best-choice duration problem are the CCP when

no recall is allowed. The duration problem is concerned with maximizing

the expected duration of holding a candidate. That is, if we stop with a
candidate, we receive a payoff of 1 plus the number of future observations
before a new candidate appears or until the final stage $n$ is reached. On the

other hand, the best-choice duration problem is concerned with maximizing
the expected duration of holding the best object (i.e. the last candidate).

However, instead of maximizing the expected duration, we choose to max-
imize the expected proportion of time we are in possession of a candidate
in order to make the solution easily comparable to the best-choice problem

and other related problems. Hence, we have $p_{k}(x)= \sum_{j=0}^{n-k}x^{j}/n$ for the du-

ration problem and $p_{k}(x)=(n-k+1)x^{n-k}/n$ for the best-choice duration
problem respectively. For these two problems, Ferguson et $a1.(1992)$ were
mainly concerned with finding the optimal stopping rule, implying that the
corresponding expected payoff was left unsolved. See Mazalov and Tamaki
(2006) for further investigation of the duration problem. For the best-choice
duration problem, we will examine further and give some additional results
both in the case without recall, where the most recently observed object may
be selected and in the case with recall, where any of the previously observed
objects may be selected. We are also interested in the limiting optimal payoff
$v^{*}$ . In Section 3, we will obtain $v^{*}\approx O.310965$ for the best-choice duration
problem without recall. Interestingly this value can be obtained directly
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from Samuel-Cahn (1996) if we recognize the equivalence between the best-
choice duration problem without recall and the Samuel-Cahn’s best-choice
problem with uniform freeze. The same result can be obtained via the PPP.
We show that, when recall is allowed, the limiting optimal payoff increases
up to 0.335360.

2 Formulae for calculating the expected payoff

2.1 Formula related to $\tau_{n}$

We start with deriving the distribution of the stopping time $\tau_{n}(a)$ defined
in (1).

Lemma 2.1. Assume $n\geq 2$ and define, for a given monotone sequence of
thresholds $a=(a_{1}, a_{2}, \ldots, a_{n})$ ,

$A_{k}( a)=\frac{1}{k}\sum_{i=1}^{k}a_{i}^{k}, 1\leq k<n$

with $A_{0}(a)\equiv 1$ and $A_{n}(a)\equiv 0$ for convention. Then

($a$ ) $P\{\tau_{n}(a)>k\}=A_{k}(a)$ , $0\leq k\leq n$

( $b$) $P\{\tau_{n}(a)=k\}=A_{k-1}(a)-A_{k}(a)$ , $1\leq k\leq n$

( $c$) $E[ \tau_{n}(a)]=\sum_{k=0}^{n-1}A_{k}(a)$ .

We give a unified formula for calculating $v_{n}(a)$ of the CCP.
Theorem 2.1. Let $p_{k}(x)$ be the payoff earned by stopping in state $(k,x)$ .
Then the expected payoff $v_{n}(a)$ under the monotone rule $\tau_{n}=\tau_{n}(a)$ is
calculated from, for $n\geq 2,$

$v_{n}( a)=\int_{a_{1}}^{1}p_{1}(x)dx+\sum_{k=2}^{n}\sum_{j=1}^{k-1}\int_{a_{k}}^{1}p_{k}(x)\frac{[\min(x,a_{j})]^{k-1}}{k-1}dx$ . (2)

Suppose that we are in state $(k, x)$ of a CCP with $p_{k}(x)$ , $1\leq k\leq n$ . If
we stop with the current candidate, we receive $p_{k}(x)$ , while if we leave this
state and stop with the next candidate, if any, we can expect to receive the
payoff

$q_{k}(x)= \sum_{j=k+1}^{n}x^{j-k-1}\int_{x}^{1}p_{j}(y)dy$ . (3)

Now let

$G= \bigcup_{k=1}^{n}\{(k, x):p_{k}(x)\geq q_{k}(x)\}.$

204



Hence, $G$ represents the set of states for which stopping immediately is at
least as good as waiting for the next candidate to appear and then stopping.
The stopping rule which stops as soon as the state enters the set $G$ is called
one-stage look-ahead rule (1-sla rule). It is well known (see, e.g. Ferguson
(2006) or Chow et.al (1971)) that the stopping rule $\tau_{n}(a^{*})$ , which is also
1-sla, is optimal if there exists a monotone sequence $a^{*}=(a_{1}^{*}, a_{2}^{*}, \ldots, a_{n}^{*})$

such that $G$ can be expressed as $G= \bigcup_{k=1}^{n}\{(k, x):x\geq a_{k}^{*}\}$ . To be more
precise, we refer to the stopping problem as a CCP when it has an optimal
1-sla rule.

