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Abstract

Siphons play an essential role for the analysis of the reachability of Petri nets.

In this paper we study the structure of siphons of Petri nets and show that every

siphon of a net is obtained by deleting some kinds of places in the net successively.

1 Introduction

In the study of Petri net, siphons play an essential role [4]. A siphon is a set of places $P$

such that any transition having arcs to a place in $P$ , also have arcs from a place in $P$ . So,

if a siphon $P$ loses all tokens it never get tokens and all transitions having arcs from the

places in $P$ become dead.
In this paper, we mainly study the structure of siphons of a free choice Petri net. $A$

pair of transitions is (in conflict”’ if they have a common input place, and a net is
$(\langle$

free

choice”’ if every transitions in conflict has only one input place [1, 3].

Let $P$ be a siphon of a free choice net, and $T$ be a set of transitions having arcs to the

places in $P$ . We show that

1. if $P$ has an “end” place $p$ that has no path to any other places, then $P-\{p\}$ is also

a siphon, and
2. if $P$ has two places $p,$ $q$ that have arcs to a common transition, then $P-\{p\}$ is also

a siphon.

Deleting the places satisfying above conditions one by one, we can obtain all siphons of a
given free choice Petri net.

Moreover, let $R$ be a set of places not in $P$ that has a path of length 2 to a place in
$P$ . Then we show that for any $R’\subseteq R$ , there exists a siphon $P’$ such that $P’\supseteq P$ and
$P’\cap R=R’$ . It means that concerning the inclusion relation, the structure of all subsets

of $R$ is embedded in the structure all siphons containing $P.$

In order to make this paper self-contained, we also include some related results dis-

cussed in earlier papers [1, 3, 4], and present them with refined proofs. In section 2, we
give basic definitions of Petri nets using the notation of multisets. In section 3, we show

that any Petri net $N$ is emulated by a Petri net in a regular form, i.e. whose arcs are
single weighted, has no loops, in(out)-degree of whose vertexes are less than 3 and is free

choice. In section 4, we introduce a preorder on transitions, and show that every transition
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sequence is rearranged without losing fireability to the sequence which is consistent with
the preorder. It means that we may concentrate the analysis to the strongly connected
Petri nets. In section 5, we study siphons of a Petri net and give the main results of the
paper.

2 Preliminaries

In this section, we give basic definitions and notations used in this paper. After giving
notation for multisets, we define Petri nets and reachability of their markings on the
framework of multisets.

2.1 Multisets and Strings

The notion of multiset is a generalization of the notion of set in which the finite multi-
plicities of elements are allowed. We use brackets $[,$ $]$ for multisets to distinguish them
from sets, and $na$ to denote $n$-multiples of an element $a$ . If no confusion occurs, we may
consider a set as a multiset whose multiplicities are less than 2. Hence, for example,
$[a, b, b]=[a, 2b]\neq[a, b]=\{a, b\}.$

For a multiset $A,$ $|A|$ denotes the number of elements in $A$ and $\underline{A}$ $:=\{a|a\in A\}$ is
called the underlying set of $A$ . Thus, $|[a, 2b]|=3$ and $[a, 2b]=\{a, b\}.$

For a finite set $X$ , the class $X^{o}$ of all finite multisets over $X$ is defined by $X^{o}$ $:=$

$\{A|\underline{A}\subseteq X$ and $|A|<\infty\}$ . For $A\in X^{o}$ and $x\in X,$ $A(x)$ denotes the multiplicity of $x$

in $A$ . That is, $A\in X^{o}$ is identified with the function $A$ : $Xarrow\{O$ , 1, 2, $\}.$

Let $A$ and $B$ in $X^{o}$ . We define, $A\subseteq B,$ $A\cup B,$ $A\cap B,$ $A-B,$ $A+B$ and $A\cdot B$ by

$A\subseteq B$ if $A(x)\leq B(x)$ ,

$(A \cup B)(x) := \max(A(x), B(x))$ ,

$(A \cap B)(x) := \min(A(x), B(x))$ ,

$(A-B)(x) := \max(O, A(x)-B(x))$ ,

$(A+B)(x) := A(x)+B(x)$ ,

$(A\cdot B)(x) := A(x)\cross B(x)$ ,

for any $x\in X$ , respectively. Note that $A\cup B,$ $A\cap B$ and $A-B$ are sets if $A$ and $B$ are

sets. If $B$ is a set, then $A\cdot B(x)=\{\begin{array}{ll}A(x) if x\in B0 if x\not\in B\end{array}$

For an alphabet (finite set) $X,$ $X^{*}$ denotes the set of strings of finite length over
$X$ including the empty string $\epsilon$ of length O. For $x_{1}x_{2}\cdots x_{n}\in X^{*}(n\geq 0)$ , we define
$(x_{1}x_{2}\cdots x_{n})^{R}:=x_{n}\cdots x_{2}x_{1}$ . Note that $\epsilon^{R}=\epsilon.$

The Parikh map $\psi$ : $X^{*}arrow X^{o}$ is recursively defined by

$\{\begin{array}{ll}\psi(\epsilon) := \emptyset,\psi(xw) := [x]+\psi(w) for any x\in X and w\in X^{*}.\end{array}$

