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Abstract

We review the research regarding the analysis of junction motion due to mean cur-
vature flow and give a suggestion for a possible future direction of dealing with general
topological changes in interface network motion. We present a related numerical scheme
using a vector-valued signed distance function and provide its formal analysis.

1 Motivation
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The ultimate goal of the present research is to provide a mathematical understanding for the
phenomenon of moving droplets and bubbles attached to surfaces, including a clarification of

the dynamics of contact angle, which is still not fully understood.

In previous papers ([20], [12], etc.), we have developed a scalar model for this kind of
droplet motion and studied its mathematical properties. In the scalar setting we assume that
the shape of the droplet can be described by the graph of a scalar function v :  C R* - R

and base the model equation on the surface energy for the considered system.

Figure 1: Scalar setting of the moving droplet problem.

The surface energy after scaling can be written in the form

1
B = [ (519 +7x050) do,
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where v depends on the surface tensions of the present surfaces and x.,¢ is the characteristic
function of the set {z € Q : wu(t,z) > 0}. The candidates for the shape of the droplet are
restricted by the constraint

/ UXu>0 dr = V>

Q

which expresses the volume conservation of the fluid surrounded by the graph of w.
One can either consider the gradient flow for F, which yields the model equation

U = Au+xusoA(uw) in {u>0}
[Vu> = 2y on O{u > 0},

or apply Hamilton’s principle on the action integral corresponding to E, which gives the
model equation

Xu>0Ust = Au+ XusoA(u) in {u> 0}
|Vu|? —u? = 2v on 8{u > 0}.

Here, ) is a function of ¢ only, a nonlocal term depending on u, that can be interpreted as the
Lagrange multiplier for the volume constraint.

The second identity in the above models is an additional condition necessary to determine
the position of the unknown free boundary 9{u > 0}. It is a certain approximation of the
Young’s law for the considered scalar setting. Notice that for the parabolic problem the con-
tact angle at the free boundary is fixed during the motion, while in the hyperbolic model it
depends on the evolution. Morevoer, it is important to take into account that the contact angle
condition in this model is not a priori prescribed but naturally follows from the variation of
the energy (or action integral).

The above approach allows for some mathematical analysis but physically it provides only
an approximation of the motion in the sense that the surface energy is simplified to the Dirich-
let functional and in fact permits only vertical motions of the droplet’s surface. Moreover, the
scalar formulation can deal only with contact angles that are less or equal to 7/2, which is
not always the case in reality. Therefore, we extend the scalar setting to the motion of hyper-
surfaces in R™ due to reduction of their exact surface energy. In addition, to incorporate the
contact angle dynamics, we generalize the setting to the multiphase problem, where the hyper-
surfaces represent interfaces between more than two phase regions, and thus form junctions.
A more precise formulation of the problem is given in the following section.

2 The multiphase problem

In this section, we derive the governing equations for a network of interfaces moving ac-
cording to the gradient flow of surface energy. Consider a partition of RY = P, U
P, U---U B, into k mutually exclusive phase regions P, C RN(i = 1,2,...,k). Let
['=U{v;:4,7=12,...,k}, where v;; = ;; denotes the interface between phases P,
and P;.
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Figure 2: An example of multiphase configuration.

To make the derivation transparent, we consider a special case of three evolving interfaces
7(s), s € [pi,q),i = 1,2,3, inside a fixed smooth region 2 of R?, that meet the outer
boundary 91 at a right angle and get together at a triple junction J = ~;(¢;),2 = 1,2,3. In
general, each interface has different surface tension o;.

Then the total surface energy is given by

Z / ordl = / " o I(s) ds.

‘l

The gradient flow of the surface energy can be found from its variation. Define the tangential
vector t;, curvature x; and outer normal n; of curve ~; by

]
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Then for a smooth vector field ¢ vanishing near the boundary 052,

S L+ ep(Deno = 2_: [ ot gotetnnds

= _Z(/ tip(v:) ds — a,-ti'SO(J))
3

=1

/ (oikin;) - @ dl + ojt; - cp(J)) .

Yi

Hence, the gradient flow of triple junctions leads to normal velocities of points on inter-

faces
Vi = —O0iky,

and the condition at the triple junction



The above junction condition represents the balance of forces which is known to be equivalent

to the Young’s law
sin 8 __sin 0, __sin 05

o1 o) 03 ’

where 6; is the angle formed by the phase P; at the junction.

The above derivation addresses a special case of three interfaces in a plane but it is easy to
see that it can be extended to arbitrary interface networks in R™. In the sequel, we deal only
with interface networks that have the same surface tension for all interfaces. Then the normal
velocity for any interface can be set as v = —x, where & is the mean curvature. The balance of
forces at triple junctions in a plane then reduces to the Herring condition imposing symmetric
junctions with 120° angles. The junction condition for quadruple and higher junctions has
the same form but does not prescribe a unique angle configuration. In the following we avoid
such mathematical and technical complications by confining ourselves to the case of triple
Jjunctions of curves in a plane.