We give some examples and comments. The best-choice duration prob-

lem will be examined in detail in Section 3.
Example 1. (Best-choice problem): $p_{k}(x)=x^{n-k}.$

$v_{n}( a)=\frac{1}{n}[1+\sum_{k=1}^{n-1}\sum_{j=k}^{n-1}\frac{1}{j}a_{k}^{j}+\sum_{k=1}^{n-1}\{\sum_{j=k}^{n-1}\frac{1}{n-j}a_{k}^{j}-(1+h_{n-k})a_{k}^{n}\}-a_{n}^{n}],$

where $h_{k}= \sum_{j=1}^{k}1/j,$ $k\geq 1$ with $h_{0}=0.$

Example 2. (Duration problem without recall): $p_{k}(x)= \sum_{j=0}^{n-k}x^{j}/n.$

$v_{n}( a)=\frac{1}{n}[h_{n}+\sum_{k=1}^{n}\sum_{j=k}^{n}\frac{1}{j}(h_{n-j}-h_{j-k}-1)a_{k}^{j}]$

Example 3. (Version of the best-choice problem): The problem considered
in Section 4 of Tamaki (2010) is concerned with maximizing the probability
of stopping with any of the last $m$ candidates, where $m$ is a predetermined
positive integer. Let $r_{n}(k)$ be defined recursively as follows.

$r_{n}(k)= \frac{1}{n}r_{n-1}(k-1)+(1-\frac{1}{n})r_{n-1}(k)$ , $1\leq k\leq n,$ $2\leq n$

with $r_{1}(1)=1$ and $r_{n}(k)=0$ for $k=0$ or $k>n$ and define $d_{n}= \sum_{k=1}^{m-1}r_{n}(k)$

for $n\geq m$ and $d_{n}=1$ for $n<m$ . Then

$p_{k}(x)= \sum_{j=0}^{n-k}d_{j}(\begin{array}{l}n-kj\end{array})(1-x)^{j}x^{n-k-j}.$

2.2 Formula related to $\sigma_{n}$

Besides (2), we can give another expression for $v_{n}(a)$ . Let $\sigma_{n}(a)$ be the time
at which the largest value observed so far initially exceeds the threshold, i.e.

$\sigma_{n}=\sigma_{n}(a)=\min\{k:L_{k}\geq a_{k}\}\wedge n.$

205



Lemma 2.2. Assume $n\geq 2$ . Then, for a given monotone sequence $a=$

$(a_{1}, a_{2}, \ldots, a_{n})$ with the interpretation that $a_{0}=1$ and $a_{n}^{n}=0$ , we have

( $a$ ) $P\{\sigma_{n}(a)>k\}=a_{k}^{k},$ $0\leq k\leq n$

( $b$) $P\{\sigma_{n}(a)=k\}=a_{k-1}^{k-1}-a_{k}^{k},$ $1\leq k\leq n$

( $c$) $E[ \sigma_{n}(a)]=\sum_{k=0}^{n-1}a_{k}^{k}.$

Another expression for $v_{n}(a)$ is given as follows.
Theorem 2.2. Let $q_{k}(x)$ be as defined in (3). Then we have that

$v_{n}( a)=\sum_{k=1}^{n}[\int_{a_{k}}^{1}p_{k}(x)[\min(x, ak-1)]^{k-1}dx+(k-1)\int_{a_{k}}^{a_{k-1}}q_{k}(x)x^{k-1}dx]$

2.3 Limiting expected values of $\tau_{n}/n$ and $\sigma_{n}/n$

To make explicit the dependence on $n$ , we here write $a(n)=(a_{1}(n),$ $a_{2}(n)$ ,
. . . , $a_{n}(n))$ instead of a $=(a_{1}, a_{2}, . . . , a_{n})$ . Let $\{b_{k}\}_{k=0}^{\infty}$ be an infinite se-
quence such that

( $i$ ) $0\leq b_{0}\leq b_{1}\leq b_{2}\leq\cdots\leq 1$

(ii) $\lim_{narrow\infty}n(1-b_{n})=c<\infty$

and define $a_{k}(n)=b_{n-k},$ $1\leq k\leq n$ , i.e. $a(n)=(b_{n-1}, b_{n-2}, \ldots, b_{0})$ , $n\geq 1.$

Then we have the following limiting results.
Lemma 2.3. For $a(n)$ satisfying the above properties (i) and (ii), we have

( $a$ ) $\lim_{narrow\infty}E[\frac{\tau_{n}(a(n))}{n}]=e^{-c}+(e^{c}-c-1)I(c)$

( $b$) $\lim_{narrow\infty}E[\frac{\sigma_{n}(a(n))}{n}]=1-ce^{c}I(c)$ .