Hence, $\psi(x_{1}x_{2}\cdots x_{n})=[x_{1}, x_{2}, . . . , x_{n}]$ . We also define $x_{1}x_{2}\cdots x_{n}$ $:=\psi(x_{1}x_{2}\cdots x_{n})=$

$\{x_{1}, x_{2}, . . . , x_{n}\}$ . Moreover we define $\psi(W)$ $:=\{\psi(w)|w\in W\}$ for $W\subseteq X^{*}$ . Thus
$\psi(X^{*})=X^{o}.$
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2.2 Petri Nets

A Petri net (or simply a net) is a bipartite multigraph $N=(P_{N}, T_{N}, F_{N})$ where $P_{N}$

is a finite nonempty set of places, $T_{N}$ is a finite set of transitions, and $F_{N}\in(P_{N}\cross$

$T_{N}\cup T_{N}\cross P_{N})^{o}$ is a multiset of arcs. For $x\in P_{N}\cup T_{N}$ , we define postmultiset of $x$

by $x^{N}$ $:=[y|(x, y)\in F_{N}]$ and premultiset of $x$ by $N_{X}$ $:=[y|(y, x)\in F_{N}]$ . Note that
$t^{N},$ $Nt\subseteq P_{N}^{o}$ for any $t\in T_{N}.$

Graphically, places, transitions and arcs are represented by circles, boxes and arrows
respectively. For example, Fig. 1 and 2 are graphical representation of $N_{1}=(P_{1}, T_{1}, F_{1})=$

$(\{p, q, r\}, \{s, t, u\}, [(p, s), (p, t), (s, q), (t, r), (q, u), (r, u), (u,p)])$ and $N_{2}=(P_{2}, T_{2}, F_{2})=$

$(\{p\}, \{u\}, [2(p, u), (u, p)])$ , respectively. Here, the labe12 of arc $(p, u)$ of $N_{2}$ represents its

multiplicity $F_{2}(p, u)$ . Thus, $N_{2}u=[2p]$ and $u^{N_{2}}=[p].$

2

Fig. 1 Fig.2

A marking of a Petri net $N=(P_{N}, T_{N}, F_{N})$ is a finite multiset over $P_{N}$ , i.e. an

element in $P_{N}^{o}$ . For a transition sequence $\tau\in T_{N}^{*}$ , we recursively define the partial

function $[\tau\rangle_{N}$ : $P_{\mathring{N}}arrow P_{\mathring{N}}$ as follows.

$\{\begin{array}{ll}\mu[\epsilon\rangle_{N} := \mu\mu[t\tau\rangle_{N} := \{undefined(\mu^{N}-t+t^{N})[\tau\rangle_{N} if^{N}t\subseteq\mu otherwise for t\in T_{N} and \tau\in T_{N}^{*}.\end{array}$

We say that $\tau\in T_{N}^{*}$ is fireable at a marking $\mu\in P_{\mathring{N}}$ of $N$ if $\mu[\tau\rangle_{N}\in P_{\mathring{N}}$ , i.e. is defined.
For a $W\subseteq T_{N}^{*}$ , we define $\mu[W\rangle_{N}$ $:=\{\mu[\tau\rangle_{N}|\tau\in W$ }. The set $\mu[*\rangle_{N}$ $:=\mu[T_{N}^{*}\rangle_{N}$ is called
the set of reachable markings of $N$ from $\mu.$

We define $NU$ $:= \sum_{t\in T_{N}}U(t)\cdot Nt$ and $U^{N}$ $:= \sum_{t\in T_{N}}U(t)\cdot t^{N}$ for $U\in T_{\mathring{N}}$ , and
$N_{\mathcal{T}}$ $:=N\psi(\tau)$ and $\tau^{N}$ $:=\psi(\tau)^{N}$ for $\tau\in T_{N}^{*}$ . Fkom the definition of $[\tau\rangle_{N}$ , it is easy to see
that if $\mu[\tau\rangle_{N}=\nu$ then $\nu=\mu+\tau^{N}-N_{\mathcal{T}}$

For example, $[2p][stu\rangle_{N_{1}}=\lceil\gamma 0, q][tu\rangle_{N_{1}}=[q, r][u\rangle_{N_{1}}=\lceil p],$ $N_{1}(stu)=[2p, q, r]$ and
$(stu)^{N_{1}}=|p,$ $q,$ $r].$

The set $\hat{w}$ of rearrangements of $w\in X^{*}$ is defined by $\hat{w}$ $:=\psi^{-1}(\psi(w))=\{v\in$

$X^{*}|\psi(v)=\psi(w)\}$ . If $\mu[\tau\rangle_{N}\in P^{o}$ , then $\mu+\tau^{N}\supseteq N_{\mathcal{T}},$ $\mu[\tau\rangle_{N}=\mu+\tau^{N}-N_{\mathcal{T}}$ and
$\mu[\gamma\tau_{N}=\{\mu+\tau^{NN}-\tau\}.$

The reversed Petri net of $N=(P_{N}.T_{N}, F_{N})$ is defined by $N^{-1}:=(P_{N}, T_{N}.F_{N}^{-1})$ where
$F_{N}^{-1}$ $:=[(x, y)|(y, x)\in F_{N}]$ , i.e. $N^{-1}$ is the net obtained by reversing the direction of all
arcs in $N$ . Then it is easy to see that $\mu[\tau\rangle_{N}=\nu$ if and only if $\nu[\tau^{R}\rangle_{N^{-1}}=\mu$
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3 Emulation

In this section, we study the notion of emulation on Petri nets, and show that any Petri
net is emulated by the net which is ordinary (i.e. has no multiple arcs), pure (i.e. has
no loops), $\max$-degree 2 (i.e. has no vertexes of in(out)-degree greater than 2), and free
choice (i.e. has no arcs from out-degree 2 places to in-degree 2 transitions).