There are several works dealing with the analysis of triple junctions. [2] derived curvature
motion and junction condition from a vector-valued Ginzburg-Landau equation and showed
short-time existence by employing linearization around the initial condition and a fixed point
argument. [14] gave global existence of planar network close to equilibrium. [5] studied ex-
ponential stability for area-preserving mean curvature flow. [9] deals with global existence,
local uniqueness and nonlinear stability, while [4] extends the local existence to general di-
mension. [15] showed that no singularity can occur for a triod unless the length of one curve
goes to zero. There exist also rare results within the rigorous geometric measure theory, e.g.,
[13] analyzes the regularity for weak varifold solutions. Moreover, the recent paper [11]
provides local regularity for general networks with several multiple junctions.

3 Level set approach

The most difficult aspect of such a network evolution from both the mathematical and nu-
merical point of view are topological changes related to attaching, merging or pinching of
interfaces, or to merging or splitting of junctions. One example of such topological change
from [17], computed by the method presented in this paper, is shown below.

Figure 3: Initial 10-phase configuration (left); its evolution after some time, forming a quadruple junction (cen-
ter); and its stable configuration, where the quadruple junction has split into two triple junctions (right).
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For the two phase case, i.e., one interface separating two phase regions, this problem was
solved by the level-set method. The idea of this method is to express the interface as the
level set of a smooth function u(t,z) and write the equation for the evolution of u, which
corresponds to the mean curvature flow of the interface. It is found that the governing equation
is of the type

Ou . Vu
E - |Vu| div (m—l) = (.
This equation is degenerate and nonlinear but enjoys the comparison principle. Thanks to this
fact, the authors of [3], [8] succeeded in introducing a notion of its solution in the viscos-
ity sense. This immediately leads to a rigorous definition of mean curvature flow including
topological changes since such changes are naturally handled by the level set function.

Since the level set equation is hard to deal with in practice, several methods for its ap-
proximation were developed. One of them is the phase-field method solving instead of the
nonlinear equation the Allen-Cahn PDE

we=ehu— ~f'(u)

where ¢ is a small positive parameter and f is a double-well potential. The solution of this
equation develops transition layers which approximate the mean curvature motion in the sense
of the level set equation. The phase-field method has been extended to the vector-valued
setting to treat the multiphase problem and the analysis of its converegence for triple junctions
has been started by the paper [2].

Another method, called the BMO method ([16]), is based on a splitting scheme for the
phase-field method. In particular, it iterates short-time solution of the heat equation and sub-
sequently of the equation u; = —% f'(u), which has the effect of dividing the solution into
two regions with values corresponding to the positions of the wells of f. Thus one obtains the
following algorithm for evolving the boundary P of a region P by mean curvature flow:

1. Given a region P, set x to be its characteristic function.

2. Solve the heat equation with initial condition x:

w(t,z) = Au(t,z) for (t,z) € (0, At] x Q,
%(t,m) =0 on (0, At] x 99,
u(0,z) = x(z) in Q.

3. Update x as the i-level set of u(At,-):
2

(z) = 1 if u(At,z) > 1,
XMET=1 0 if w(at,z) < L

The evolved interface is now the boundary of the set {z € ©; x(z) = 1}.

4. Go back to step 2 to proceed with the computation for the next time step.



This algorithm is very attractive because of its simplicity (it requires only the solution of
the heat equation), its ability to naturally treat topological changes and the possibility of its
usage in general dimension and under constraints (see [19]). It has been shown, in a general
framework including topological changes, that this algorithm converges to motion by mean
curvature as At — 0 [1, 7, 10]. Extension to the multiphase case was given already in the
original paper [16] and a vector-valued approach that is able to include volume constraint is
explained in [19].

Regarding the design of a rigorous definition of multiphase mean curvature flow, neither
the level set approach, nor its derivatives (phase-field method and BMO method) succeeded
until now in finding the way. However, there exists an interesting result by [18], which states
that if the signed distance function to an interface satisfies the heat equation (in viscosity
sense), then the interface moves by mean-curvature flow in the sense of the corresponding
level set equation. This idea was used in the proof of the convergence of the BMO algorithm
by the signed distance approach in [10]. Our goal is to extend the notion of signed distance
function to interface networks and generalize the result by [18] in order to obtain a definition
of multiphase mean curvature flow in the level set viscosity sense. As the first step, we
designed a corresponding numerical method and carried out its formal analysis.

