
On 2-level secret sharing schemes

Tomoko Adachi
Department of Information Sciences, Toho University,
Miyama 2-2-1, Funabashi, Chiba 274-8510, Japan

E-mail: adachi@is.sci.toho-u.ac.jp

keywords. secret sharing scheme, finite geometry.

Abstract. 2-level shared secret schemes are defined by Simmons in
1989. In this paper, we describe a survey of 2-level secret sharing schemes
using finite geometry.

1. Introduction

A secret sharing scheme was introduced by Shamir in 1979 [10] and
Blakley in 1979 [4] independently. A secret sharing scheme has been
studied by many scientists until today. Now, a secret sharing scheme has
some important application to several areas of the information security.
In Japan, NRI (Nomura Research Institute) Secure Technologies which
is one of the private sector in the area of the information security, has
provided clients with some cloud computing product named Secure Cube,

from October in 2010. This cloud computing product is utilized by a
secret sharing scheme, and is one good example of the application to an
external storage unit.

In the situation where the control of an action is shared, the action
is only intiated when a predesignated concurrence of participants is ob-
tained. It is a desirable requirement in such a scheme that any grouping
of participants other than one of the designated concurrences should have
no greater probability of being able to initiate the action than an out-
sider. Such a scheme is called perfect. Usually the presence of a quorum
or threshold of some members of the authorized users is necessary. The
question is how to share the secret according to the designated concur-
rences. In 1989, Simmons [8] defined 2-level shared secret schemes. $A$
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survey of applications of geometric structures in cryptography can be
found in a paper of Beutelspacher [1] in 1990. In 1993, Beutelspacher
and Wettl [2] study a certain class of 2-level shared secret schemes, using
recent results in finite geometry. In 2012, motivated by applications to
2-level secret sharing schemes, Korchmaros, Lanzone and Sonnino [7] in-
vestigated $k$-arcs contained in $a(q+1)$-arc $\Gamma$ of $PG(3, q)$ , $q$ even, which
have only a small number of focuses on a real axis of $\Gamma$ . Doing so, Ko-
rchmaros et. al. also investigated hyperfocused and sharply focused arcs
contained in a translation oval of $PG(2, q)$ .

In this paper, we describe a survey of 2-level secret sharing schemes
using finite geometry.

2. 2-level secret sharing schemes using finite geometry

In this section, we describe 2-level secret sharing schemes using finite
geometry. At first, we describe secret sharing schemes using finite geom-
etry. Secondly, we describe 2-level secret sharing schemes. Finally, we
describe 2-level secret sharing schemes using finite geometry in the case
$n+1=3.$

An $(n, q)$ -threshold scheme consist of $k\geq n$ pieces of information,
which is called shadows, such that a secret datum can be retrieved from
any $n$ or more shadows, but cannot be determined form any $n-1$ or
less shadows. We describe a finite geometrical realization of this scheme.
Let us define the secret as a point $X$ of a given line $s$ in the projective
space $PG(n, q)$ , and choose an $(n-1)$-dimensional subspace $B$ , which
intersects the line $s$ in $X$ . The line $s$ is known to everybody. Furthermore,
we choose as shadows $k$ points $P_{1},$ $P_{2},$ $P_{2},$

$\cdots,$
$P_{k}$ of $B$ , such that the

points in the set $\{X, P_{1}, P_{2}, P_{3}, \cdots, P_{k}\}$ are in general position, that is,
any $n$ points of these points generate $B.$

Next, we describe 2-level secret sharing schemes. Suppose that the
set of shadows is divided into two parts $S$ and $\mathcal{T}$ satisfying the following
requirements:

(1) The secret can be reconstructed by any two shaows in $\mathcal{T}.$

(2) The secret can be reconstructed by any $n+1$ shaows in $S\cup \mathcal{T},$

$(n\geq 2)$ .
The secret is shared among a group of participants, which are on two

levels. From the top level, one needs just two participants to reconstruct
the secret. On the other hand, from the lower level, $n$ participants are
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needed to reconstruct the secret. Moreover, it must also be possible to
reconstruct the secret if $n-1$ participants of lower level are joined by
one top level representative.

