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abstract The motivation for this work is an extension of an automorphism which we used to introduce
to a net in [S][6]. In the extension, we focused on the connection of edges which come in or go out a place.
So we give our definition of morphims between Petri nets based on place connectivity and investigate the
properties of these morphisms, in particular, surjective morphisms and automorphisms [11, 12, 13]. In this
paper we summarize these results and add new results related to ideals of surjective morphisms and families
of prefix codes.

In the first chapter, we introduce morphims between two Petri nets. The set S of all morphisms of a Petri
net forms a semigroup with zero element and the multiplication expressed by a semi-direct product[11].
The second chapter deals with the pre-order induced by surjective morphisms. Two diamond properties
are proved[11]. Moreover, these expression has been revised in terms of ideals in the semigroup S[12].
In the third chapter especially, the group Aut(P) of all automorphisms of a Petri net P forms a group.
We investigate the inclusion relations among such monoids and groups[11]. Moreover, we investigate the
decomposition of automorphism group G = Aut(P) into G = KN = NK, where N is a kind of normal
subgroup of G[13]. In the last chapter we show the properties of languages and codes generated by two
Petri nets ordered by a surjective morphism. The languages generated by them and their reachability sets
have close correspondence to each other [12].

1 Preliminaries

Here we introduce a morphism of a Petri net and show the properties of the semigroup composed of these
morphisms. We denote the set of all nonnegative integers by INg.

DEFINITION 1.1 (Petrinet) A Petri net is a 4-tuple (P, T, W, uo) where
(1) P={p1,p2,...,pm} is afinite set of places,
(2 T ={ti,ta,...,t,} is afinite set of transitions,
3y W:E(PT)—{0,1,2,8,...} is a weight function, where E(P,T) = (P x T) U (T x P),
4 po:P—{0,1,2,3,...} is the initial marking,
5) PNT=0and PUT # 0.
A Petri net structure (net, for short) N = (P, T, W) without any specific initial marking is denoted by
N, a Petri net with a given initial marking ¢ is denoted by (N, po). O

A Petri net morphism based on place connectivity is introduced in the following way. We denote the set
of all positive rational numbers by Q...

DEFINITION 1.2  LetP; = (P, Ty, Wi, p1) and Py = (Pa, Ty, Wa, ua) be Petri nets. Then a triple
(f, (o, B)) of maps is called a morphism from P; to P, if themaps f : P, — Q4, o : P, — P, and
B : Ty — T, satisfy the condition that forany p € P, and t € T3,

Wa(a(p), B(t)) = f(p)Wi(p, 1),
W2(B(t), a(p)) = f(p)W1(t,p), 1.1
p2(a(p)) = f(p)ui(p).

In this case we write (f, (a, 3)) : P1 — Pa. O



The morphism (f, (o, 8)) : P1 — Pa is called injective (resp. surjective) if both o and 3 are injective
(resp. surjective). In particular, it is called an isomorphism from P; to P, if it is injective and surjective.
Then P; is said to be isomorphic to Py and we write P; ~ P,. Moreover, in case of P; = P, an
isomorphism is called an automorphism of P;. By Aut(P) we denote the set of all the automorphisms of
P.

For Petri nets P; and P,, we write P; 2 P, if there exists a surjective morphism from P; to P. The
relation 3 forms a pre-order (a relation satisfying the reflexive law and the transitive law) as shown below.
Of course, the pre-order is regarded as a partial order by identifying isomorphisms.

PROPOSITION 1.1 ([11]) Let P4, P2, Ps3 be Petri nets. Then,

1 P3P

2) PA3P;and P, I Py < P1~Ps.

(3) Py 3Pz and Py, 3 Ps imply Py 2 Ps. O

We introduce a composition of morphisms; all the morphisms between Petri nets form a semigroup S
under semid composition.