4 Vector valued signed distance function

In this section we propose a form of the signed distance function suitable for network analysis
and present the corresponding BMO algorithm. There are two reasons for introducing the
signed distance function. One of them was mentioned in the previous section — we aim at
giving a rigorous definition and analysis of multiphase motion including topological changes.
The other reason is related to numerical computations, where it is known that the original
BMO algorithm using characteristic functions suffers from restrictions on the time step for
uniform meshes. The employment of signed distance function alleviates these restrictions, as
was shown in [17].

To define the multiphase version of signed distance function, consider again the partition
of RN = PLUP,U---UP, into k mutually exclusive phase regions P, C RV (i = 1,2, ..., k).
LetT := U{v;:47=1,2,...,k}, where v;; = 7;; denotes the interface between phases
P; and P;. Set up reference vectors p; corresponding to each phase P, as unit vectors of
dimension k — 1 pointing from the centroid of a standard k-simplex to its vertices ([19]).
Note that this choice of reference vectors imposes symmetry.

Definition 1. For € > 0, we define the signed distance vector J, : RY — RF~! by:

be(z) == Zk: ll — min (1, d"i“”))] pi,

i=1

where d; := dist (z, P;) denotes the distance of point z to phase P,

One can readily verify that for any point z € ), the following is true for any pair of
reference vectors p; and p;:
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1. If B(z,e) N (P, U P;) = 0, then 6. (z) - (p; — p;) =0.
2. If B(z,e) N (P, U P;) # 0, then

K e—di(z), B(z,e)NP=0

6s($) (pi—pj) = —0 dj(.’l,‘)——E, B(x,g)r]R. =@
e(k—1) d;(z) — di(z), otherwise.

where B(z, €) denotes e-neighborhood of z.

In view of the last identity, the vector-valued J. can be interpreted as a multiphase exten-
sion of the scalar signed distance function. Moreover, we note that on interface -;;, the signed
distance vector 4. is defined as the sum of reference vectors p; and p;; while on regions
away from the e-tubular neighborhood of interface I, d. reduces to the reference vector p;
corresponding to its phase location i.

The multiphase BMO algorithm using signed distance function ([19], [17]) reads now as
follows:

Algorithm 1 (Signed Distance Scheme). Given an initial interface network I'y :=
U{mj 4,7 =1,2,...,k} and a time step size At > 0, we obtain its mean curvature flow ap-

proximation by generating a sequence of time discrete interface networks {I‘m}x=1 at times
t =mAt (m=1,... M), as follows:

1. InitiaLizaTioN. Construct §, with respect to I'y; ;.

2. DirruUsioN STEP. Solve the vector-valued heat equation until time At:

{ u,(t,z) = Au(t,z) in (0,00) x R, (1)

u(0,z) = é.(z) on{t=0} x RV.

3. ProJecTiON STEP. For each z, identify the reference vector p; closest to the solution
u(At, z), that is,

Pi-u(At,z) = max p;-u(At,z). @

This redistribution of reference vectors determines the approximate new phase regions
after time At, which in turn, defines the new interface network I',,,.

S Formal analysis

In this section, we estimate the normal velocity of an interface subjected to our algorithm and
show that indeed, it evolves according to mean curvature flow. Moreover, we give a stability
analysis of triple junction under the proposed scheme.



S.1 Interface velocity

Theorem 2. Letz € T == |J{v;; : 4,7 = 1,2, ..., k} C R¥ such that there exists a unique
pair (i, j) for which z € =;;. Then, the normal velocity v of interface I at x evolving via SD
(signed distance) method is

v(z) = —k + O(At), as At — 0,

where k is (N — 1)-times the mean curvature of T at .

Proof. For simplicity, consider N = 2. Fix € > 0 and select an arbitrary point z € R? on the
interface. Without loss of generality, assume z € +;;. Now, rotate and translate the coordinate
system so that z = 0 in the new coordinate system and its outer normal 7 lies in the positive
To-direction.

T2

By

Z1

Figure 4: Diagram of the interface for the velocity derivation.

Choose 7 > 0, small enough so that the open ball By := B(0, 2/27) contains only phases
P; and P;. Assume that there exists a smooth function f : R — R whose graph (z1, f(z1))
describes interface ;; inside the ball By. Hence, if k := k(z1, f(z1)) defines the curvature of
the interface ;; at point x := (z1, f(z1)), then

f0) = 0
o) =0
f'0) = —&(0) =t -«
Consider @ := [—7, 7] x [—7, 7]. Assume further that every e-ball in ) contains a portion of

interface v, that is, Vo € @, we have B(z,e) NQ N P, # @ and B(z,e) NQ N P; # 0, such
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that
di(z) = dist(z,%; N Q), if z€e QNP
dj(z) = dist(z,v; N Q), if re@NP,.
In this setup, we see that a suitable choice for 7 < %

Let u be the solution of the vector-type heat equation
w(t,z) = Au(t,z) in (0,00) x RV

u(0,z) =up(z) on{t=0} xRN,

For simplicity, denote ¢ = At. Then, the normal velocity v of interface +;; at point z = 0
obtained from SD method can be found from the relation

u(t,0,vt) - (pi — pj) =0.