Let $N_{0}=(P_{0}, T_{0}, F_{0})$ and $N_{1}=(P_{1}, T_{1}, F_{1})$ . For $\tau_{0}\in T_{0}^{*}$ and $\tau_{1}\in\tau_{1}*$ , we denote
[$\tau_{0}\rangle_{N_{0}}=[\tau_{1}\rangle_{N_{1}}$ if $\mu[\tau_{0}\rangle_{N_{0}}=\mu[\tau_{1}\rangle_{N_{1}}$ for any $\mu\in(P_{0}\cap P_{1})^{o}$ . Informally, $[\tau_{0}\rangle_{N_{0}}=[\tau_{1}\rangle_{N_{1}}$

means that the firing effects $\tau_{0}$ on $N_{0}$ and $\tau_{1}$ on $N_{1}$ are equivalent.
We say that $N_{0}=(P_{0}, T_{0}, F_{0})$ is emulated by $N_{1}=(P_{1}, T_{1}, F_{1})$ , if $P_{0}\subseteq P_{1}$ and there

exists a homomorphism $h$ : $T_{0}arrow\tau_{1}*$ such that [$t\rangle_{N_{0}}=[h(t)\rangle_{N_{1}}$ for every $t\in T_{0}$ . For
example, $N_{1}$ of Fig. 1 emulates $N_{2}$ of Fig. 2 through $h(u)=stu.$

Lemma 1 If $N_{1}$ emulates $N_{0}$ and $N_{2}$ emulates $N_{1},$ $N_{2}$ emulates $N_{0}.$

(Proof) If $N_{1}=(P_{1}, T_{1}, F_{1})$ emulates $N_{0}=(P_{0}, T_{0}, F_{0})$ through $h_{1}$ : $T_{0}arrow\tau_{1}*and$

$N_{2}=(P_{2}, T_{2}, F_{2})$ emulates $N_{1}$ through $h_{2}$ : $T_{1}arrow T_{2}^{*}$ , then $N_{2}$ emulates $N_{0}$ through
$h_{2}(h_{1}(\cdot)):T_{0}arrow\tau_{2}*$ . (Q.E.D)

A Petri net $N=(P, T, F)$ is ordinal if $N$ has no multiple arcs, i.e. $F\subseteq P\cross T\cup T\cross P.$

Lemma 2 Every Petri net is emulated by an ordinal Petri net.

(Proof) Let $N_{0}=(P_{0}, T_{0}, F_{0})$ .
Assume $F_{0}(t_{0}, p_{0})=m+1$ for some $m\geq 1$ . To construct a Petri net $N=(P, T, F)$

emulating $N_{0}$ with $F(t_{0},p_{0})=1$ , we add new places $\{p_{i}|i=1, 2, . . . , m\}$ to $P_{0}$ , new
transitions $\{t_{i}|i=1, 2, . . . , m\}$ to $T_{0}$ , and new arcs $[(t_{i},p), (p_{i}, t_{i}), (t_{i-1},p_{i})|i=1, 2, . . . , m]$

to $F_{0}-[m(t_{0},p_{0})]$ . It is easy to see that $F(t_{0},p_{0})=1$ and the multiplicity of every
adding arcs is 1. Since $N(t_{0}t_{1}t_{2}\cdots t_{m})=[p1, p2, . . . , p_{m}]+N_{0}t_{0}$ and $(t_{0}t_{1}t_{2}\cdots t_{m})^{N}=$

$[mp_{0},p1,p2, . . . , p_{7n}]+t^{N_{1}}-[mp_{0}],$ $[t\rangle_{N_{0}}=[t_{0}t_{1}t_{2}\cdots t_{m}\rangle_{N}.$

Assume $F_{0}(p_{0}, t_{0})=m+1$ for some $m\geq 1$ . To construct a Petri net $N=(P, T, F)$

emulating $N_{0}$ with $F(p_{0}, t_{0})=1$ , we apply the above process to the reversed Petri net
$N_{0}^{-1}$ of $N_{0}$ , and take the reverse of the resulted net.

Repeating the above processes, we eventually have $N_{1}=(P_{1}, T_{1}, F_{1})$ emulating $N_{0}$

such that $F_{1}(p, t)\leq 1$ and $F_{1}(t,p)\leq 1$ for all $p\in P_{1}$ and $t\in T_{1}$ . (Q.E.D)

A Petri net $N=(P, T, F)$ is pure if $N$ has no loops, i.e. $Nt\cap t^{N}=\emptyset$ for any $t\in T.$

Lemma 3 Every Petri net is emulated by a pure Petri net.

