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1 Introduction

This note is concerned with large time behavior of the global solutions to the damped
wave equations with a nonlinear convection term:

(1.1) U — Uy + Ut + Uz + (f(u): =0, z€R, t>0,
(1.2) u(z,0) = up(z), w(z,0) = uy(z)
where | & |< 1 and f(u) = Su? + u®. The subscripts ¢ and z stand for the partial

derivatives with respect to t and z, respectively. In Ueda and Kawashima [8], it was
shown that solution of (1.1) and (1.2) tends to a nonlinear diffusion wave defined by

(1.3) ! (“’_a(Ht)), zER, t>0,

X(ﬂ.’:, t) = \/mx* \/i_-i-_t
where
VB (M)
(14 x:(@) = B /T + (eBM/2n — 1) f:/"m e Vdy’
(1.5) M= / (uo(z) + m(z))dz, p=1-al.
R

By the Hopf-Cole transformation in Hopf [2] and Cole [1], we see that it is a solutions of
the Burgers equation

(1.6) xt + (ax + §X2)z = UXezy, TER, t>0,

satisfying

(1.7) /Rx(:z, 0)dz = M.



We set, for 1 <p<ooands>1,

Eg? = lluollwes + l[uollzs + lullwe-1 + s 2,
B = J[uollwas + [[uollzy + luallwe-ro + a3,
Eés,p) _ E§s,p) + E§2’l)-

Concerning the convergence rate of the nonlinear diffusion wave x(z,t) to the original
solution u(z,t), we can infer the following result from the argument given in [8]: For any
€>0,if ug € W N L} and u; € LP N L} and E(gl”’ ) is small, then we have

(1.8) 164 u(-, ) = X(,)llze < CE(M (14 ) 755+

for { = 0,1. Here, W*? denotes the space of functions u = u(z) such that &.u are LP-
functions on R for 0 < I < s, endowed with the norm || - ||ws», while L}(R) is subset of
L'(R) whose elements satisfy [Jul|z: = [ lul(1+ |z])dz < oco.

This observation lead to a natural question whether it is possible to take e = 0 in (1.8)
or not. The aim of note is to show that the optimal dacay rate by studying the second
asymptotic profile. Indeed, the second asymptotic profile of large time behavior of the
solutions is given by

(19) V(z,t) = —kdV. (9”:—\;?1-_(;;—“)) 1+ 'log(2+1), t>0, zeR,
where
(1.10) Va(s) = V%ax(nxx)e-#),
(L11) n.(z) = exp (—2—% / x*(y)dy> ,
af? 1

Then we have the following result.

Theorem 1.1. Let s > 2 and 1 < p < 0o and assume that ug € WP N w2ln L}
and uy € W N WU N LY. Let u(z,t) be the global solution of the problem (1.1) and
(1.2) constructed in Proposition 8.1. Then, If ESP + E&Y s small, then we have the
following asymptotic relations:

(1.13) 16 (u(-, 1) = X(, ) = V(-, 1) l1» < CESP (1 +1)733 5%,

for0<Il<s-2.
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Using (1.10), (1.11) and (1.12), we can see that if M # 0, then d # 0, Vi(z) # 0.
From (1.9), we have

(1.14) 18V () ||s = Kdl|BEVa(e) || o (1 + £) 354 log(2 + 1).

Hence, we see from (1.13) and (1.14) that we can not take e =0 in (1.8) unless kM # 0.
We remark that the estimate similar to (1.13) was obtained for Burgers equation such as
the generalized Burgers equation in Kato [6] and KdV-Burgers in Hayashi and Naumkin
[4] and Kaikina and Ruiz-Paredes [5], and Benjamin-Bona-Mathony-Burgers in Hayashi,
Kaikina and Naumkin [3].

2 Basic estimates

To state the results, we introduce the modified heat kernel:

1 _{z—at!z
2.1 (; t = 4ut
( ) 0(“2:’ ) /47T“te #

which is the fundamental solution to the linear heat equation w; + cw, = pwz,. We show
following two lemmas. The first one is conserned with LP — L? estimate for the solution
operator Go(t)*. For the proof, see [8].

