Continuous semigroup structures on \mathbb{R}

YUJI KOBAYASHI, SIN-EI TAKAHASI AND MAKOTO TSUKADA

Department of Information Science, Toho University Funabashi 274–8510, Japan

Let I be a real interval. A semigroup S on I is a semigroup S = (I, *) such that the operation $*: I \times I \to I$ is continuous with respect to the ordinary topology and compatible with the ordinary order in \mathbb{R} ;

$$x \le y \Rightarrow x * z \le y * z, z * x \le z * y$$

for $x, y.z \in S$.

The following is classical.

Theorem 1 (Abel 1826 [1], Aczél 1949 [2]). Any group on \mathbb{R} is isomorphic to $(\mathbb{R}, +)$.

Two topological ordered semigroups (S, *) and (S', *') are *equivalent* if there is a homeomorphism $f: S \to S'$ which is a homeomorphism or an anti-homomorphism and is order-preserving or order-reversing.

Question 1. How many non-equivalent semigroups on \mathbb{R} ?

For $a \in \mathbb{R} \cup \{-\infty\}$ and $b \in \mathbb{R} \cup \{+\infty\}$, I(a,b) (resp. I[a,b], I(a,b), I(a,b)) denotes the open (resp. closed, half-open) interval between a and b in \mathbb{R} .

The following result means that there are exactly three non-equivalent cancellative semigroups on \mathbb{R} .

Theorem 2 (Craigen and Pales 1989 [5]). There are exactly three non-equivalent cancellative semigroups on $\mathbb{R}_+ = I(0, +\infty)$. They are (\mathbb{R}_+, \times) , $(\mathbb{R}_+, +)$ and (\mathbb{R}_+, \star) , where \star is given by

$$x \star y = x + y + 1$$
.

Let S = (S, *) be a semigroup. For $x \in S$ and $n \in \mathbb{N}$, x^{n*} denotes the *n*-th power of x with respect to *. The *order* of x (denoted by $\operatorname{ord}(x)$) is the least n such that $x^{n*} = x^{(n+1)*}$. If there is no such n, $\operatorname{ord}(x) = \infty$.

A semigroup S is nil if it has a zero z (z*x=x*z=0 for all $x\in S$) and for every $x\in S$ there is n>0 such that $x^{n*}=z$.

Let S be an ordered semigroup. An element $x \in S$ is positive (resp. negative, idempotent) if

$$x * x > x$$
 (resp. $x * x < x$, $x * x = x$).

A subset of S is positive (resp. negative) if all its elements are positive (resp. negative). Let P (resp. Q, E) denotes the set of positive (resp. negative, idempotent) elements of S. Clearly,

$$S = P \cup Q \cup E$$
 (disjoint union).

S is positively (resp. negatively) Archimedean, if it is positive (resp. negative) and for any $x, y \in S$ there is n > 0 such that $y < x^{n*}$ (resp. $y > x^{n*}$).

A nil semigroup is *positive* (resp. *negative*), if all elements other than zero are positive (resp. negative).

From now on, $S = (\mathbb{R}, *)$ is a semigroup on \mathbb{R} .

Lemma 3. P and Q are open subsets of \mathbb{R} and E is a closed subset of \mathbb{R} .

Lemma 4. For $x \in P$ (resp. $x \in Q$), the limit $\lim_{n\to\infty} x^{n*}$ is $+\infty$ (resp. $-\infty$) if $\operatorname{ord}(x) = \infty$, and the limit converges to an idempotent of S if $\operatorname{ord}(x) < \infty$.

Let
$$e \in E \cup \{-\infty\}$$
 and $f \in E \cup \{+\infty\}$ such that $e < f$.

Lemma 5. $I[e, f] = \{x \in \mathbb{R} \mid e \le x \le f\}$ is a subsemigroup of S.

The open interval I(e, f) is called *tube* if it contains no idempotent.

Lemma 6. A tube is either positive or negative.

Proposition 7. Let I(e, f) be a tube with $e \in E \cup \{-\infty\}$ and $f \in E \cup \{+\infty\}$.

- (1) If it is positive, then either I(e, f) is a positively Archimedean semigroup, or $f \in E$ and $I(e, f) \cup \{f\}$ is a nil semigroup with zero f.
- (2) If it is negative, then either I(e, f) is a negatively Archimedean semigroup, or $e \in E$ and $I(e, f) \cup \{e\}$ is a nil semigroup with zero e.