(Proof) Assume $N_{0}=(P_{0}, T_{0}, F_{0})$ is ordinal and $\{(p_{0}, t_{0}), (t_{0},p_{0})\}\subseteq F_{0}$ . To construct
$N=(P, T, F)$ emulating $N_{0}$ with $Nt_{0}\cap t_{0}^{N}=\emptyset$ , we add new place $p$ , new transition $t$ and
new arcs $(t_{0}, p)$ , $(p, t)$ , $(t, p_{0})$ to $P_{0},$ $T_{0}$ and $F_{0}-[(t_{0}, p_{0})]$ , respectively. Clearly $Nt_{0}\cap t_{0}^{N}=\emptyset.$

Since $N(t_{0}t)=Nt_{0}+[p]$ and $(t_{0}t)^{N}=\lceil p,p_{0}$ ] $+t_{0}^{N_{0}}-[p_{0}]$ , [$t_{0}\rangle_{N_{0}}=[t_{0}t\rangle_{N}$ . Repeating this
process, we eventually have the net $N_{1}=(P_{1}, T_{1}, F_{1})$ emulating $N_{0}$ and $N_{1}t\cap t^{N_{1}}=\emptyset$ for
any $t\in T_{1}$ . (Q.E.D)

A Petri net $N=(P, T, F)$ is $\max$-degree 2 if $|v^{N}|\leq 2$ and $|^{N}v|\leq 2$ for any $v\in P\cup T.$
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Lemma 4 Every Petri net is emulated by an ordinary pure Petri net of $\max$-degree 2.

(Proof) Assume $N_{0}=(P_{0}, T_{0}, F_{0})$ is ordinary and pure.
Let $p_{0}^{N_{0}}=[t_{0}, t_{1}, . . . , t_{m}]$ with $m\geq 2$ . To construct $N=(P, T, F)$ emulating $N_{0}$

such that $|p_{0}^{N}|=2$ , we add new places $\{p_{i}|i=1, 2, . . . , m\}$ to $P_{0}$ , new transitions $\{s_{i}|i=$

$1$ , 2, . . . , $m\}$ to $T_{0}$ , and new arcs $[(p_{i}, t_{i})$ , $(p_{i-1}, s_{i})$ , $(\mathcal{S}_{i,p_{i})|i}=1, 2, . . . , m] to F_{0}-[(p_{0}, t_{i})|i=$

$1$ , 2, . . . , $m]$ . Then it is easy to see that $|p_{0}^{N}|=2,$ $|v^{N}|,$ $|^{N}v|\leq 2$ for every adding vertex $v,$

[ $t_{0}\rangle_{N_{0}}=[t_{0}\rangle_{N}$ and [$t_{i}\rangle_{N_{0}}=[s_{1}s_{2}\cdots s_{i}t_{i}\rangle_{N}$ for every $1\leq i\leq m.$

Let $t_{0}^{N_{0}}=[p_{0},p_{1}, . . . , p_{m}]$ with $m\geq 2$ . To construct $N=(P, T, F)$ emulating $N_{0}$

such that $|t_{0}^{N}|=2$ , we add new places $\{q_{i}|i=1, 2, . . . , m\}$ to $P_{0}$ , new transitions $\{t_{i}|i=$

$1$ , 2, . . . , $m\}$ to $T_{0}$ , and new arcs $[(t_{i},p_{i}), (t_{i-1}, q_{i}), (q_{i}, t_{i})|i=1, 2, . . . , m]$ to $F_{0}-[(t_{0},p_{i})|i=$

$1$ , 2, . . . , $m]$ . Then it is easy to see that $|t_{0}^{N}|=2,$ $|v^{N}|,$ $|^{N}v|\leq 2$ for every adding vertex $v,$

and $[t_{0}\rangle_{N_{0}}=[t_{0}t_{1}\cdots t_{m}\rangle_{N}.$

Other two cases where $N_{0}t_{0}=[p_{0},p_{1}, . . . , p_{m}]$ and $N_{0}p_{0}=[t_{0}, t_{1}, . . . , t_{m}]$ with $m\geq 2,$

are processed similarly by considering the reversed net $N_{0}^{-1}$

Repeating the above processes, we eventually have a net $N_{1}=(P_{1}, T_{1}, F_{1})$ emulating
$N_{0}$ and $|v^{N_{1}}|\leq 2$ and $|^{N_{1}}v|\leq 2$ for any $v\in P_{1}\cup T_{1}$ . (Q.E.D)

A Petri net $N=(P_{N}, T_{N}, F_{N})$ is a free choice net [1] if $|p^{N}|=1$ or $|^{N}t|=1$ for any
$(p, t)\in F_{N}\cap(P_{N}\cross T_{N})$ . A Petri net $N=(P, T, F)$ is in a regular form if it is ordinal,

pure, $\max$-degree 2 and free choice.

Theorem 5 Every Petri net is emulated by a Petri net in a regular form.