Hence,
z-g() vt!
= de =: I +11I.
47r t / -/1;2\62 p]) = +

Using the remarks on definition 1, we show that the second integral /7 is exponentially small:

]_ _ z-—!o vt“z

|11 < 4— 0e(z) - (Pi — Pj)le dz
7t ]R2\Q

z{+(zg—vt)
ey o
—147ft R\(-r)  JR\(=77)
ol [ [yt ]
Ce™ u

<

€)

Some of the estimates used in this proof are shown at the end of this section. On the other
hand, since the e-neighborhood of every point 2 € @ contains both phase P, and P;, it follows
from the second remark of definition 1 that

I = __}_/ k d](x) _ dz(-T) e |z—g2,tut2|2 dz
47Tt k —_ ]_ £ €

lz=(0.v)2
= dist 5 t
“5(’c —1)4nt ./QnP ./QnPJ stz NQ)e™ e da
k 1 Lz_-iwll_
= —— _~ | d
e(k — 1) 4nt _/Q (z)e” 4z, @

where d : R? — R is the scalar signed distance. Now, applying the Taylor expansion of the
scalar signed distance (cf. [6]) at z = 0, equation (4) becomes

k 1 z—Ovt
I = i et deed) + (st = pisti) +0 (of) =4

k
= E(—k—-_l)[ll+l2+l3]'
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Note that forn = 1,2, ..., integrating by parts yields

1 =3
— e Fdr, = O (VT + V)" e &
vt /R\( — 1 ( ( ! )

and

1 _""2__“.)_ 2
xhe” dzy = (\/Z T+ \/Z)"‘le"ﬂ) :
Vit Ja\-rn) o (

We use these bounds to estimate the first integral /, as exhibited in the following claims:
Claim1. I, = (v+K)t+ O ((1+T+\/—)\/_6 4t) ast — 0.

Indeed,
_le=@u)? 1 (zg—ve)?
It - (mz—i—%m’f)e i dr = T/xze dx2+2 ,__/ xle 4td:z1
= Zo +vt)e 4tdz + Kt = vt + Kt.
2\/— ( 2 2
Moreover,
1 [z~ (0,vt)|2 1 z2 (wg—vt)2
—/ Zge” - dy < e /e"i'}dxl-/ mge__zﬂ’t"dxg
imt Jrang Amt | Jr IR\( 1)
_ot)?
+/ e 4td9:1 /zge _z_t)dzg
]R\(—TT)
< 1-vte~ T+e @ |v|t
>
< C (\/Z-i-t) e w,
and
z—(0,t)2 oo =2 2g—vt)2
i‘/‘ lnx%e‘u%u‘dx < = [/ x?e‘ﬁdxl-/ e 5 4,
At Jra\q 4t R\(—7,7)
—ot)?
+/ xle 4tda:1 / _z_t)da:g]
R\(—7,7)
< K [_t'e_?" + V(T + \/i)e"ﬂ : 5]
)
< Cvt (T + \/f) e ®

which proves the claim.
Claim2. I, = —vk?t2 4+ O (\/f('r + \/Z)Ze’z—f), ast — 0.

Indeed,

1 _]z—!O vt! 2 K,z o ﬁ z—ut)2
— [ (3K} — 1x%3z0) € dr = —— i wdry [ z9e” dzsy
47rt R2 47rt 0 R

2 2
Kkt _%2
= - (zg + vt) e” % doy = —vK’t?.

2v7t Jr
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Moreover,
]_ [z—(0,vt) 2 C z2 (= —1;15)2
— / thoTde” el < = / m?e_?%da:l . e dzy
47t Rz\Q 47Tt R\( 7,7)

—ut)?
+/ Tie” @ d:El / _LL_diEz
R\(—1,7)

< 0\/(7+\/) e F,

and
z—(0,v: 2 oo z2 Loy = )2
—1—/ —-%n%%xze‘L‘%_tu‘dx < i / x%e_itldml-/ xze_LL“t_dzz
47t R2\Q 4mt 0 R\(~7,7)
z? (zz—vt)2
+/ :Bfe_?tlda:y/xge' i dxg
R\(~7,71) R
< C[ e4t+\/'('r+\/-)e @ |v|t]
< CtVt (7‘ + \/Z) e_:_t,

which proves the claim.

