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On (a, 8, 7)-structurable algebras and Dynkin diagrams !
——Beyond Lie algebras to triple systems—
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1 Introduction

Our start point in a historical setting is the construction of Lie (super)algebras starting
from a class of nonassociative algebras. Freudenthal ([18]), Tits ([65]), I.L. Kantor ([43]-[45])
and Koecher ([48]) studied constructions of Lie algebras from nonassociative algebras and
triple systems, in particular Jordan algebras. B.N. Allison ([3], [4]) defined structurable
algebras which are a class of nonassociative algebras with involution that include Jordan
algebras (with trivial involution), associative algebras with involution, and alternative al-
gebras with involution. They are related to generalized Jordan triple systems of 2nd order
(or (—1,1)-Freudenthal Kantor triple systems) as introduced and studied in [43], [44] and
further studied in [5], [7], (42], [51]-[54], [62]. Their importance lies with constructions of
5-graded Lie algebras L(e, 8) = 22=~2 Ly, [Li, Lj] C L;j, including the three gradings for
the cases L_s = 0 = Ly. Recently, we have studied constructions of Lie (super)algebras
from triple systems and anti-structurable algebras ([33], [35], [38]-[41]).

As a continuation of [38], |39] we give here further generalization of structurable algebras.
Hence within the general framework of (e, §)-Freudenthal Kantor triple systems (¢, = £1)
and the standard embedding Lie (super)algebra construction (|14],{15],[22]-[24], [30], [35],
[49], [50], [61], [67]) we define (a,f3,)-structurable algebras as a class of nonassociative
algebras with involution which coincides with the class of structurable algebras for (o, §,7) =
(1,1,-1). For (a,B,7) = (1,-1,1) the notion coincides with anti-structurable algebras
([38]) that may similarly shed light on of (—1, —1)-Freudenthal Kantor triple systems hence,
by [14], [15], on the construction of Lie and Jordan superalgebras. While in this paper the

1This is an announcement note and the details will be published elsewhere



definition of (e, 3, 7)-structurable algebras suppose an underling unital algebra structure
we mention the construction of quasi d-structurable algebras ([40]) when no assumption of
existence of unit element is made.

Jordan and Lie (super)algebras ([17], [21]) play an important role in mathematics and
physics ([11], [19]-[22], [24], [34], [37], [46], [58], [59], [64], [68], [69]) and the construction and
characterization of these algebras can be expressed in terms of triple systems ([28], [32], [35],
[36], [47], [60]) by the standard embedding method. Specially, we mention the connection
between N < 8 3-algebras (or triple systems) with N-supersymmetric 3-dimensional Chern-
Simons gauge theories ([2],[8]-[10]) and Lie superalgebra constructions studied in terms of
anti-Jordan triple systems and anti-Lie triple systems ([12], [13]).

2 Definitions and preamble, structures and examples
2.1 (g,d)-Freudenthal Kantor triple systems, /-Lie triple systems,
and Lie (super)algebras

In this paper triple systems have finite dimension over a field ® of characteristic # 2 or 3.
A vector space V over a field ® endowed with a trilinear operation V xV xV — V|
(z,y,2) — (zyz) is said to be a GJTS of 2nd order if the following conditions are fulfilled:

(ab(zyz)) = ((abz)yz) — (z(bay)z) + (zy(ab2)), (2.1)

K(K(a" b)x,y) - L(y, x)K(a, b) - K(a’ b)L(:E,y) =0, (2'2)

where L(a,b)c := (abc) and K(a,b)c:= (acb) — (bca).
A Jordan triple system (for short JTS) satisfies (2.1) and the condition ([19])

(abc) = (cba). (2.3)
while an anti-JTS satisfies (2.1) and the condition ([35])
(abe) = —(cba). (2.4)

A generalized Jordan triple system (for short GJTS) satisfies only the condition (2.1).

We can generalize the concept of GJTS of 2nd order as follows (see [22], [23], [26]-[30],
[67] and the earlier references therein).

For € = &1 and § = £1, a triple product that satisfies the identities

(ab(zyz)) = ((abz)yz) + e(z(bay)z) + (zy(abz)), (2.5)
K(K(a,b)z,y) — L(y, z)K(a,b) + eK(a,b)L(z,y) = 0, (2.6)

where
L(a,b)c := (abc), K(a,b)c := (acb) — §(bca), (2.7)

is called an (g, §)-Freudenthal Kantor triple system (for short (g,8)-FKTS).
Remark. We note that K(b,a) = —6K(a,b).
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Let U be a GJTS of 2-nd order U and let Vi, k = 1,2, 3, be subspaces of U. We denote by
(V1, Vs, V3) the subspace of U spanned by elements (z1, z2,z3), zx € Vi, k =1,2,3. A sub-
space V of U is called an ideal of U if the following relations hold (V,U,U) C V,(U,V,U) C
V,(U,U,V) C V. U is called simpleif (, , ) is not a zero map and U has no nontrivial ideal.
Remark. The concept of GJTS of 2nd order coincides with that of (—1,1)-FKTS. Thus we
can construct the simple Lie algebras by means of the standard embedding method ([14],

An (g,6)-FKTS U is called unitary if the identity map Id is contained in  := K(U,U)
i.e., if there exist a;, b; € U, such that X;K(a;,b;) = Id.