(Proof) Assume $N_{0}=(P_{0}, T_{0}, F_{0})$ is ordinal, pure and $\max$-degree 2.
Let $[(p, s), (p, t), (q, t)]\subseteq F_{0}$ with $p,$ $q\in P_{0}$ and $s,$ $t\in T_{0}$ . To construct $N=(P, T, F)$

emulating $N_{0}$ such that $(p, t)\not\in F$ , we add new places $r$ to $P_{0}$ , new transitions $u$ to $T_{0},$

and new arcs $(p, u)$ , $(u, r)$ , $(r, t)$ to $F_{0}-[(p, t$ Then $it is$ easy $to see$ that $(p, t)\not\in F$ and
$[t\rangle_{N_{0}}=[ut\rangle_{N}.$

Repeating the above processes, we eventually have a net $N_{1}=(P_{1}, T_{1}, F_{1})$ emulating
$N_{0}$ and $|p^{N_{1}}|+|^{N_{1}}t|\leq 3$ for any $(p, t)\in F_{1}\cap(P_{1}\cross T_{1})$ . (Q.E.D)

Considering the reversed net, we can show that any Petri net is emulated by a Petri
net $N_{1}=(P_{1}, T_{1}, F_{1})$ such that $|u^{N_{1}}|+|^{N_{1}}v|\leq 3$ for any $(u, v)\in F_{1}$ . But, for the study
of siphons, it is enough to assume that a net is free choice.

4 Preorder of transitions

For a relation $R$ over a set $A$ , we recursively define the relations

$\{\begin{array}{ll}R^{0} := \{(x, x)|x\in A\},R^{n+1} := \{(x, z)|(x, y)\in R^{n} and (y, z)\in R\} for any n\geq 0.\end{array}$

Moreover we define $R^{*}$ $:= \bigcup_{n\geq 0}R^{n}$ and $R^{-n}$ $:=\{(y, x)|(x, y)\in R^{n}\}$ for $n=*$ , 1, 2, $\cdots.$

Since $R^{*}$ is the reflexive transitive closure of $R,$ $R^{*}$ is a preorder (i.e. a reflexive transitive
relation) of $A$ . For a relation $R$ , we also define $R(x)$ $:=\{y|(x, y) \in R\}$ , and $R(X)$ $:=$

$\bigcup_{x\in X}R(x)$ .
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Let $N=(P_{N}, T_{N}, F_{N})$ be an ordinal Petri net. Since $F_{N}\subseteq P_{N}\cross T_{N}\cup T_{N}\cross P_{N},$ $F_{N}$ is
considered to be a relation over $P_{N}\cup T_{N}$ , and $F_{N}^{*}(x)$ denotes the set of vertexes (places
and transitions) that have a path from $x$ in $N.$

For $\tau\in T_{N}^{*}$ and $T\subseteq T_{N},$ $\tau|_{T}$ denotes a homomorphic image of $h:T_{N}^{*}arrow\tau*$ such that

$h(t)=\{\begin{array}{ll}t if t\in T\epsilon if t\in T_{N}-T\end{array}$ For $\tau,$ $\sigma\in T_{N}^{*}$ , we write $[\tau\rangle_{N}\preceq[\sigma\rangle_{N}$ if $\mu[\tau\rangle_{N}=\mu[\sigma\rangle_{N}$ or

undefined for any marking $\mu$ of $N$ . Then we have the following lemma.

Lemma 6 Let $N=(P_{N}, T_{N}, F_{N})$ and $T\subseteq T_{N}$ be a set of transitions such that $F_{N}^{-1}(T)\cap$

$F_{N}(T_{N}-T)=\emptyset$ . Then $[\tau\rangle_{N}\preceq[(\tau|_{T})(\tau|_{T_{N}-T})\rangle_{N}.$

(Proof) If $T=\emptyset$ or $T=T_{N}$ , it is clear since $(\tau|_{T})(\mathcal{T}|_{T_{N}-T})=\tau$ . Assume $\emptyset\subset T\subset T_{N}$

and $F_{N}^{-1}(T)\cap F_{N}(T_{N}-T)=\emptyset$ . Note that $(\tau|_{T})(\tau|_{T_{N}-T})\in\hat{\tau}.$

Let $t\in T_{N}-T$ and $\mu$ is a marking of $N$ . Since $t^{N}\cross F_{N}^{-1}(T)=\emptyset,$ $\mu\cross F_{N}^{-1}(T)=$

$(\mu+t^{N})\cross F_{N}^{-1}(T)$ . Thus, if $\mu[\tau\rangle_{N}$ is defined then $\mu[\tau|_{T}\rangle_{N}$ is defined.
Let $t\in T$ and $\mu$ be a marking of $N$ . Since $F_{N}(T_{N}-T)\cross Nt=\emptyset,$ $\mu\cross F_{N}^{-1}(T_{N}-T)=$

$(\mu-Nt)\cross F_{N}^{-1}(T_{N}-T)$ and $\mu\cross F_{N}^{-1}(T_{N}-T)=(\mu-N\sigma)\cross F_{N}^{-1}(T_{N}-T)$ for any $\sigma\in\tau*.$

Thus, if $\mu[\tau\rangle_{N}$ is defined then $\mu[\tau|_{T}\rangle_{N}[\tau|_{T_{N}-T}\rangle_{N}=\mu[\tau\rangle_{N}$ . (Q.E.D)

A sequence $\sigma\in X^{*}$ is consistent with a preorder $R$ of $X$ if $\sigma\in X^{*}xX^{*}yX^{*}$ means
$(x, y)\in R$ or $(x, y)\not\in R^{-1}$ for any $x,$ $y\in X.$

Theorem 7 Let $N=(P_{N}, T_{N}, F_{N})$ . There exists a rearrangement $\sigma$ of $\tau\in T_{N}^{*}$ consistent
with $F_{N}^{*}$ and $[\tau\rangle_{N}\preceq[\sigma\rangle_{N}.$