PROPOSITION 1.2 The set Q. F of all maps from a nonempty set P to Q. forms a commutative group
under the operation ®p:

(Vf,9 € Q:F)[f ®p g:p— f(P)g(p)]
1g, € Q47 : po listhe identity and f~1 € Q7 : p— 1/f(p) is the inverse of f € Q7. O

Whenever it does not cause confusion, we write ® instead of ® p. The composition f o g of maps f and

g is written by the form g f of multiplication. For example, (gf)(x) def (fog)(z) = f(g(z)). Immediately
we obtain the following lemma.

LEMMA 1.1 ([12]) Let « and 3 be arbitrary transformations on P and f,g : P — Q.. Then the
following equations are true.

1) (aB)f = a(Bf).

2 o(f®g)=(af) ®(ag).

(3) 041@ = 1®.

@ (af)®(af!) =1g.

6 (af) t=af L O

For a surjective morphim z : P; — P,, Py is called the domain of z, denoted by Dom(z), and P; is
called the image(or range) of z, denoted by Im(z).

PROPOSITION 1.3 ([11]) The set S of all surjective morphisms between two Petri nets and the zero
element 0 forms a semigroup under the following multiplication of z = (f, (e, 8)) and y = (g, (7, 9)):

det [ (f ®pag,(a,89)) if Im(z)=Dom(y),
TY=10 if ==y =0orIm(z)# Dom(y),

where P is the set of places in the Petri net Im(z) = Dom(y). d

2 Ideals in the semigroup S

In this section we consider ideals and Green’s relations on the semigroup S.
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2.1 Green’s equivalences on the semigroup §

In general, Green’s equivalences £, R, J,H, D on a monoid M, which are well-known and important
equivalence relations in the development of semigroup theory, are defined as follows:

Ly < Mz = My,
TRy < M =yM,
zJy <= MzxzM = MyM,
H=LNR,
D=(LUR)*,

where (LU R)* means the reflexive and transitive closure of LUR. Mz (resp. zM) is called the principal
left (resp. right ) ideal generated by x and MM the it principal (two-sided) ideal generated by x. Then,
the following facts are generally true[2, 1].

FACT 1 The following relations are true.

(WD=LR=RL
2)HCL (resp.R)CcDCJ

FACT 2 An H-class of a monoid M is a group if and only if it contains an idempotent.

Now we consider the case of M = S in the rest of the manuscript, where S = S U {1} is the monoid
obtained from the semigroup S by adjoining an (extra) identity 1, thatis,1-s =s-1 = sforall s € S and
1-1=1.

LEMMA 2.1 Letz : Py — Pa, y: Ps = Py €S. Then,

(1) 8 C yS = P, =Pz and Py C Py.

(2) Sz CSy=— P CPsandP; =P,

B) z8§=yS = Py =Psand Py ~ Py.

4) Sz=S8Sy= P1~Psand Py =Py O

Note that any reverses of the implications above are not necessarily true.

PROPOSITION 2.1 ([12]) The following conditions are equivalent.
(1) H is an H-class and a group.
(2) H = Aut(P) for some Petri net P. O

PROPOSITION 2.2 ([12]) On the monoid S*, J=D.

2.2 Intersection of principal ideals

The aim here is that for given r,y € S we find a elements z such that Sz N Sly = Sz (resp.
zS' NySt = 28Y). z8 NyS! = {0} (resp. Sz N Sty = {0}) is a trivial case(i.e., z = 0). We should
only consider the non-trivial case.

Fortwomaps f: X; — Y and g : X; — Y, the relations <g and =g are defined by

F<rg & (WeV)(F 1)l < lg W),
F=rg & (e Wl =l ®)),

respectively.

LEMMA 2.2 Let P; = (P, T;.Wi,u:)(3 = 1,2,3) be Petri nets, z = (f,(o,08)) : Pr — P3, y =
(g, (7,6)) : P2 — P3 be elements of S. If Y <r aand § <g B, then S’z C Sly. O

Foramap f : X — Y, the equivalence relation ker f on X is defined by ker f def {(a,b)]f(a) = f(b)}.