3 Best-choice duration problem

3.1 Sampling without recall

This problem is a CCP and the next lemma yields the expected payoff.
Lemma 3.1. (Expected payoff): $p_{k}(x)=(n-k+1)x^{n-k}/n.$

( $a$ ) $v_{n}( a)=\frac{1}{n}[1+\sum_{k=1}^{n-1}\sum_{j=k}^{n-1}\frac{a_{k}^{j}}{j}-\frac{1}{n}\sum_{k=1}^{n}(2(n-k)+1)a_{k}^{n}]$ (4)

( $b$) $v_{n}^{*}= \frac{1}{n}[1+\sum_{k=1}^{n-1}\sum_{j=k}^{n-1}(\frac{1}{j}-\frac{1}{n})(a_{k}^{*})^{j}],$
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where $a_{n}^{*}=0$ $(i.e. r=n)$ and $a_{k}^{*},$ $k<n$ , is a unique solution $x\in(0,1)$ of
the equation

$(2(n-k)+1)x^{n}= \sum_{i=k}^{n-1}x^{i}$ . (5)

Samuel-Cahn (1996) generalized the best-choice problem by introducing
a random”freeze-time” variable $N$ which makes it impossible to make a se-
lection after time $N$ . The goal of stopping with the largest of $X_{1},$ $X_{2}$ , . . . , $X_{n}$

remains unchanged. In the case of $N$ uniform on $\{$ 1, 2, . . . , $n\}$ , Samuel-Cahn
showed that the optimal rule is a monotone rule with $a^{*}=(a_{1}^{*}, a_{2}^{*}, \ldots, a_{n}^{*})$ ,
where $a_{k}^{*}$ is determined from (5) and the optimal probability is given by
$v_{n}(a^{*})$ , where $v_{n}(a)$ is given by (4). That is, the best-choice duration prob-
lem without recall is equivalent to the $Samue1-Cahn^{)}s$ best-choice problem
with $N$ uniform on $\{$ 1, 2, . . . , $n\}$ . Rom this equivalence, we can give an in-
tegral expression for $v^{*}.$

Lemma 3.2. (Limiting optimal payoff)

$v^{*} = \int_{0}^{1}\frac{1}{x}[\int_{0}^{x}e^{-\frac{c^{*}x}{1-y}}dy]dx-2\int_{0}^{1}ye^{-\frac{c^{*}}{y}}dy$

$\approx$ 0.310965,

where $c^{*}(\approx 1.25643)$ is a unique solution $c(>0)$ of the equation

$e^{c}=1+2c.$

Another simpler expression for $v^{*}$ in terms of $I(c)$ is given as follows.
Lemma 3.3. Write $c$ for $c^{*}$ for convenience. Then

$v^{*}=ce^{-c}+c(1-c)I(c)$ . (6)

The asymptotic result (6) is also obtained via the PPP model. According
to Samuels (2004), we use a Poisson process with unit rate on the semi-
infinite strip $[0$ , 1 $]$ $\cross[0, \infty$). This turns the problem upside down, making
the ‘best’ become the ‘smallest’. Suppose that an atom is identified as a
point $(t, y)$ if the atom appears at time $t$ as a candidate (relatively best
atom as in the finite problem) having value $y$ in the PPP. Let $P(t, y)$ denote
the expected payoff if we choose this point, i.e. stop on the point $(t, y)$ .
Then

$P(t, y)=(1-t)e^{-y(1-t)}$ . (7)

If we do not choose this point, but choose the point related to the next
candidate, if any, then we can expect to receive a payoff

$Q(t, y) = \int_{0}^{1-t}(\int_{0}^{y}P(t+r, x)\frac{1}{y}dx)ye^{-yr}dr$

$= \frac{1}{y}(1-e^{-y(1-t)})-(1-t)e^{-y(1-t)}.$
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Solving for the locus of point $(t, y)$ at which $P(t, y)=Q(t, y)$ yields $y(1-t)=$
$c^{*}$ , where $c^{*}\approx 1.25643$ . Since $P(t, y)\geq Q(t, y)$ implies $P(t’, y’)\geq Q(t’, y’)$

for $t’>t,$ $y^{J}<y$ , we are in the monotone case of optimal stopping (see

Ferguson (2006) or Chow et al. (1971) for the monotone case) and can
conclude that the optimal rule stops with the first candidate, if any, that

lies below the threshold curve $y=c^{*}/(1-t)$ . Henceforth, we again write $c$

instead of $c^{*}$ for simplicity. Let $T$ be the arrival time of the first (leftmost)

atom that lies below the threshold curve $y=c/(1-t)$ , and let $S$ be the
time when the value of the best (lowest) atom above threshold is equal to

the threshold. Then it is easy to see that (see, e.g. Section 10.2 of Samuels
(2004)) the limiting optimal payoff is calculated from