Claim3. I3 = O (t?),as t — 0.
Indeed,

II3| S /le 2| =+(z2—vt)

!zz—v )2 23 o0 (12‘” )
< / :v‘lle 4td:z:1 /e‘ : da:2+/e_7%dx1-/ xée‘ : dz
4t | Jo R R 0
o0 o0 4
< Ct [/ tie~"dr, +/ (|zz| + \/Z) e"‘gd:m] :
0 0

Hence, |I3] < Ct?; thereby, proving the claim.

Finally, it follows from equation (3) and all three claims that

0=T+1I= s [(v+n)t+0((1 T4 \/Z)\/Ze—z—f) + 0(t2)] +O(e"%).

This gives
72
v= —n+0(t+(§+1\/121+1)e‘ﬂ) ,
ast — 0.

§ Some useful estimates

We now prove the estimates used in the proof above.



Lemma 3. For any o > 0, we have

[o o]
—z2 1 —a?
/e dx < 3/me” .
a

Proof. Note that z > o > 0. Then, 22 = (z — a)® + 2az — o? > (z — a)® + o®. Hence,

& 2 2 o 2 2
/ e¥dr < e / e" = dy = 1 /me=",
a o4

Lemma 4. Foranye > (,

1 / Sz_vtﬁ _z2
der=0 (e T ),
Vat Jurn) )

ast — 0.

Proof. Applying lemma 3 yields

l ]. __(_z—4vt!2 d
€ t T
Vart JrR\(~77)

Lemmas. Foranye >0andn=1,2,...,

2

e Tdr =0 (\/t_f(r + V)" 16—27)

] 1

Vit Jry-rn)
T—V 2

/ se~ S dr = 0 (\/_(T-{-\/_) T)

R\(~7,7)

P 1
WAt
ast— 0.
Proof. Forn =1,2,..., we have
22
e sdx

I —’ < C(\/Z)"/ |z|" e dx

T
2V

V4mt »/Il;\ (=7,7)

©)
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Applying integration by parts and lemma 3, we have for a = 'ZL\/Z’

k
00
2 1 2 (n—-1)(n-3)-(n—2i+1) . _o; 1 _.2
/:L‘"exdx=%anle°‘+§: an2zlea
a

it1
i=1
2
N f:’f *“dz, n, even,
e ™, n, odd.

B (=1)(n=3)(n—2i+1) ®e-2*dr. n, even
_ 1 -1_—a? _ —9)\n— 3 ) 3
= Ean e 1+ ; %ig2i + { egaz’ n, odd.

< Clat+a" P4+ o141 o2

where k = 22 when n is even and 252, otherwise. Thus,
2 2

I < ClrVi+r (Wi 4o+ 7 BV 4 (VR e
< CVi(r + Vil T, ©
as t — 0. The second estimate is shown in a similar fashion. ad

5.2 Junction stability

In this section, we establish that the SDV (signed distance vector) scheme preserves the sym-
metric (120°) Herring angle conditions at the triple junction. We utilize a similar argument as
in [6], as follows:

1. Assume a triple junction at the origin and evolve the configuration via SD method until
time ¢.

2. Locate the triple junction after time ¢ and denote this by z.

3. Determine the junction angles at the new junction location z to establish its stability.

We proceed throughout the whole section in this manner. To establish the stability of the triple
junction, we first need to write down the Taylor expansion of the convolution

F3(2) = ds(z)®i(z — z)dx
() /B(O,T)S(M )

. . 1 _=2 .
of phase distance dg with the heat kernel ®;(z,t) := me‘%‘, when restricted to some

neighborhood B(0, 7) of the triple junction.
Consider a phase region S C R x (—o0,0] bounded by two interfaces 7, intersecting

at the origin (triple junction). Assume that the tangents at the origin form a wedge ¥ with an
opening angle 26 < 7 and symmetric with respect to the negative z,-axis.
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L2

Figure 5: Distance to a wedge-like set S.

Let dg : RZ — R* U {0}, be the distance to the tangent wedge . Hence,

x1c080 + zosinf, in Rj :={z: —zcotf < :cz < z; tan 8}

ds(z) = —x1c080 + T38inf, in Ry := {z:z;cotf < x5 < —z;1tanf}
A |z|, in Ry := {z : 2 > |z1|tan 6}
0, otherwise

Remark. We list down some integrals necessary to compute the convolution:

1. /R z1P:(z)dz = —\/-7 (sinf + cos )

2. /R x2<I>t(x)dx 2\\//__ (siné — cos 6)

w

. / 21299 (z)dzr = _t cos 20
Ry T

’ 1 1
z2d xdr=t(———sin20)
| iv@as =2 (5

/ 38, (x)dzr = (sm 6 + cos ) (2 + sin 6 cos 6)
R \/_

>

N

(sin 6 — cosf) (2 — sinf cosb)

[=))
>
TS
ey
O
U
8
l
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7. / 132904 (z)dz = 1t (sin@ — cos 6) (1 + sin 6 cos 6)
R \/_

t/t

8. / 1,259, (z)dz = —= (5ind + cos ) (1 — sinf cos §)
Ry \/_

Using these integrals, we arrive at the following formula.