LEMMA 2.3 Let P; = (B, T;.W;,u;)(i = 0,1,2) be Petri nets, z = (f,(a,5)) : Po = P,y =
(g, (7,8)) : Po — P, be elements of S. If kery C ker o and ker § C ker 3, then zS* C yS?. O

Summarizing these two lemmas, we get the following property.

PROPOSITION 2.3 Letz = (f, (o, 8)) : P1 — P2,y = (9, (7,6)) : P3 — Py be elements of S*, where
P;(i =0,1,2,3) are Petri nets.

(1) S'zc Sy = Py=Ps,v<gpaandd <gr pS.

(2) z8! CyS! <= P; = P3,kery C keraand ker § C ker 5.

(3) Sl.'L'=Sly — P2='P4,'y=Raand5=R,8.

4 z8'=yS! <= P; = P3, kery = ker o and ker § = ker 3. O

The following propositions claim that the intersection of finite principal left (resp. right) ideals is also a
principal are left (resp. right) ideal.

PROPOSITION 2.4 (Intersection of Principal Left Ideals) ([11]) Let P; = (P;, T;.W;, ;) (i = 1, 2,3)
be Petri nets, z : P; — Pz and y : P2 — P3 be elements of S. Then, there exist a Petri net P and a
surjective morphism z such that S'z N Sly = S'z. O

COROLLARY 2.1 (Diamond Property I) ([11])Let P; = (B;, T;, W;, pi) (i = 1, 2, 3) be Petri nets with
P1 32 P3 and P, 3 Ps. Then there exists a Petri net P such that P 3 P; and P 3 Ps. O

PROPOSITION 2.5 (Intersection of Principal Right Ideals) ([11]) LetP; = (&, T;.W;, 4s) (i = 0,1,2)
be Petrinets, z : P; — Pz and y : P, — P;3 be elements of S. Then, there exist a Petri net P and a surjec-
tive morphism 2 such that zS! N yS! = 281, g

COROLLARY 2.2 (Diamond Property II) ([11]) Let P; = (P, T;, Wi, pi) (i = 0,1,2) be Petri nets
with Py 3 P; and Py 3 P-. Then there exists a Petri net Ps such that P; J P3 and Py J Ps. O

We define the concept of irreducible forms of a Petri net with respect to J and show the uniqueness of
them up to isomophism.

DEFINITION 2.1 (Irreducible) A Petri net P is called J-irreducible if P J P’ implies P ~ P’ for any
Petri net P’. Then P is called an J-irreducible form. O

COROLLARY 2.3  ([11]) Let P, P’ and P be Petri nets with ? I P’ and P I P”. If P’ and P" are
J-irreducible, then P’ ~ P’ O

3 Structure of the automorphism group of a Petri net

In this section, we give a fixed Petri net P = (P, T, W, p) and consider some properties of the structure
of the automorphism group of this Petri net. Our aim in this section is to decompose the automorphism
group G = Aut(P) of P into the form G = KN = NK, where N is a kind of normal subgroup of G.

3.1 The group of automorphisms of a Petri net

Let Q¥ » (PP x TT) be the semi-direct product of the group Q¥ and the monoid PP x T'T, equipped
with the multiplication defined by

(f, (&, 0))(g, (', 8) = (f ® g, (ac, BB)), 3.1)

where P is the set of all maps from P to P and T is the set of all maps from T to T. Q. F x (PP x TT)
forms a monoid with the identity (1g, (1p, 1)), where 1g is the identity of the group Q. *, 1p and 17
are the identity maps on P and T respectively.
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Let P = (P, T, W, 1) be a Petri net. Now we consider the following set related to the Petri net P.

Mor(P) : the set of all the morphisms of P.
Aut(P) : the set of all the automorphisms of P.

By changing the weight function and the markings of P, we can construct another Petri net Py =
(P, T,0F(PT) 0P) be Petri nets, where 0F denotes the special marking with 0F : P — Np,p — 0
and 0F(PT) the special weight function with 0¥(PT) : E(P,T) — Np,e + 0. Then the following
inclusion relation holds.