Suppose that I = I(e, f) is positively Archimedean, that is, for any $x, y \in I$ there is n > 0 such that $y < x^{n*}$.

For a fixed $a \in S$ define a real function $\phi_a : I \to \mathbb{R}$ by

$$\phi_a(x) = \inf\{m/n \, | \, m, n \in \mathbb{N}, m > 0, n > 0, x^{n*} \le a^{m*}\}.$$

for $x \in S$. We call ϕ_a the standard function based on a, and is classical for Archimedean ordered semigroups (see Fuchs [6], Hölder [7]).

Theorem 8. The function ϕ_a is an order-preserving continuous homomorphism of semigroups from (I, *) into $(\mathbb{R}_+, +)$.

Define

$$\mu_a = \inf \{ \phi_a(x) | x \in I \}.$$

Lemma 9. We have

$$0 \le \mu_a \le 1$$
.

Lemma 10. $\mu_a = 0$ if and only if $e \neq -\infty$ or $\inf \{x * x \mid x \in I\} = -\infty$.

Define

$$\tau = \inf \{ x * x \mid x \in I, \phi_a(x) > \mu_a \}.$$

Lemma 11. $\tau = e$ if and only if $\mu_a = 0$.

Theorem 12. ϕ_a is strictly increasing on $I(\tau, f)$.

Corollary 13. If $e \neq -\infty$, or $\inf \{x*x \mid x \in I\} = -\infty$, then (I,*) is isomorphic to $(\mathbb{R}_+,+)$.

More generally, we can characterize Archimedean tubes using Theorems 8 and 12 (a different approach is given in Storey [8]). Using the characterization, we can show that there are uncountably many non-equivalent Archimedean semigroups on \mathbb{R} . There are uncountably many non-equivalent nil semigroups on \mathbb{R} too, but a complete characterization of nil semigroups on \mathbb{R} seems to be difficult.

A closed interval I = I[e, f] for $e, f \in E$ with $e \leq f$ is called a *joint* if it is connected, included in E and maximal (no such J strictly includes I). If I is a joint, (I, *) is an idempotent semigroup (band).

 $S = (\mathbb{R}, *)$ consists of positive tubes, negative tubes and joints. To classify semigroups on \mathbb{R} , we need to describe all possible combinations of them, but it seems a very hard problem. Similar problems for more general structures called threads are studied by Clifford [3, 4]. The following is a certain special result in this context.

An ordered group G with identity element e is Archimedean, if $\{x \in G \mid x > e\}$ is a positively Archimedean semigroup and $\{x \in G \mid x < e\}$ is a negatively Archimedean semigroup.

Theorem 14. Let $e, f, g \in E \cup \{-\infty, +\infty\}$ with f < e < g. Suppose that I(e,g) is a positive tube and I(f,e) is a negative tube. Then, (I(f,g),*) is an Archimedean group with the identity element e, and it is isomorphic to $(\mathbb{R}, +)$.

References

- [1] N.H. Abel, Untersuchung der Functionen zweier unabhänggig verhänderlicher Grössen x und y, wie f(x,y), welche die Eigenschaft haben, dass f(z, f(x,y)) eine symmetrische Funktion von z, x und y ist, J. reine angrew. Math. 1 (1826), 11-15.
- [2] J. Aczél, Sur les operations definies pour nombres reels, Bull. Soc. Math. France **76** (1949), 59–64.
- [3] A.H. Clifford, Connected ordered topological semigroups with idempotent endpoints I, Trans. Amer. Math. Soc. 88 (1958), 80–98.
- [4] A.H. Clifford, Connected ordered topological semigroups with idempotent endpoints II, Trans. Amer. Math. Soc. **91** (1959), 193–208.

- [5] R. Craigen. and Z. Pales, The associativity equation revisited, Aequationes. Math. 37 (1989), 306–312.
- [6] L. Fuchs, Partially Ordered Algebraic Systems, Pergamon, Oxford, 1963.
- [7] O. Hölder, Die Axiome der Quantität und die Lahre vom Mases, Ber. Verh. Sächs. Ges. Wiss. Leipzig, Math. Phys. Cl., **53** (1901), 1–64.
- [8] C.R. Storey, Threads without idempotents, Proc. AMS 12 (1961), 814–818.