Lemma 2.1. Let1 < ¢ <p < oo, and k and !l be nonnegative integers. Then we have
(2:2) 16405 Go(t) * @llz» < Ct™3G=5 D)) 1o,
Also, if [ ¢(z)dz =0, then we have
(2.3) 10505 Go(t) * @llze < CE 34750 (1 1 1) 73]y

The second one is related to the diffusion wave x(z,t). The explicit formula of x(z,t)
is given by (1.3). It is easy to see that

(2.4) | x(z,8) | C| M| (1+¢t) 2~ @Eed?/@u+t) gz cR  t>0.
Moreover, we get the following (see e.g. [7] and [8]).

Lemma 2.2. Let k, | and m be nonnegative integers. If |M| < 1, then, for1 < p < oo,
the estimate

(2.5) 18 + ad,)m -0 x (-, t)|l» < C | M | (1 4¢) 305 +k+i+2m)

holds.
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For the latter sake, we introduce 7 defined by

(2.6) n(z,t) = n. (x—%:rtl) = eXP(gﬁ; /_ ; x(y, t)dy).

We easily have

2.7 min{l,e 21':[} < n(z,t) < max{l,e 2]:},
-BM 1 _BM

2.8 min{l,e” % } < < max{l,e % }.

(2.8 {Le ™} < s <max{l e %)

Moreover, we get the following corollary (see [6]).

Corollary 2.3. Let ! be a positive integer. If |M| < 1, then we have
1 ' _1g-1
(2:9) 1820, Dl + 1185 (., Dllzs < CIMI(1+ )73,

Next, we deal with the following linearized equation which coresponds to (3.6), (3.7)
below:

(2.10) 2+ (0z+ BX2)s = U2ze, TER, t>T,
(2.11) 2(z, ) = z(x).

The explicit representation formula (2.12), and the decay estimate (2.14) and (2.15) below
play a crucial role in our analysis. For the proof of Lemma 2.4, Lemma 2.5 and Lemma

2.6, see [6].

Lemma 2.4. If we set

Ulul(e, ) = [ aulote 0Go(@ ~ st =) [ wierasa,
(2.12) zeR, 0< 1<,

then the solutions for (2.10) and (2.11) is given by
(2.13) 2(z,t) = Ulz)(z,t,7), z€R, t>T

Lemma 2.5. Let 1 < p < oo and | be a nonnegative integer. Assume that | M |< 1,
2 € Li(R) and [ z(z)dz = 0. Then, the estimate

(2.14) 185U 2] (-, £, 0) || < C™ 235+ lzoll 3, >0

holds.
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Lemma 2.6. Let 1 < p < oo and | be a nonnegative integer. Assume that | M |<1,
29 € WHP(R) N L'(R). Then the estimate

(2.15) 18U 0]+, 8, 0)llr < C(1+ )77 ((lz0ll 12 + 1 2ollwe)
holds.
From Lemma 2.5 and Lemma 2.6, we get the following uniform estimate.

Corollary 2.7. Let 1 < p < oo and | be a nonnegative integer. Assume that | M |< 1,
z € LYR)NW' and [ zo(x)dx = 0. Then, the estimate

(216)  [|18LU20](-, 1, 0)lze < C(1+)"C752(|| 26113 + [lz0llwes), >0
holds.

In order to prove Proposition 3.5, we prepare the following lemma.

Lemma 2.8. Let 1 < p < oo and l be a nonnegative integer. Suppose | M |< 1. Then
the estimates

(217)  BLUB)(@,t, T)l|es < Ot — 1) C3H 2II%w(-, 7)llz1,

l
(218)  [|8UIB.w](z,t, Tl < Clt~7)72 ) (1 +t)‘(‘"")/?lla;"(%w)(-,r)lle

m=0
hold.
PROOF. From (2.12), we have
a:lvU[a-’Ew](x’t)T)
+1-n 1
2.19 = Cn0 " (z, t /a;‘G T—yt—T w(y, 7)dy.
(2.19) ;z n(z,t) A oz —y )n(y,T) (y,7)dy
From Corollary 2.3, it follows that
. I+1
(220)  ||BLU[Bw(T)](2, t, 7)o < C D (1 +1) CHIRYGRI( 8, 7)o,
n=0
where we put
1
2.21 I(z,t,7 =/G z—y,t—17)——w(y, 7)dy.
(2.21) (z,t,7) RO( y )n(y,r) (y, 7)dy

First, we shall prove (2.17). From Lemma 2.1, we have

—(1—i4n 1
(2.22) N2t ) < C(t—7) 075" Wu;w(-,r)up.