Lemma 6. The convolution of distance ds, to the tangent wedge Y. with the heat kernel ®;,
restricted to some open ball B(0, T) has the following Taylor expansion at the origin:

t 1 . :
F%(2) —\\/; (-g +1- 0) + - (22[ siné + cos 0) 2o+ (1 + 22) C1(t) + (22 + 23)Ca(t)
4cos’f+sin20+7—20 , 4sin’f—sin20+7—20 , )
240t
16y/7t at 16v/7t “ ( d )

where Cy(t) = O (e 4t) and Cy(t) = O (ﬁ%—‘ﬁﬁe‘z‘) ast— 0.

Proof. Note that by the above remark, we get

/ ds(z)®i(z)dz = 2cosf [ z:P,(z)dz +2 Sin9/ 220 (z)dx
Ri1UR3 Ry R

(sin@ + cos @) + sinf (sin @ — cos 0)] =

S

% [cos 6
and

B w—0 “ t T—0 _ \/Z

Moreover, since ds(z) < |z|, then we have

27
ds(z)®s(z)dz| < d d
/R2\Q s(z)®i(z)dz| < 47rt / rle"wdrde
< C\/Z/ rle
PN
= OVt [—%re"zoi +%/ e_'zdr]
1_2
< C (T + \/Z) e T,
Thus, F5(0) = % (3 +1-6) + 0 (re"% ), as¢ > 0.
Since dy, and ®, are symmetric with respect to z; = 0, then
2, 1
/Rz ds(z) az—;@t(z — ) . dz = % Je xldg(ay)@t(m)dm =0,




hence, the partial derivative F;°(0) = O(e’i_:), ast — 0.

On the other hand, we see that

/ sl s(z =)

dz = E / T3 (71 cos 0 + z2 sin 6) D4 (z)dz
Ry ’

2=0 t

1 )
= —=cosfcos20 +sind (3 — 1sin26)

T
= %sin9—100s0
and
/R ds(a) %@t(z—x) i - 21t ds(a)0(z)e
- L / nosinqbdcﬁ—l— / " e Fdr
= 2[cosf — cos(m — 0 ]Of e~ dr = 2 cos .

Similarly,

0
d —®(2 -
S 258 (=)

Hence, the partial derivative F;-(0) = 7 sin6 + £ cos6 + O(e‘%f'), ast — 0.

z=0

Continuing with the quadratic terms, we have

2 2
/ do(@) L@z —2)| do=1 / ds(z) (— - 1) ®,(z)dz
RiURy azl z=0 t Ry

-1 / 3 (1 cos @ + 3 sin 0) O;(z)dz — % ds(z)®i(z)dz
R

22 Ja,
= 2\}% (sin 20 + cos? 6) ,
and
82
[ o) stz )| de= g / 12| (o — 2t) By()dz

26— -5
2t47rt/ / 7‘ cos” ¢ 2t)e imidodr

w—0 00 2
4 nd/ 2 pdg — 2t —9/ 2e~dmid
167rt3[/0 rie amidr ) cos® pd¢ (m )0 rUe 4mar

1
=8\/ﬁ[7r—29—-3sin29].

27
2t47rt/ / 2 sin ge™ 4trdrd¢ O(e” 4t).
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Moreover,
6 1 2 1| _Ep
d —®,(z — d L — — _ _le i d
/ o) 0= el < o [ pal| - ol
< % j 2(:—2+-)6 @ dr
< < (r*+7r*) e dr
Vi
< A [(r3+r)e"2’°i +/ e dr]
Vi y
™ 7 1 2
—+—)e =
< C(t2+t+\/i)e z

Hence, the second partial derivative

2
F5(0) = (4cos® @ +sin20 + 7 — 20) + O (t—z(T + \/2)36‘3) , as t— 0.

1
8/t
Similarly, we get F33(0) = 3= (4sin® 6 —sin26 + = — 26) + O ( “2(1 +4/t )%-v)
t — 0. In addition, since

I1T9
= 52 2(2)

z=0
then by a similar symmetry argument, we have F5(0) = 0.