For § = +1, a triple system (a, b, c) = [abc],a,b,c € V is called a §-Lie triple system (for
short §-LTS) if the following three identities are fulfilled

[abc] = —6[bac],
[abc] + [bea] + [cab] = 0, (2.8)
[ablzyz]] = [[abz]yz] + [z]aby]2] + [zy[abz]],

where a,b,z,y,z € V. An 1-LTS is a LTS while a —1-LTS is an anti-LTS, by [23].

Proposition 2.1 (/23/,/30]) Let U(e,6) be an (g,0)-FKTS. If J is an endomorphism of
Ul(e, ) such that J < zyz >=< JzJyJz > and J? = —ed1d, then (U(e, ), [zyz]) is a LTS
(if 6 = 1) or an anti-LTS (if § = —1) with respect to the product

[zyz] :=<zJyz > -0 < yJxz > +6 <zxJzy > — <yJzz >. (2.9)

Corollary 2.1 Let U(g,6) be an (,6)-FKTS. Then the vector space T(e,0) = U(e, ) ®
Ul(e,d) becomes a LTS (if 6 = 1) or an anti-LTS (if § = —1) with respect to the triple
product defined by

a\(c\(e\| ( L(a,d)—8L(c,b) 0K (a,c) e (2.10)
b)\d/\f)| —eK (b, d) e(L(d,a) — dL(b,c)) f '
Thus we can obtain the standard embedding Lie algebra (if § = 1) or Lie superalgebra (if

§ = —1), L(e,8) = D(T(¢,6),T (e, 8))®T (e, 8), associated to T'(g, §) where D(T' (e, d), T(, 4))
is the set of inner derivations of T'(¢, ), i.e.

Der T := D(T(e,6), (e, 9)) := {( Ko oL, d)> } span.

~eK(e,f) eL(b,a)
rea={()

Remark. We note that L(e, 9) := Zi-_——z Ly, is the 5-graded Lie (super)algebra, such that
T(E,(S) =L_1 % L; and D(T(€,5),T(E, 5)) =L _o® Lo ® Ly with [Ll,L]] - L'i+j' This Lie
(super)algebra construction is one of the reasons to study nonassociative algebras and triple
systems.

x,yeU(s,é)}

span



2.2 (a, B,7)-structurable algebras with examples

Let (A,” ) be a finite dimensional nonassociative unital algebra with involution (involutive
anti-automorphism, i.e. T = z,7y = §T,z,y € A) over ®. The identity element of A is
denoted by 1. Since char® # 2, by [3] we have A = H & S, where H = {a € A|@ = a} and
S={acAla = —a}.

Suppose z,y € A and put [z,y] := zy — yz. Let the operators L, and R, be defined by
Lm(y) =Y, Rw(y) =YT,T,Y € A and for a’ﬂ?’}/ € {“1707 1} define

Vo= aly, @ + 8RRy + YRy Ry, (2.11)

Bfl’ﬁ”(m, Y, z) = Vm",‘f”(z) = a(27)z + B(2Y)z + v(2T)y, z,y, 2 € A. (2.12)

We call B;’ﬁ "V (z,y, 2) the (a, B,7)-triple system obtained from the algebra (A,” ) and write

for short
Vo = V&P, Ba:=(BYP7,A). (2.13)

We call an unital non-associative algebra with involution (A,™ ) an (a, 8, v)-structurable
algebra if the following identity is fulfilled

[Vu,v, Vm,y] - VVu,U(m),y - Vw,Vu,u(y)a U, v, T,y € A. (214)

Remark. If (o,8,7) = (1,1,-1) then (A,”) coincides with the notion of structurable
algebra ([3]). Then, by [44], the triple system B is a GJTS and by [16], B is a GJTS of 2nd
order, i.e. satisfies the identities (2.5) and (2.6). Further, if (a, 8,7) = (1, —1,1) then (A,”)
coincides with the notion of anti-structurable algebra ([38]). If (A,™) is anti-structurable
then we call B4 an anti-GJTS.

