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GENERALIZATION OF YOUNG DIAGRAMS AND HOOK FORMULA

KENTO NAKADA
OKAYAMA UNIVERSITY

1. PRELIMINARIES
First, we give several notations for root systes. We always fix a root datum (4; b, b*, IT, IT"):
A = (ai )i jer : a generalized Cartan matrix.
b : R -vector space,
b : the dual space of b,
(,) : H* X h — R : the canonical bilinear form.
I:= {a,- liel } c b" : linearly independent subset
v := {af;’ | iel } C b : linearly independent subset
such that (a;, ¢} ) = a; ;.
For each i € I, we define the simple reflection s; € GL (§*) by:
Sit AP A=(4, a)a;, A€B.
equivalently, Sithv h—{a;, ya/, heb.
W := (s; | i€ I) : the Weyl group
We define a (real) root system and a (real) coroot system:

o :=wll (C_:_ @ Za/,-] : (real) root system
iel
O, =dnN @ Zsoa; : (real) positive root system
d_:=0nN @ Za; : (real) negative root system

® =0, HP_ (disjoint union)

oY .= WY (g EB Za,v) : (real) coroot system

OMEEN (Mg @ Zoa; : (real) negative coroot system
iel
@' = ®) I ®’ (disjoint union)
For a real root 8 = w(a;) € ®, we define the dual coroot 8¥ € ®V of B by:
B =w(a}).

Remark 1. This is independent from the choice of w € W and «; € I1.
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The map ® 5 8+ BY € @V is a bijection.
For each 8 € @, we define the reflection sz € W by:
sp() = A=A, B¥)B, A€W,
sg(hy=h—(B, WB", heh.
Definition 1. Let w € W. We define the inversion set @ (w) of w by:
o) :={yed, [wl@y) <0}
Definition 2. Let w € W. We denote by Red(w) the set of reduced decompositions of w:
Red(w) := {s,-ls,-2 e S, | reduced decompositions of w} .
Definition 3. An element A € b* is said to be an integral weight if:
AhalyeZ, iel
The set of integral weights is denoted by P.
Definition 4. An integral weight A € P is said to be dominant if:
(A, @) €Zsp=N, iel

The set of dominant integral weights is denoted by Pyo.

2. MINUSCULE ELEMENTS AND PETERSON-PROCTOR HOOK FORMULA

Definition 5 (Peterson (see [1])). Let A € P5p. An element w € W is said to be A-
minuscule if there exists a reduced decomposition s;, s;, - - - 5;, € Red(w) of w such that

<sik+1 "'Sid(A)’ a;:): 1, k= 1,2,-.. ’d.
Remark 2. This definition is independent from the choice of reduced decompositions of w.

Example 1. A Grassmannian permutation is a A-minuscule element in the Weyl group of
type A (symmetric group).
Theorem 2.1 (Proctor (see e.g. [7])). Suppose that the underlying generalized Cartan

matrix is simply-laced. Then there exists a one-to-one correspondence between {(A,w))
and d-complete posets.

Theorem 2.2 (Peterson-Proctor (see [1])). Let A € P>o andw € W a A-minuscule element.

Then we have:
t(w)!

[Tgeain bt (B
This hook formula is, of course, a generalization of hook length formula for a Young
diagram due to Frame-Robinson-Thrall [2], and a shifted Younf diagram due to Thrall [9].
In terms of d-complete posets, this counts the number of linear extensions of the d-

complete posets.
Now, we have three approaches to prove Peterson-Proctor hook formula.

#Red(w) =

multivariate hook formula probabilistic algorithm
, colored hook formula
Proctor (1997) N. (2008) Okamura (2003)
N. (preprint) ) N.-Okamura (preprint)
Ny U 4

Peterson-Proctor hook formula
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3. FINITE PREDOMINANT INTEGRAL WEIGHTS
Definition 6. An integral weight A € P is said to be pre-dominant if:
LBY=~-1, Bed,.
The set of pre-dominant integral weights is denoted by P-_,.
Definition 7. Let A € P>_,. We define a set D(1) by:
D) :={Be®: | (A8")=-1].

The set D(A) is called a diagram of A. A pre-dominant integral weight A is said to be finite
if #D(1) < oco. The set of finite pre-dominant integral weights is denoted by P;‘El.