Finally, since dy is 1-Lipschitz, then for k¥ > 3, we have

POl = | [ dolo) g lolis

8k -1

<

- /R’ 61:11: ( ) 8 ,,;161','2 ---ax;k_l Qt(x) d.’L’
22

< C’— Tt d

- Vant /(; ¢ o1

i-k 0 1—k
< CtT / eh-le®dz, < Ct' T,
0

for some constant C' > 0. Finally, putting these values together yields the desired Taylor
expansion at the origin

F*(2) = F*(0) + FE(0)z + FE(0)z + $FR(0)2 + +FB(0)z12 + }F3(0)28 + O(£2),

ast — 0. O

We are now ready to set up the convolution of the phase distance.



Proposition 7. The convolution of phase distance ds with the heat kernel ®,, restricted to
some open ball B(0, T) satisfies the following Taylor expansion at the origin:

t 1 1
FS(z) = % (1 +1-6+ C(t)) +C(t)z1 + — (zr_ sin0+cosa+C(t)) z2+ 7C(t)z1z2
4 cos? 0+sm20+1r—20+0(t) +4511112‘9 sin26 + m — 260 + C(t) 2+O(E)
16v/nt 16v/nt t )’

where C(t) = O (v/t), ast — 0.

Proof. We can assume that
lds(z) — ds(z)] < H(BSNB(0,|z]), 05N B(0, |z])) < C|z|?,

as z — 0. It follows that

[P0 PO < [ ldste) - do(o)| Du(a)a
< C’/ |z|? <I>tz—zd13<— e 4tdr<Ct
4rt
as t — 0. Similarly, for k£ > 1, we have
o o
P 0) = P, 0] = / 952) = A2l o B 0, O
2 o*
< : ® d
- ¢ R2 |il?| al'ila.’l,‘h tee Bxik t(m) T
0 2 _
< tk% A r*H8e~%dr < Ct°T,
as t — 0. Finally, adjusting Lemma 6 to the above estimates yields the desired result. a

For simplicity, take N = 2. Consider a triple junction of a k-phase network where three
interfaces meet, say 12, 13 and 7,3. Let 26; be the interior angle of phase region P,(i =
1,2, 3) at the triple junction. Without loss of generality, translate and rotate the whole plane
IR2 so that the junction is at the origin and P;-boundary interfaces -y;, and ;3 make an angle
of 01 € (0, 7) with the negative z, axis. Choose 7 > 0, small enough so that P, N B(0, 7) is
in the lower half plane with

B(0,7)c{z € AUPRUP;: B(z,e)NP,#0(i=1,2,3)}

and such that for any z € P, N B(0,7)(¢ = 1,2, 3), the distance to phase region P;(j # 1)
satisfies d;(x) = dist(z, y;; N B(0,7)).

We then perform one step of the SD method with time step £. At time ¢, we determine the
location z of the triple junction by solving

u(t,z)- (pr—p2) =0
{ u(t,z) - (p1—ps) =0 @
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where u solves the vector-type heat equation (1), that is,

u(t, 2) / / (2)®i(z — 2)dz =: T + 1I.
B(0,7) R2\B(0, 1')

For any distinct 7, j € {1, 2, 3}, we have by the remark on Definition 1,

2w
—2rscos(f—w)+s
\IT-(ps — p;)| < _MM// pe-timeepemate® by

< —/ (r+s)e” 4tdr<Cle T,

where 2 is written as (s, w) in polar coordinates. Moreover,

I-(Pi—py) = —— / 4(2)~di(a)) B(a—2)da = - (k’“_ S[PE) - ).

e(k—-1)

B(0,7)
By Lemma 7, we have
FY2) = 01)\f t+ B(61)z + 5 D(61)2 + - E(61)7
() (VE+ 21+ 22 + Fz1z) + O 2fP) =: B(61, 21, 22)

F%(z) = ,3(62, — cos 0321 —sin 032, sin 32 —cos f323)
F3(2) = B(03, cos 032, —sin p.25, — sin B 21 —cos G2 25),

where

=2 (2+1-6) D)= 16\/-(4cos 6 + sin 26 + 7 — 26)
2

1
s
B =%( sinf +cosf) E(6) = (4sin? 6 — sin 20 + 7 — 26)

16\/_

34

(®)

(10)

and () = O(v/t), as t — 0. The expansions for £ and F® are obtained from F* by

(61+02)-counterclockwise and (#; + 63)-clockwise rotations, respectively.
Remark. From (7), (8), (9) and (10), we deduce the following:

1. If6; = § (i = 1,2, 3), then z moves with a speed of at most O(1).
2. If 6; = 5 4+ O(1) (i = 1,2, 3), then z moves with a speed of at least O(%E}

Lemma 8. After time t, the triple junction moves via SD method from the origin to the point

= (21,22).'
n = 34+2"f/-(292+91—7r)+0(5\/—+t)
B = A (60— 3) +0(6VE+t),

where § = max (6, — §,0, — %).