$v^{*} = \int_{0}^{1}\int_{0}^{t}P(s, \frac{c}{1-s})f_{S}(s)f_{T}(t)dsdt$

$+ \int_{0}^{1}\int_{0}^{s}(\frac{1-t}{c}\int_{0}^{c/(1-t)}P(t, y)dy)f_{T}(t)f_{S}(s)dtds$ , (8)

where $f_{T}(t)$ and $f_{S}(s)$ are the densities of $T$ and $S$ given as

$f_{T}(t)=c(1-t)^{c-1}, f_{S}(s)= \frac{cs}{(1-s)^{c+2}}e^{-\frac{cs}{1-s}}.$

Applying (7) to (8) yields

$v^{*} = e^{-c} \int_{0}^{1}\int_{0}^{t}(1-s)f_{S}(s)f_{T}(t)dsdt$

$+ \frac{1-e^{-c}}{c}\int_{0}^{1}\int_{0}^{s}(1-t)f_{T}(t)f_{S}(s)dtds$ . (9)

Moreover, the bivariate integrals can be simplified to

$\int_{0}^{1}\int_{0}^{t}(1-s)f_{S}(s)f_{T}(t)dsdt = c[(1+c)e^{c}I(c)-1]$ (10)

$\int_{0}^{1}\int_{0}^{s}(1-t)f_{T}(t)f_{S}(s)dsdt = c[1-ce^{c}I(c)]$ (11)

respectively. Substituting (10) and (11) into ($9)$ gives

$v^{*}=1-(1+c)e^{-c}+c(2+c-e^{c})I(c)$ .

Remark 3.1. The equivalence between the best-choice duration problem
without recall and the Samuel-Cahn’s best-choice problem with uniform
freeze is not surprizing, because this is very similar to the equivalence be-
tween the duration problem without recall and the Porosinski $(1987)$ ’s best-
choice problem with uniform horizon, to which Samuels (2004) and Gnedin
(2004) have given a good explanation. See also Gnedin (2005) for further
generalization of the equivalence.
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3.2 Sampling with recall

Ferguson et $a1.(1992)$ showed that, in the recall case, the optimal stopping
rule is within the class of stopping rules $\{\sigma_{n}(a)\}$ in the sense that it stops
at time $\sigma_{n}$ with the current candidate if $L_{\sigma_{n}}=X_{\sigma_{n}}$ , but with the previous
objext, say, the $jth$ object if $L_{\sigma_{n}}=X_{j}>X_{\sigma_{n}}$ . Moreover they showed that
the optimal thresholds are given by $a_{k}^{*}=2^{-1/(n-k)},$ $1\leq k\leq n$ . Let $u_{n}(a)$

denote the expected payoff under $\sigma_{n}(a)$ and $u_{n}^{*}=u_{n}(a^{*})$ . Then we have the
following results.
Lemma 3.4. (Expected payoff): $p_{k}(x)=(n-k+1)x^{n-k}/n.$

( $a$ ) $u_{n}( a)=\frac{1}{n}[1+\sum_{k=1}^{n}a_{k}^{k}-2\sum_{k=1}^{n}\frac{k}{n}a_{k}^{n}]$

( $b$) $u_{n}^{*}= \frac{1}{n}[1+\sum_{k=1}^{n}(1-\frac{k}{n})2^{-\frac{k}{n-k}}\rfloor\urcorner$

Let $u^{*}= \lim_{narrow\infty}u_{n}^{*}$ . Then we have the following limiting result.
Lemma 3.5. Let $\tilde{c}=\log 2$ . Then

$u^{*}= \frac{1-\tilde{c}}{2}+(\tilde{c})^{2}I(\tilde{c})\approx 0.335360.$

Remark 3.2. $u^{*}$ is also obtained from the PPP model, i.e. $u^{*}$ is just the
value of $v^{*}$ of (9) when $c(=c^{*}\approx 1.25643)$ is replaced by $\tilde{c}=\log 2\approx 0.69315,$

because, as is easly seen from the argument of the infinitesimal look-ahead
stopping rule used for the duration problem with recall in Section 3.2 of
Mazalov and Tamaki (2006), the optimal threshold curve in the recall case
is given by $y=\tilde{c}/(1-t)$ , contrasting the curve $y=c^{*}/(1-t)$ in the no recall
case ( $\tilde{c}=\log 2$ was already suggested in Ferguson et $a1.(1992)$ ).
Lemma 3.6. Let $c^{*}\approx 1.25643$ and $\tilde{c}=\log 2$ . Then

($a$ ) $\lim_{narrow\infty}E[\frac{\tau_{n}^{*}}{n}]=e^{-c^{*}}+(e^{c^{*}}-c^{*}-1)I(c^{*})\approx O.46678$

($b$ ) $\lim_{narrow\infty}E[\frac{\tilde{\sigma}_{n}}{n}]=1-\tilde{c}e^{\tilde{c}}I(\tilde{c})\approx 0.47505.$
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