PROPOSITION 3.1 ([11]) Let P = (P, T, W, 11) and Py = (P, T,0F(PT) 0F) be Petri nets. And let Sp
and St be the symmetnc groups of P and T respectively.

(1) The subset Q% X (Sp x S7) of Q¥ x (PP x TT') forms a group with the identity (1, (1p, 17)).
(2) Mor(Py) = Q. x (PP x T7).

(3) Mor(P) is a submonoid of Mor(Py).

4 Aut(Py) = Q.F x (Sp x Sy).

(5) Aut(P) is a subgroup of Aut(Pp). O

3.2 Similarity and automorphism

We state the decomposition the automorphism group G = Aut(P). Recall that (Q,.¥, ®p) is an abelian
group.

LEMMA 3.1 ([13]) Let P be a nonempty set and P;, P be subsets of P.
) Q7 ={fecQ:"|f(p) = -Lpe P\ Py} is a subgroup of (@17, ®p).
@) Q+1®PQ+2:Q ik o

DEFINITION 3.1 (Similar) Let P = (P, T, W, u) be a Petri net. Two places p,q € P are said to be
similar if there exists some positive rational number r such that u(q) = ru(p), W(g,t) = rW(p,t) and
W(t,q) = rW(t,p) for all t € T. Two transitions s, ¢ € T are said to be similar if W (p, s) = W(p,t) and
W(s,p) = W(t,p) forallp € P. a

The similarity defined above is obviously an equivalence relation on P U T. We denote this relation by
~p or simply ~ and the ~p-class of a place or a transition u by C(u). A place (resp. a transition) is said
to be isolated if it has no connection to any transitions (resp. any places). Especially, a place p is 0-isolated
if it is isolated and p(p) = 0. Note that two any 0-isolated places p and ¢ are similar obviously.

LEMMA 3.2 (Transposition-type automorphisms) ([13]) Let P = (P, T, W, u) be a Petri net, p, q €
P be two distinct similar places in P and s, t € T be two distinct similar transitions in 7. Then

(1) IfpisnotO-isolated, Ny, 03 = ((fp,q» (P g),17))) is 2 subgroup of Aut(P) and its order is 2, where
(p q) is the transposition of p and q, fpq(D) = 7, fp,q(q) = 1/7, foq(z) = 1forz € P\ {p,q}, and r is
the rational number such that u(p) = ru(q), W(p,t) = rWi(q,t) and W(t,p) = rW(t,q) forallt € T.
(2) IfpisO-isolated, Nyp o1 = Q4 {pa} (((p 9),17))) is a subgroup of Aut, (P).

(3) Nysy = ((1gp, (1p, (s t)))) is a subgroup of Aut(P) and its order is 2. O

For a ~p-class C(u) of u, the subgruop N¢(y) of Aut(P) is defined as follows:

_ { (Sqappla,b € Cu),a#b) if |C(u)| 22,
Notw _{ {(1gp,(1p,17))} if |C(u)l=1.

If u is a O-isolated place, the ~p-class Z = C(u) is the set of all O-isolated places in P and we can easily
verify that Nz = Q. Z x (Sz x {17}), where Sz is the symmetric group of Z. The following proposition
holds with respect to Nz.



PROPOSITION 3.2 (Separation of 0-isolated places) ([13]) Let P = (P, T, W, u) be a Petri net, Z C
P be the ~p-class of all the O-isolated places, Nz = Q.7 x (Sz x {17}), H = {(f,(,8)) €
Aut(P)| f|Z = 1g,,a|Z = 1z}. Then, Aut(P) = Nz x H.