Proof. Using expansions (10) and relations (8) and (9), we rewrite equation (7) in terms of
& = —%z,-, as follows:

0 = ao+boé1 — ol + O(VE+ €)%

0 = a1 —b&—ab+0WVi+|¢P)

where a; = 71-1? (91 —0@'4_2), bz = B(0i+2) sin 03,1;, and Ci= B(91,+2) Cos 03-1+B(01) fori = 0, 1.
Note that

boci + bico = ( )B(3) + O(9)
Coa1 — QgpC1 = ( ) ( 9 + 91— ) + 0(52)
a0b1 + a1b0 = (01—-) + O )

where § = max(0; — §,6; — §). Thus, we get

3

Coa1 — ApCy 20, + 0, —
= — 22+ 0t T L0 +VE), ast—0
& boc1 + bico (Vi) = \/_B(g) ( )
apbi + a1bo 01 —
= —— 240Vt 3 +0(6+ /1), ast— 0.
62 b061+b160 ( ) \/_B(%) ( )

d

Next, we look at the effect of the evolution after time ¢ on the phase interior angles of
the triple junction located at point z := z (6;,0;) given by Lemma 8. Consider the map
© : R? — R? which defines the junction angles at time ¢ as follows:

1 N3, - N Niyg - N.
©(6,,0;) = - cos—l(____?l___m_), cos‘l( 12 * {Va3 )) ’
(61, 62) 2 ( [| Naa [|[[ V12| (| N12|[[| Nos||

where the normal N*¥ to interface v;; (4, 7 = 1, 2, 3) is defined by

NY(z) = (u(t 2) - (pi — P))
= e(k 1) (F]( ) Ff(z)v Fg(z) - le(z)) + O(e—"}[)’ t—0.

Here, the partial derivatives of F** are computed from expansions (10) as follows:

FL(z) = %D(Ol)zl + C1(z,t)

lez (2 = B()+ %E(ﬁ)zz + Ca(z,t)

F2(z) = B(6;)sinés+ % [H(62) cos? 65 + E(oz)] 21+ %H(Oz)sin 20322 + C1(2,t) )
Ffz (z) = —B(62)cosbs+ 7H(02)sm 203z + — [H(Og) sin? 03 + E(62)] 22 + Ca(z,t)

Ffl (z) = —B(63)sinéz + 7 [D(83) - H(63)sin? 92] z1 — 711(03) sin 26222 + C1(z,t)

Ffz (2) = —B(63)cosbp — 7H(03) 8in26221 + — [D(03) —~ H(83) cos 02] z2 + Ca(z, t),

where H(6) := D(0) — E(6) and C;i(z,t) := O(v/t + z]|z|t™),as t — 0.

We now establish the stability of triple junction in the following theorem:
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Theorem 9. Let (91, 52) := ©(01, 65), be the junction angles after time step At. Then, there
exists a 2 X 2 matrix M whose largest singular value o < 1 such that

[?l‘g]=M[91:§]+0(52+\/At), (12)
3 3
as At — 0. Here, § = max(6, — 5,0, — 5).

Proof. For convenience, we write ¢ instead of At. Using the Taylor expansions (10), we see

that at point 2 := 2(3, §), we have

IN2] = |[N*) = IN*!]| = 55 B(5) + O(VA))

and
2
NN = N2 NP = (RE () +OV),
ast — 0. Hence, ©(%, %) = (£, %) + O(V1),ast — 0.
On the other hand, write © := (3 cos™ ¥, 1 cos™! ¥2). Hence, ¥¥(%,%) = —3, fori =

1,2. Now, using expansions (10) and Lemma 8, we arrive at the following partial derivatives:
‘I"}h(%v §)= “N12II_2[(N31—\I11N12) N92 T 1) (NIZ_\I,IN31)_N311(§, %r_)]

33
V3 B'(3) , 2v3E(5)-D(3) _.
e 1+V3 B Tt 33(%)2 3 ]+O(\/Z)—.a+0(xft),

ast — 0. In a similar fashion, we get ¥} (%,1) = O(v?), ¥2(%,3) = O(v1), and
V2 (3,%) = a+ O(Vt),ast — 0. It follows that

pez.3=—%|§ 2] +owd,

ast — 0. Take M := —@alz whose singular value o = ?a ~ 0.2451 < 1. Finally,
equation (12) follows from the Taylor expansion of © near (%, ). O

The above theorem guarantees that at every time step of SDV algorithm 1, the phase in-
terior angles at the triple junction that are initially close to the symmetric configuration will
always tend to get closer to 2% with an error of order v/At. In particular, 6; = 2+0(6++v/At).
Thus, we see that it stably i 1mposes the symmetric Herring condition at the tnple junction.
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