We give now examples of structurable, anti-structurable and (1,1, 0)-structurable alge-
bras over the fields C and R, respectively and finish withe examples of (1, —1, 0)-structurable
algebras over C and (0, 1,0)-structurable algebras over an associative algebra with involu-
tion. We use the notations of [7], [42]. With regard to Lie algebras and Dynkin diagrams
we refer to [63]. In the case of real Lie algebras we omit the corresponding Satake diagrams
aiming for a shorter text. We also recall the following definitions.

A GJTS of 2-nd order is called ezceptional (classical) if its embedding Lie algebra is
exceptional (classical) Lie algebra.

Two GJTSs of 2-nd order (B, U) and (B’,U’) are called weakly isomorphic if there exists
bijective linear maps M, N : U — U’ such that M(B(z,y,2)) = B'(M(z),N(y), M(2)),
z,y,2 € U. A linear map F : U — U’ is called a homomorphism if F satisfies the identity
F(B(z,y,2)) = B'(F(z), F(y), F(2)), for all z,y,z € U. Moreover, if F is bijective, then F
is called an isomorphism. In this case the GJTSs of 2-nd order (B,U) and (B’,U’) are said
to be isomorphic.

Let (B,U) be a GJTS of 2-nd order and let the linear endomorphisms Ly 4, Ry, on U
be defined by L. ,(2) := B(z,y, %), Rz y(2) == B(z,2,9),z,y,2 € U. If (B,U) be a finite
dimensional GJTS of 2-nd order then consider the symmetric bilinear form on U defined by
v8(2,y) := T7r(2Rsy + 2Ry, — Ly y — Ly ) ([66],[71]), where T'r(f) means the trace of a
linear endomorphism f. We shall call the form g the canonical (trace) form for the GJTS
of 2-nd order (B,U). A finite dimensional GJTS of 2-nd order (B,U) is called compact if
its canonical form 7g is positive definite.
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We give first examples of structurable over the field C such that the corresponding
standard embedding Lie algebra is simple classical 5-graded. By historical reasons ([44]) the
corresponding standard embedding Lie algebra is denoted g = ©7__,g;. We also denote

M, 4(C): the vector space of all p x ¢ complex matrices,
z: the transposed matrix of a matrix z,
z*: the transposed conjugate matrix of z,

Jo= (23 3)®Jy = (5 7n), where J, = (a;;) is the matrix of order n such that

a;; = 0int1-; and 4; ; denotes the Kronecker’s delta,
Alt,(C) = {z € My n(C)|z" Jn + Jnz = 0}.

By means of these notation, we have the following.

Proposition 2.2 ([7],[44],[71]) Let (U,{ }) be a classical complex simple GJTS of 2-nd
order and g = @2 _,g be the corresponding standard embedding Lie algebra. Then (U,{ })
are classified (up to weak isomorphism) as follows

M,,q(C) n
_ L =U= . <p<|{=|,p<r,p+q+r=mn,
1.g=sl(n,C), g I_U_(Mq,r(C) , 1<p< 5| P rnptqt+r=n

(XY 2z} = { (Xl) ("1) (Zl)} _ { (XlYl*Zl + LYK —zlxm*)}
X2 J\Y2 )\ 2 XY Zo + ZoYy Xo — Y X122 ) |

2.g=150(m,C), g-1=U = Mym-2(C), {b. 2<k<n, m=2n(n>4)

(XYZY=XY*Z 4+ ZY*X — ZJ -2k X " Y T2k,

My -1(C)
Q= o= = ’ >
3.g=s50(2n,C), g_1=U (Alt;,_l((C) , m>25,

{Co) D {Cansz min vz zuxria )}
Xo)\Ya)\Z2 )| \\Xo¥3Zs + ZoY3 Xo — Y1' X122 — Z2Jn-1X] Y1Jn-1 /) '
4.g=5p(n,C), g-1=U=Mp2,-2t(C), 1<k<n—-1(n2>3),
(XYZ}=XY*Z+2ZY*X + ZJp 1 X Y Jn s
Moreover the corresponding Dynkin diagrams with the grading roots are given in Table 1.

Table 1. Dynkin diagrams with coefficients of highest root and grading roots

1 1 1 1
e =° © — {op, apiq} 1.
ai Qa2 Qp_2 Qn—1
1 2 2 2
o e = {ax} 2a.

Qi (e%) Qn-1 Qn



1

1 2

o o {ak}(2§k<n—1)
(651 Q9

1 2

o—o————* {an—h an}
(5} Qo

1 2

o—o {aa, an}

[0 %] Q2

2 2 2 1

o o a0 {a‘k}

aq Q2 Qp_1 Qn

2b.

2b.

Following [70], we can obtain the structurable algebras from the GJTS of 2nd order with

a left unital element e such that eex = z for all z.