LEMMA 3.3 ([13]) Let P = (P, T, W, p).{p, ¢} C P.{s, t} C T and C(u) be the ~p-class of u €
PUT.If (f,(a, 8)) is an automorphism of P, then

(1) p~pq < alp) ~p o),

(1)) s~pt <= fB(s) ~p B(2),

2 a(C(p)) = {a(g)lg ~» p} = C(a(p)),

@) B(CE)=A{B(s)|s ~p t} =C(B()),

(3) min{3|C(a*(u)) = C(u)} = min{i|C(B*(v)) = C(v)} if u,v € PUT are connected,. O

Note that [C(a(p))| = |C(p)| forall p € P and |[C(5(t))| = |C(t)| forallt € T

Let Cy,Cy,...,Cy be the all ~p-classes on PUT and 7w = {C4,Cy, ..., Ck} be the partition of PUT
determined by ~p. Then we introduce the permutation group S, = {¢ € Spur |VX € 7, X° = X} =
Sc, x S¢, x -+ x 8¢, , which does not move any elements of 7.

PROPOSITION 3.3 (Embedding into a symmetric group) ([13]) Let P = (P, T, W, p) be a Petri net
without 0-isolated places.

1) ¢:Aut(P) — Spur, (f, (e, 8)) — (a, 3) is a monomorphims, i.e. Aut(P) ~ ¢(G) C Spur.

@ SeC Q).

B) X erm=>g(X)enforany g € ¢(G).

(4) Sr is a normal subgroup of ¢(G), that is, S < H(G).

(5) Letay,as,...,a be a system of representatives for S, of ¢(G) and A = (ay,a2,...,ax). Putting
K =¢"1(A),N = ¢ 1(Sz), Aut(P) = KN = NK.

THEOREM 3.1 ([13]) Let P = (P, T', W, u) be a Petri net and C1, C, . . ., C, be the all ~p-classes on
PUT. N = Ng, x Ng, X -++ x Ng, is a normal subgroup of G = Aut(P) and K = ({a;|i € A})isa
subgroup generated by {a;|i € A} with G = {J;cp a; V

(1) If P has no 0O-isolated places, G = KN = NK.

(2) Otherwise, G = Q4% x (KN) = (KN) x Q+Z, where Z C P be the ~p-class of a O-isolated
place.

LEMMA 3.4 (1-step reduction) ([13]) Let P = (P, T, W, u) be a Petri net.

(1) P, g € P be two distinct similar places in P. Then P 3 P’ = (P', T, W', i’), where P’ = P — {q},
= WI(P' x T) U(T x P'), ' = u|P".

(2) s, t € T be two distinct similar transitions in T". Then 'P AP =(P,T', W, u),whereT' =T — {s},
=W|(P xT')U (T" x P).

In the lemma above, |[P' UT| = |[PUT’| = |PUT| -1 holds. So we call such a relation /-step reduction,
denoted by ;.

PROPOSITION 3.4 ([13]) Let P; = (B;, T;, Wi, u;)(3 = 1,2) be Petri nets with Py 2 Po, (f, (o, 8)) :
P1 — P, be a surjective morphism. If P, is a normal form, then

(1) Forany p, g € P,p~p q <= a(p) = a(g),

(@2)Foranyt,s e T,t~p s <> [(t) = B(s). a

4 Petri net morphisms and codes

4.1 Behavior of Petri nets

The behavior of many systems can be described in terms of system states and their changes. In order to
simulate the dynamic behavior of a system, a state or marking in a Petri net P = (P, T, W, u) is changed
according to the following transition (firing) rule:

(1) A transition ¢t € T is said to be enabled (under the marking y or under the Petri net P) if W(p,t) <
w(p) for every place p € P, where W (p, t) is the weight of the arc from p to t. Then each input place p of
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t is marked with at least W (p, t) tokens. An enabled transition may or may not fire (depending on whether
or not the event actually takes place).

(2) A firing of an enabled transition ¢ removes W (p, t) tokens from each input place p of ¢, and adds
W (¢, p) tokens to each output place p of t. As a consequence of the firing, the current marking y is replaced
with the following new marking p':

1 (p) = p(p) ~ W(p, t) + W(t, p) for Vp € P. @1
Then we define the transition function dp by dp(u, t) = u'.
(3) Asequencew = tits ... t, of transitions is said to be a firing sequence in a Petrinet P = (P, T, W, )
if po = p, pp, = ¢/, and p; = dp(ui—1, ;) foreach i (1 < i < n). Then y’ is called a reachable from P,
and we extend p from T to T* by ép(u, w) = p'. By assuming that ép(u, w) = L if w is not a firing
sequence from P or p = L, the transition function dp : (No¥ U {L}) x T* — (NoF U {L}) is regarded
as a total function. The set of all reachable markings from P is called the reachability set of P, denoted by
R(P).