(Proof) We will show that if $\tau$ is not consistent with $F_{N}^{*},$ $\tau$ has a rearrangement $\sigma$ such
that [$\tau\rangle_{N}\preceq[\sigma\rangle_{N}$ . Assume $\tau=\tau_{0}s\tau_{1}t\tau_{2}$ and $(s, t)\in F_{N}^{-*}-F_{N}^{*}$ . We also may assume $(s, u)$

and $(u, t)$ are not in $F_{N}^{-*}$ or in $F_{N}^{*}$ for any $u\in\psi(\tau_{1})$ . Let $T:=F_{N}^{-*}(t)$ . Since $F_{N}^{-1}(T)=T,$

$F^{-1}(T)\cap F(T_{N}-T)=\emptyset$ . Moreover $s\in T_{N}-T$ and $F_{N}^{*}(T_{N}-T)=T_{N}-T$ . It means
that $\psi(s\tau_{1})\subseteq T_{N}-T$ and [$\tau_{0}s\tau_{1}t\tau_{2}\rangle_{N}\preceq[\tau_{0}ts\tau_{1}\tau_{2}\rangle_{N}$ from Lemma 6. (Q.E.D)

Let $N=(P_{N}, T_{N}, F_{N})$ . We define the following types of subnets of $N.$

$N(P, T):=(P, T, F_{N}\cap(P\cross T\cup T\cross P))$ for $P\subseteq P_{N}$ and $T\subseteq T_{N},$

$N(T)$ $:=N(P_{N}, T)$ for $T\subseteq T_{N}$ , and
$N(\tau)$ $:=N(\underline{\tau})$ for $\tau\in T_{N}^{*}.$

Informally, $N(P, T)$ is the subnet of $N$ obtained by deleting vertexes not in $P\cup T.$ $N(T)$

and $N(\tau)$ are the subnet of $N$ obtained by deleting transitions not (appearing) in $T$ and
$\tau$ respectively.

Then the following proposition is clear from the definition.

Proposition 8 Let $N=(P_{N}, T_{N}, F_{N})$ . For any $\tau\in T_{N}^{*},$ $[\tau\rangle_{N}=[\tau\rangle_{N(\tau)}.$

From Theorem 7, it is easy to see that for any $\tau\in T_{N}^{*}$ , there exists a rearrangement
$\sigma=\sigma_{1}\sigma_{2}\cdots\sigma_{k}$ of $\tau$ such that $\underline{\sigma_{i}}(1\leq i\leq k)$ is a set of transtions in a strongly connected
component of $N(\sigma_{i}\cdots\sigma_{k})$ that has no input arcs from any othe trasitions.

Thus we can concentrate our study on strongly connected Petri nets.
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5 Siphons

5.1 Basic Facts about Siphons

Let $N=(P_{N}, T_{N}, F_{N})$ . A set of places $P\subseteq P_{N}$ is marked at a marking $\mu$ of $N$ if $P\cap\mu\neq\emptyset.$

$P$ is a siphon of $N$ if $F_{N}^{-1}(P)\subseteq F_{N}(P)\neq\emptyset$ . A siphon $P$ of $N$ is minimal if it properly
contains no siphons of $N[3].$

We define $N[P]$ $:=N(P, F_{N}^{-1}(P))$ for $P\subseteq P_{N}.$ $N[P]$ is the subnet of $N$ consisting
places in $P$ , transitions having arcs to places in $P$ and arcs connecting them. Since $N[P]$

plays an essential role in the study of siphon, we call $N[P]$ a siphon net when $P$ is a siphon.

A siphon $P$ of $N$ is strongly connected if the siphon net $N[P]$ is strongly connected.
Let $N=(P_{N}, T_{N}, F_{N})$ be strongly connected. From the definition of a siphon, for any

set $P$ of places, a siphon $R\supseteq P$ of $N$ is constructed by the following nondeterministic
algorithm. (See [2] for the linear time algorithm.)

$R:=P$;
repeat

for $t\in F_{N}^{-1}(R)-F_{N}(R)$ , add some $r\in F_{N}^{-1}(R)$ to $R\backslash ,$

until $F_{N}^{-1}(R)\subseteq F_{N}(R)$ ;

Since $N$ is strongly connected, $P_{N}$ is a siphon of $N$ . Hence, the above algorithm eventually
stops and gets a siphon.

Note that $F_{N}^{-1}(P)$ is the set of transitions which marks places in $P$ , and $F_{N}(P)$ is the
set of transition that needs marks in $P$ to fire. Thus, if $P$ is unmarked at a marking $\mu$ of
$N$ , then transition in $F_{N}(P)$ are dead, i.e. not fireable at any marking in $\mu[*\rangle_{N}.$

Proposition 9 Let $N=(P_{N}, T_{N}, F_{N})$ , $P\subseteq P_{N}$ , and $\mu$ is a marking of $N.$

1. If a siphon $P$ is unmarked at $\mu$ , then it is unmarked at any marking in $\mu[*\rangle_{N}$ and
$\mu[*\rangle_{N}=\mu[(T_{N}-F_{N}(P))^{*}\rangle_{N}=\mu[*\rangle_{N(T_{N}-F_{N}(P))}.$