71

Therefore, by (2.20) and (2.22), we obtain (2.17).
Next, we shall prove (2.18). From Lemma 2.1, we have

(2.23) Gt )l < Cllw(:, 7)o

In the following, let 1 <n <[+ 1. From (2.2) and (2.9), it follows that

(2.24) 1021, 8)lr < Ot — 1) uas-l(%wx-, llze.

Therefore, by (2.20), (2.23) and (2.24), we obtain (2.18) This completes the proof. = O

3 Proof of Theorem 1.1

We prepare the following two propositions concerning the decay rate and the asymptotic
profile of the solution to the problem (1.1) and (1.2). All proposition stated below were
proved mainly in [8].

Proposition 3.1. Let s > 2, 1 < p < oo. Assume that ug € W N L, u; €
We2 N L' and ESP is small. Then the initial value problem for (1.1) and (1.2) has a
unique global solution u(z,t) with

C([0,00); WP N LY, 1<p<oo,
t
u(il', ) € { L°°((0,00); Ws,oo) N C([O, OO);LI), p = 00.

Moreover, the solution satisfies
(3.1) lu(-,t)llze < CESP,
(3.2) 10508 u(-, )| < CESP (14 1)720-5+k+)
fork=0,1,2 and0< k+1<s.

Proposition 3.2. Let s > 2, 1 < p < oo and assume that ug € W N L} and
u € WeWP N L], Let u(z,t) be the global solution of the problem for (1.1) and (1.2)
constructed in Proposition 3.1. For any € > 0, if E$*P) is small, then we have

(8.3) lu(,£) = x(, 8)llz < CESP (1 4873+,
(3.4) Hai;af(u - X)(‘, t)”LP < CEfs’p)(l + t)-%(2—%+k+l)+e

fork=0,1,2 and0<k+1<s.

Corollary 3.3. Assume the same condition as Proposition 3.2. For any € > 0, if
ES™® is small, then we have

(3:5) 188 + ada)(w = X)(, D)l» < CEPP (1 + 1) 26 5¥0e

for0<I1<s-—2.
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PROOF. We get from (1.1) and (1.6)
@ +ad)(u—x) = (=6 +)(u—x) - g(uz ~x")a = (%u"‘)z
—(8; — ad;) (8 + ady)x.

Hence we derive (3.5) from Proposition 3.2, Proposition 3.1, Lemma 2.2 and (1.6). This
completes the proof. O

In order to prove our result, we introduce the following auxiliary problem:

(3.6) v + (ov + Bxv)e — gg = —n(x3)m, z€R, t>0,
(3.7) v(z,0) = 0.

Here & is defined by (1.12). We show the asymptotics of the solution of the problem (3.6)
and (3.7). For the proof of Proposition 3.4, see [6].

Proposition 3.4. Assume that | M |< 1. Then the estimate
(3.8) 1B (v(-t) = V(- t)lomy < C | M [P (1 41¢)"@ 5072
holds.

To prove Theorem 1.1, it is sufficient to show Proposition 3.5 below by virtue of
Proposition 3.4.

Proposition 3.5. Let s > 2, 1 < p < oo and assume that ug € W N W3 N L1
and uy € WP N Wl N LY. Let u(,t) be the global solution of the problem (1.1) and
(1.2) constructed in Proposition 3.2. If E&™® + E*Y is small, then we have the following
asymptotic relations:

(39) 195 (u(2) = x(,8) = 0 )lz» < CEPP(14)7305 %0
for0<i<s-2.