LEMMA 4.1 ([12]) Let P; = (P;, T;, W;, ;) (i = 1,2) be Petri nets. (f, (o, 3)) be a surjective mor-
phism from P; onto P,. Then,

(1) t €T isenableinP; <= f(t) € T; is enable in P2. More precisely, uj = dp, (u1, t) (% L) and
f ® p1 = ape ifand only if 4y = dp, (2, B(t)) (# L) and f ® py = opj.

(2) wisafiringsequenceinP; <= [(w) is afiring sequence in P,. More precisely, u} = dp, (11, w) (#
1) and f ® p1 = opz if and only if py = dp, (k2, B(w)) (# L) and f ® py = aps.

LEMMA 4.2 ([12]) Let P; = (P;, T;, Wi, us) (8 = 1,2) be Petri nets. (f, (a,3)) be a surjective mor-
phism from P; onto Ps. Then,

(1) ¢ : R(P1) — R(P2), u} — uh, where uj and pj are markings in LEMMA 4.1 (2), is a bijection.

(2) Let R; C R(P;) with o(R;) = Rz and K; = {w € T;* | ép,(pi, w) € R;} (i = 1,2). Then
K> = B(K1).

4.2 Petri net languages and codes

Let P = (P, T, W, pg) be a Petri net, © be an alphabet, o : T — X be a labeling of the transitions
and F C Ny* be a finite set of final markings. Then we define the languages L1, (P, o, F), Lg(P, o, F),
Lr(P, o) and Lp(P, o) as follows:

Ly(P, o, F) o o(w)|w e T*, u=p(uo, w)andp € F},

La(P, o, F) o {o(w)|w € T* and ép (o, w) > puy for some uy € F},

Lr(P, o) def {o(w)|w € T* and §p (po, w) # Lbut for allt € T, dp(u, wt) = L},
Lp(P, o) & {o(w) |w € T* and 6p (o, w) # L}.

Languages L1(P, o, F), La(P, 0, F), L1(P, o) and Lp (P, o) for some Petri net P, some labeling o
and some set F' of markings are called L-type, G-type, T-type and P-type Petri net languages respectively.

PROPOSITION 4.1 ([12]) LetP; = (P;, T;, Wi, ;) (3 = 1,2) be Petri nets. (f, (a, 3)) be a surjective
morphism from P; onto Ps.

Forany Ly = Lx (P, 01, F1), X € {L, G} (tesp. L, = Lx (P, 01), X € {T,P}), there exists some
Ly = Lx (P2, 02, F») (tesp. Ly = Lx (P2, 02)) such that L; = o1(8~1(d21(L2))). Then L, is regular
(resp. linear, context-free) if and only if Lo is regular (resp. linear, context-free). O

Let P = (P, T, W, uo) be a Petri net, J be the transition function of P, Then we can define a prefix code
C of P as follows:
C=L\LT*#0
L= {w]w € T+,M=5(,U/0,'LU) € F}a
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for some (possibly infinite) set ¥ C Np” of final markings.

PROPOSITION 4.2 Let P; = (P, T;,W;,p;) (i = 1,2) be Petri nets. (f, (o, 8)) be a surjective
morphism from P; onto P,.
(1) If C is a prefix code of Py, then 3(C) is also a prefix code of Ps.
(2) If C'is a prefix code of P,, then 3~1(C) is also a prefix code of P;.

B : Ty — T is extended to the homomorphism 8 : Ty* — To*, thatis, (1) = 1, B(ua) = B(u)B(a),
where 1 is the empty word, v € T;* and a € Tj. O
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