Example 2. As an example, we consider how Young diagram is realized as
D(Q).
0 1 2 3 4
+ 0 0
-1
+ -
-2
+ 0 -
-3
0

According to the above picture, we put 1 := 1A_; + (=1)Ag + 1A + (=1)A; + 1A;,
in the root system of type 4¢ with index / = {-2,-1,0, 1,2,3}, where A; denotes i-th
fundamental weight. Then we have A € ngl such that (D(4); <) is order-isomorphic to the
original Young diagram.

a_1+aqot+a;+as g+ a; +ar a2

D(J) =

a-1 +ap (/1))

Thus, we recover the original Young diagram.

Theorem 3.1. Let A € Psg and w € W a A-minuscule element. Then we have w(A) €
P;‘El. Furthermore, this correspondence is bijective between P;‘fl and the set of such
pairs (A, w).
(A w) - P
W W

A,w) > w(A)
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Put A := w(A). Then we have
@ (w) = D(1).

Definition 8. Let A € P and B € D(1). We define a set H, (8) by:

Hi(8) := {y € D) | s5() < 0} = D(A) N @ s5).
We call the set H, (B) the hook at B.

Proposition 3.2. Ler A € P and B € D(A). Then we have:

(1) #H, (B) = ht(B).

(2) sp(2) € Pin,.

(3) D(sp()) = 55(D(D) \ H; (B)).
Definition9. Let A € P;“_‘l. A sequence (831,82, -+, B1) (I = 0) of positive real roots is said
to be a A-path if:

Br € D(sg,_, - - 35,(2)), k=1,2,---,D.

The set of A-paths is denoted by Path(A).

Definition 10. Let A € P;‘fl. A 2-path of maximal length is called a maximal A-path. The
set of maximal A-paths is denoted by MPath(1).

Note that if #D(1) = d then length of maximal A-path is d, and hence that maximal
A-path is of a form (@, @y, - -+ , @)

Example 3. Back to Example 2, put 4 := A_; — Ag + A| =~ A, + A;. Then we have 5
maximal A-paths below:

(a0, -1, 0z, a1,a0)--- | 5 |4]3
211

(0'0,0'2,0_1,0'1,0'0)--- 51412
3

(a2, @0, -1, @1, a9)--+ | S|4 |1
3

(@, a2, @1, -1, ap)-+ | 5|3 ]2
411

(azaa()’al,a—l,a'())"' 5 3 1
412

Now we restate the Peterson-Proctor hook formula:

Theorem 3.3, Let A € ngl. Put d := #D(A). Then we have:
d!
[Tgeniy ht (B

We give two of three approaches to prove the above theorem in section 4 and 5.

#MPath(1) =
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4, Cororep Hook FormuLAa

Let A € Pfin and put 4 = D(2). Then we have:

>’

Theorem 4.1 ([4]).

1 1 1 : ( 14 1 )
= RS R = A
Taking the lowest degree, we get:

Corollary 4.2,
1 1 1 1

—— .« —_—

a; a; + a;, a; +---+aj,

(e @iy - @1, )EMPath(2)
Taking the specialization a; — 1, we get:

Corollary 4.3 (Peterson-Proctor hook formula).
#MPath(1) a
a = ————
[1gen(a) ht (B)

5. PROBABILISTIC ALGORITHM

For simplicity of description, we assume that the underlying root datum is simply-laced.
We call the following algorithm the algorithm A for T':

GNWI1.: Setk :=0 and set 4y := A.

GNW2.: (Now D(;) has d — k roots.) Pick a root 8 € D(A;) with the probability
1/(d - k).

GNWa3.: If #H,, () — {8} # 0, then pick a y € H,, (8) — {8} with the probability
1/#(H,, (B) - {B)), put B := y and repeat GNW3.

GNW4.: (Now #(H,, (B) —{B8)) =0.) (B = @;.) Set a;,,, = a; and set Agyq := si(Ay).

GNWSA.: Setk :=k+ 1. Ifk < d, return to GNW2; if k = d, terminate.

Then, by the definition of the algorithm A for A, the sequence (B =)(a;,, - ,@i,)
generated above is a maximal A-path. We denote by Prob,(8) the probability we get
B € MPath(1) by the algorithm A. The algorithm A for A gives a probability measure
Prob,() over (a finite set) MPath(1).

Theorem 5.1 (S. Okamura [6],N-S. Okamura [5]). Let B € MPath(1). Then we have:
[gen(ay 1t (B)
d '

Since the right-hand side of (5.1) is independent from the choice of B € MPath(A), the
probability measure is uniform. Hence, taking the inverse, we get:

(5.1) Proba(8) =

Corollary 5.2 (Peterson-Proctor hook formula).
d!
[Tgenay bt (B)

See [3] for Young diagram case due to Greene-Nijenhuis-Wilf, and [8] for shifted Young
diagram case due to Sagan.

#MPath(1) =
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