2. If no transitions in a nonempty set $T\subseteq T_{N}$ are fireable at $\mu$ , then $N(T)$ has a siphon

unmarked at $\mu.$

3. If $\mu[\tau\rangle_{N}$ is defined, then any siphon of $N(\tau)$ is marked at $\mu.$

(Proof)
1. If a siphon $P$ is unmarked at $\mu$ , then no transitions in $F_{N}(P)(\supseteq F_{N}^{-1}(P))$ are fireable

at $\mu$ . Thus, at any marking $v\in\mu[T_{N}\rangle_{N}=\mu[T_{N}-F_{N}(P)\rangle_{N},$ $P$ is unmarked and no
transitions in $F_{N}(P)$ are fireable. Repeating this argument, $P$ is unmarked at any
$\nu\in\mu[T_{N}^{*}\rangle_{N}=\mu[(T_{N}-F_{N}(P))^{*}\rangle_{N}.$

2. Let $N(T)=(P_{N}, T, F)$ and $P:=\{p|\mu(p)=0\}$ . Since, no transitions in $T\neq\emptyset$ are
fireable at $\mu$ in $N$ and $N(T)$ , $F(P)=T\supseteq F^{-1}(P)$ .

3. It is clear from 1 and 2. (Q.E.D)

5.2 Structural properties of siphons

In the previous section, we have seen that siphons play an essential role in the reachability
analysis. In this section we study the structural properties of siphons.

Proposition 10 Let $N=(P_{N}, T_{N}, F_{N})$ and $P\subseteq P_{N}.$

1. Every siphon of $N[P]$ is also a siphon of $N.$
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2. If $|P|\geq 2$ and $N[P]$ is strongly connected, then $P$ is a siphon of $N.$

(Proof) Let $N[P]=(P, F_{N}^{-1}(P), F)$ . Since $F\cap F_{N}^{-1}(P)\cross P=F_{N}\cap F_{N}^{-1}(P)\cross P,$

$F^{-1}(Q)=F_{N}^{-1}(Q)$ for every $Q\subseteq P.$

1. If $Q\subseteq P$ and $F^{-1}(Q)\subseteq F(Q)$ , then $F_{N}^{-1}(Q)=F^{-1}(Q)\subseteq F(Q)\subseteq F_{N}(Q)$ .
2. If $|P|\geq 2$ and $N[P]$ is strongly connected, $F^{-1}(P)\subseteq F(P)\neq\emptyset$ . Thus $P$ is a siphon

of $N[P]$ and $N$ from 1. (Q.E.D)

Note that if $N[\{p\}]$ is strongly connected, then $F(\{p\})=\emptyset$ since $N$ has no loops. Thus,
the condition $|P|>2$ is essential in the statement 2 of the above Theorem.

Proposition 11 Let $N=(P_{N}, T_{N}, F_{N})$ and $F\subseteq P_{N}\cross T_{N}.$

1. Any siphon of $(P_{N}, T_{N}, F_{N}-F)$ is a siphon of $N.$

2. If $(F_{N}-F)(P)=F_{N}(P)$ , then $P$ is a siphon of $N$ if and only if $P$ is a siphon of
$(P_{N}, T_{N}, F_{N}-F)$ .

(Proof) Since $F\subseteq P_{N}\cross T_{N},$ $(F_{N}-F)\cap T_{N}\cross P_{N}=F_{N}\cap T_{N}\cross P_{N}$ . Thus $(F_{N}-F)^{-1}(P)=$

$F_{N}^{-1}(P)$ and $(F_{N}-F)(P)\subseteq F(P)$ for any $P\subseteq P_{N}.$

1. If $P$ is a siphon of $(P_{N}, T_{N}, F_{N}-F)$ , i.e. $(F_{N}-F)^{-1}(P)\subseteq(F_{N}-F)(P)\neq\emptyset$ , then
$F_{N}^{-1}(P)=(F_{N}-F)^{-1}(P)\subseteq(F_{N}-F)(P)\subseteq F_{N}(P)\neq\emptyset.$

2. If $P$ is a siphon of $N$ , since $(F_{N}-F)^{-1}(P)=F_{N}^{-1}(P)\subseteq F_{N}(P)=(F_{N}-F)(P)$ , $P$

is a siphon of $(P_{N}, T_{N}, F_{N}-F)$ . Thus the result follows from 1.

Now we show that some kinds of places in a siphon can be deleted preserving the set
siphon, and any siphon of a strongly connected net is obtained by this way.

Proposition 12 Let $N=(P_{N}, T_{N}, F_{N})$ be in a regular form and $P_{N}$ be a siphon of $N.$

1. For any place $p\in P_{N}$ , any siphon of $(P_{N}-\{p\}, T_{N})$ is a siphon of $N.$

2. If $F_{N}^{2}(p)=\emptyset$ , then $P_{N}-\{p\}$ is a siphon of $N.$

3. If $|F_{N}^{-1}(F_{N}(p))|>1$ , then $P_{N}-\{p\}$ is a siphon of $N.$

(Proof)

1. Let $F=F_{N}\cap((P_{N}-\{p\})\cross T_{N}\cup T_{N}\cross(P_{N}-\{p\}))$ be the set of arcs $(P_{N}-\{p\}, T_{N})$ .
Then for any $P’\subseteq P_{N}-\{p\},$ $F_{N}^{-1}(P’)=F^{-1}(P’)$ and $F_{N}(P’)=F(P’)$ . Thus, any
siphon of $(P_{N}-\{p\}, T_{N})$ is a siphon of $N.$