Thus we have the following theorem (the details will be discussed in future).
Theorem 2.1 Under the assumpsion as in above, we can obtain the structurable algebras

as follows:

1) casep=gq=r, e= (Idy,I1d,)T, {0p, a2}, Der T = Ap_1 ® Azp_1 DC,

2) case k =m — 2k, e = Idy, {ax}
Der T=Dy® By ifm=2n+1,
Der T = Dx ® Dy, if m = 2n,

3) case no example

4) case k =2n —2k. e = Idy, {ox}
Der T =Cy ® Cp—p.

Proof.

Indeed, for example (2) (resp. (4)), the structurable algebra obtained from GJTS of 2nd

order with e is given by

{zyz}=(2-9)- 2+ (2-9) - (2-7) -y,
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where this involution is defined by T = Jyz7 Ji, (resp. T = —-jn_k:chn_k) and we denote
the product of structurable by z - y.(i.e., « - y = zy by usual matriz product ).

Hence we have

T Yy=7-T, T=1%.
Also othere case has same proofs.

Remark. For examples of structurable over the field C such that the corresponding
standard embedding Lie algebra is simple exceptional 5-graded we refer to [43], [44], [71]
and we can get their examples of structurable by means of choise a left unit element e in
the GJTS of 2nd order as same methods to Theorem 2.1.

For the JTS, we can obtain the (1,1,0) structurable fom JTS. That is, we note that
examples of structurable algebras induced from Jordan triple systems U w.r.t.

{zyz} =zy*2 + 2y*x

can be obtained same as in Theorem 2.1 by means of the element e such that L(e,e)z = z
foralz e U.

We give now examples of anti-structurable algebras or (1, —1,1)-structurable algebras
over C. Let U = M, »(C) with the multiplication {zyz} = oY z—2y ¢+2%'y. ThenUisa
(-1, -1)-FKTS and U = M,, ,(C) is an anti-structurable algebra, by [41]. Then by [38], the
following construction of Lie superalgebras is obtained by the standard embedding method.
If U = Msy, 1 (C) with the product above, then the corresponding standard embedding Lie
superalgebra is 0sp(2n|2m) = D(n,m) (as defined by [17]), hence the standard embedding
Lie superalgebra of the anti-structurable algebra Ma, 2,(C) is osp(2n|4n). Similarly, if
U = Man+1,m(C) with the product above, then the corresponding standard embedding Lie
superalgebra is osp(2n+1|2m) = B(n, m) (as defined by [17]), hence the standard embedding
Lie superalgebra of the anti-structurable algebra Man 11 2n+1(C) is osp(2n + 1|4n + 2).

Finally, the last two examples refers to (1, —1,0) and (0, 1, 0)-structurable algebras. We
start first with examples of (1, —1,0)-structurable algebras over C.

Let U = M, ,(C) with multiplication {zyz} = zy'z — 2y'z, z,y,2 € U and set

_ 0 —zy'z+ 2y'x
K2 = (L %
are skew-symmetric.

), such that z,y, z are symmetric and z’,y/, 2/

Let V be the vector space V = ¢ X = :S, g ) € Mzn,zn(C)':v =z',2' = —x'T}.

Then, by [35], the product {XY Z} is an anti-JTS. By [35], we introduce in V' a new prod-

/ /
uct (XYZ) = {XPYZ} = ( o 0 v I3 ) € V. whee P( o gd
Then V' with the product (XY Z) above is an anti-JTS and the standard embedding Lie
superalgebra is P(n — 1) as defined in [17] with a 3-graded structure ([35]).

Let now U be a (0, 1, 0)-structurable algebras with product (zyz) = (2%)z and involution
~. If U = A in an associative algebra thus (zyz) = 27z it is a straightforward calculation
to show that (zyz) is a GJTS which is not of second order and not a JTS or anti-JTS.
Remark. For the (—1,—1)-FKTS U := M; x(®) with product (zyz) = zy'z — 2y 'z +
zz'y ([38]), since K(z,y) = L(y,z) + L(z,y) we can easily show that there exists an
almost complex structure on the associated anti-LTS T'(—1). Moreover, by [38], the standard
embedding Lie superalgebra L(U) corresponding to the (—1,—1)-FKTS above is osp(k|2k)



if k = 2m or k = 2m + 1, respectively, but by [33], for a structurable algebra with product
(zyz) = xyTz + zyTx - za:Ty does not exist an associated almost complex structure.

In end of this note,for an application to M-theory of physics, following{72]|, we note
examples of hermitian (-1,-1) Freudenthal-Kantor triple systems as follows.

a) {zyz} = Tz — 29"z,

b) {zyz} =zyT 2 — 277z + 2277,

where for all z,y,z2 € My, »(C).

These details will be descussed in future paper with Dr.M.Sato.
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