Simmons has presented a construction in the case $n+1=3$. (See

Simmons [8] and [9].) Suppose the secret is the point $X$ on a given line
$s$ in $PG(3, q)$ , the set of shadows for the participants on the top level is
a subset $\{P_{1}, P_{2}, \cdots, P_{m}\}$ of a line $l$ which intersects $s$ in $X$ , and, the set
of shadows for the participants on the lower level is a subset $S$ of a plane
$\alpha$ which intersects $s$ in $X$ and contains $\ell$ . The set $\{X, P_{1}, P_{2}, \cdots, P_{m}\}$

is denoted by $\mathcal{T}$. Furthermore, $\mathcal{S}$ must be chosen in such a way that no
three points of $S$ are collinear, no two points of $S$ are collinear with a
point of $\mathcal{T}$ , and no point of $S$ is on $\ell$ . Equivalently, $S$ must be an arc
disjoint from $\ell$ such that no point of $\mathcal{T}$ is on a secant of $S.$

3. 2-level secret sharing schemes using finite geometry in the
special case $n=2$

In this section, we describe 2-level secret sharing schemes using finite
geometry in the special case $n=2.$

The construction of Simmons [8], [9] mentioned above led to the next

definition.

Definition 2.1 Let $S$ be a $k$-arc, and $\ell$ be a line, no containing any
point of $S$ in finite projective plane. $S$ is called sharply focused on $\ell,$

if the secant of $S$ cover exactly $k$ points of $\ell.$ $S$ is called very sharply

focused on $\ell$ , if the secant of $S$ cover exactly $k-1$ points of $\ell$ . (See

Simmons [9] and Wen-Ai Jackson [6]).

If $S$ is sharply focused on $\ell$ and $\mathcal{T}$ is the set of non-covered points of
$\ell$ , then every line through a point of $S$ has at most one more point of $S$

$\cup \mathcal{T}$. This observation shows hat results on internal nuclei can be used
in the study of sharply focused sets.

Definition 2.2 Let $\mathcal{K}$ be a set of $k$ points of a projective plane $\pi.$ $A$

point $P$ of $\mathcal{K}$ is called an internal nucleus, if every line hrouge $P$ has at
most one more point of $\mathcal{K}$ . (See Wettl [12] and [13].)

It follows form this, that the set of nuclei of the set $\mathcal{K}=S\cup \mathcal{T}$ is $S.$
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The nuclei of $k$-sets $\mathcal{K}$ in $PG(2, q)$ have been studied by Bichara and
Korchmaros [3] for $K=q+2$ , by Wettl [12] for $k=q+1$ , and by Szony
[11] for $k<q+1$ . It is clear that the set of nuclei of $S\cup \mathcal{T}$ is $S$ if
$|\mathcal{T}|\geq 3.$

4. 2-level secret sharing schemes using finite geometry in the
general case $n\geq 2$

In this section, we describe 2-level secret sharing schemes using finite
geometry in the general case $n\geq 2.$

Let $l$ be a line in the projective space $PG(n, q)$ . Let $S$ and $\mathcal{T}$ be two
sets of point in $PG(n, q)$ satisfying the following conditions:

(1) $\mathcal{T}$ is contained in the line $\ell$ and $|\mathcal{T}|\geq 3.$ $(\mathcal{T}$ contains the secret
point $X.$ )

(2) $|S|\geq n+1.$

(3) $S\cap \mathcal{T}=\emptyset.$

(4) Any subspace generated by $n$ points of $S$ contains no more points
of $S\cup \mathcal{T}.$

The conditions (2) and (4) together mean that $S$ is an arc in $PG(n, q)$ .
We recall that in $PG(n, q)$ a $k$-arc is a set of $k$ points such as no $m+1$ lie
in an $(m-1)$-dimensional space, where $m=1$ , 2, $\cdots,$ $n$ . For $k>n$ , this
condition holds for all $m$ when it holds for $m=n.$ A $k$-arc $\mathcal{K}$ is called
a complete arc, if there is not point $P$ so that $\mathcal{K}\cup\{P\}$ is $a(k+1)$-arc.
We observe that if $P_{1},$ $P_{2},$ $P_{3}\in \mathcal{T}$ , then $S\cup\{P_{i}\}$ is an arc $(i=1,2,3)$ ,
but $S\cup\{P_{1}, P_{2}, P_{3}\}$ is not. In other words, $\mathcal{S}$ is a non-complete arc,
and there are different complete arcs containing $\mathcal{S}$ . Using results on tne
lower bound of $k$ for a $k$-arc having just one completion we get an upper
bound of $|S|$ . These results have been proved by Szony [11] for $n=2,$

and by Blokhuis, Bruen and Thas [5] for $n\geq 2$ . The generalization of
the notion of the internal nuclei to higher dimensions, and another proof
of the theorem of Blokhuis, Bruen and Thas [5] can be found in Wettl
[13].
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