2. Since $F_{N}^{2}(p)=\emptyset,$ $F_{N}(p)\cap F_{N}^{-1}(P_{N})=\emptyset$ . Since $F_{N}^{-1}(P_{N})\subseteq F_{N}(P_{N})$ , $F_{N}^{-1}(P_{N})\subseteq$

$F_{N}(P_{N})-F_{N}(p)\subseteq F_{N}(P-\{p\})$ . Thus, $F_{N}^{-1}(P_{N}-\{p\})\subseteq F_{N}^{-1}(P_{N})\subseteq F_{N}(P_{N}-\{p\})$ .
3. Since $N$ is in a regular form, $|F_{N}(p)|=1$ and $F_{N}(P_{N})=F_{N}(P_{N}-\{p\})$ . Thus,

$F_{N}^{-1}(P_{N}-\{p\})\subseteq F_{N}^{-1}(P_{N})\subseteq F_{N}(P_{N})=F_{N}(P_{N}-\{p\})$ . (Q.E.D)

Theorem 13 Let $N=(P_{N}, T_{N}, F_{N})$ be a Petri net in a regular form and assume that $P_{N}$

is a siphon of $N$ . Every siphon of a $N$ is obtained by repeating the following operation.

1. Delete a place such that $F_{N}^{2}(p)=\emptyset$ and arcs from/to $p.$

2. Delete a place such that $|F_{N}^{-1}(F_{N}(p))|>1$ and arcs from/to $p.$

3. Take some strongly connected components from disjoint union of them.

139



(Proof) Let $P$ be a siphon of $N$ . Any arcs outside into $N[P]$ is in $P_{N}\cross T_{N}$ and can be
deleted by the operation 1.

Consider the out-going path $\pi$ from $N[P]$ . If $\pi$ ends some siphon net $N[P’]$ containing
more than 1 vertexes, we can delete the arc of $\pi$ into $N[P’]$ by the operation 1. Thus we
may assume $\pi$ has an end vertex. Then we can delete all places in $\pi$ by repeating the
operation 2.

Let $N’$ be the results of the above operations. Then we can get $N[P]$ as a finite union
of strongly connected components of $N’$ . (Q.E.D)

Finally, we give a theorem concerning about the inclusion structure of a siphons of a
given net.

Theorem 14 Let $P$ be a siphon of a strongly connected Petri net $N=(P_{N},T_{N}, F_{N})$ ,

and $R:=\{r\in P_{N}-P|F_{N}(r)=F_{N}(p)\subseteq F_{N}^{-1}(P)$ for some $p\in P\}$

1. For any $R’\subseteq R$ , there exists a siphon $P’\supseteq P$ such that $P’\cap R=R’.$

2. The structure of all subsets of $R$ under the inclusion relation is embedded in the
class of siphons including $P.$

(Proof)

1. Let $r\in R’,$ $F:=F_{N}\cap((R-\{r\})\cross F_{N}^{-1}(P))$ and $N’$ $:=(P_{N}, T_{N}, F_{N}-F)$ . Since $N$ is
strongly connected, there exists a path from a place in $P$ to $r$ in $N’$ . Thus applying

the sihon constructing algorithm in 5.1 to $N’$ , we have a siphon $P_{p}\supseteq P\cup\{p\}$ of $N’$

such that $P_{p}\cap R=\{p\}.$ $P_{p}$ is also a siphon of $N$ from Propsotion 11. Repeating
this process, for any $R’\subseteq R$ , we can obtain a siphon $P’\supseteq P$ such that $P’\cap R=R’.$

2. It is clear from 1.

(Q.E.D)

5.3 Example

We give an example of Theorem 13 and 14.

Fig. 3

Let $N$ be the Petri net represented in the Fig. 3. $N$ is strongly connected and
$\{a, b, c, d, e, f\}$ is a siphon of $N$ . By the operation 2 of Theorem 13, $\{b, c, d, e, f\},$ $\{a, c, d, e, f\},$

$\{a, b, c, d, f\},$ $\{a, b, c, d, e\},$ $\{b, c, d, f\},$ $\{b, c, d, e\},$ $\{a, c, d, f\}$ and $\{a, c, d, e\}$ are siphons
of $N$ . Then by the operation 1 of Theorem 13, $\{b, c, e, f\},$ $\{a, b, d, e\},$ $\{b, c, f\},$ $\{c, f\},$

$\{b, d, e\},$ $\{b, c, e\},$ $\{b, e\},$ $\{a, d, e\}$ and $\{a, d\}$ are siphons of $N.$
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Among the siphons of $N$ , siphon nets of $\{a, b, c, d, e, f\},$ $\{a, c, d, f\},$ $\{b, c, e, f\},$ $\{a, b, d, e\},$

$\{a, d\},$ $\{b, e\}$ and $\{c, f\}$ are strongly connected, and $\{a, d\},$ $\{b, e\},$ $\{c, f\}$ are minimal
siphons of $N$ . The strongly connected siphons including $\{b, e\}$ are $\{b, e\},$ $\{b, c, e, f\},$

$\{a, b, d, e\}$ and $\{a, b, c, d, e, f\}.$
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