PROOF. From (2.6), we obtain

2
K'Xs = (i + 31) X3 = 2a(IBXX.1: NXzz) + 3|X + 77( gl( ))a:;

4
where
a
(3.10) g1(x) = 2apx: — 7ﬂx2-
We put

(3.11) w(z,t) = u(z,t) + u(z, t) — x(z,t) — v(z,t).
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Then w(z,t) satisfies

(3.12) we + (ow + BXW)s — Pz = (9(4,X))2; T ER, >0,
(3.13) w(z, 0) = wo(z),

where we have set wo(z) = uo(z) + u1(z) — xo(z) and

(319 gy = 77(%91(X))z+gz(u,x)
g2(u’ X) = a(at + QBZ)(U - X) + IBX(Ut + aXz) - ,u'(ut + aXz):z:
(3.15) B0+ 2w )

Since uo(z), u1(z), x(z,0) € WP n Wl N L}, we have wo(z) € W » nWhin L1,
Bisides by (1.5) and (1.7),

(3.16) /wo(x)da: =0.

To prove (3.9), it is sufficent to show the decay estimate (3.17) below by Proposition 3.1,
Lemma 2.2, Proposition 3.4 and (1.14).

(3.17) |bw(, D)l < CESP 3034,

For nonnegative integer m and 1 < g < oo, we get

o2 o)l < €D+ ok D)l

k=0
(3.18) < CIM|(1+1¢)" 3@ a+m),
We shall show that for 0 <m <s—2
1 (2,1) “34e
(3.19) Hﬁgz(-,t)llu S CEP7(1+1¢)7327,
1 ) —2(4—=4+m)+e
(3.20) 197 (L92)( )z < CE{™ (14 8)3054mw,

We shall prove only (3.19), since we can prove (3.20) in a similar way. From Lemma 2.2,
Proposition 3.1, Proposition 3.2 and Corollarry 3.3, we have

e 8) (e + axa) (5 )l < lIx( )l (10e(u = x) 5 E)llzr + [1(8s + adz)x (-, t) 12
(3.21) < CEPY(1+41) 2t

[l(ue + oxa)s(, )l < [10a0:(u — Xx) (s )ls + [102(8s + a8z )x (-, ) 2
(3.22) < CE®V(1+1) 2t
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e =x)?C 0l < N = ) O)llzell(w = x)( 8l
(3.23) < CEPY(1 +1¢)3te,
I@® = X))l < ClW?Cy )l + IIXPC )z )l (w = x) (- 8)l s
(3.24) < CE®Y(1+1)-2te,

Summing up these estimate, we obtain (3.19) from (3.15) and Corollary 3.3. Applying
the Duhamel principle for the problem (3.12) and (3.13), we have from Lemma 2.4

t
(3.25) w(z,t) = Ulwo(z, t,0) + / UlBog(u, x)(1)](x,t,7)dr, 7 €R, ¢>0.
0
For | < s — 2, we have from (3.25), Corollary 2.7 and Lemma 2.8
1w ( 1)l < CEFP(1+4)78075

I+1 t/2 1
+ O X0 Bllm [ 107 Go(t = 7) # (CarGO)C,Dlasdr
m=0 0
t/2
+C / )R g 7
1
oy / (6= )+ 9o o) s
m=0
(326) = I1+I2+I3+I4.
First we evaluate I. We have from Corollary 2.3 and Lemma, 2.1
+1 ) 1
L < Cy (4o 7 / (t =) 3= (00, Tl idr
m=0 n
t/2
< C|M|tCH / (1+7)"¥dr
0
(3.27) < C|M|t3@ M),

Next we evaluate I3. From (3.19), we have
L t/2 X
I, < CE®Viie-j+) / (1+7)-idr
0
(3.28) < CE®Vi i3t
Finally we evaluate I;. From (3.20), it follows that
(s.p) ! -4 -1(3-14
I, < CEj (t—71)"2(147)" 2" dr
t/2

(329) S CEgs’p)(]- +t)_%(2_%+l),

Summing up these estimates, we obtain (3.17). This completes the proof. O
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