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1. INTRODUCTION

We associate a generalized root system in the sense of Kyoji Saito to an orbifold
projective line via the derived category of finite dimensional representations of a certain
bound quiver algebra. We generalize results by Saito-Takebayshi [28] and Yamada [33]
for elliptic Weyl groups and elliptic Artin groups to the Weyl groups and the fundamental
groups of the regular orbit spaces associated to the generalized root systems. Moreover
we study the relation between this fundamental group and a certain subgroup of the
autoequivalence group of a triangulated subcategory of the derived category of 2-Calabi-
Yau completion of the bound quiver algebra.

This report is a brief summary of the joint work with Atsushi Takahashi and Kentaro
Wada [31]. For precise proofs and the relation of our results to mirror symmetry, see [31]
and the report written by Atsushi Takahashi.

2. NOTATIONS AND TERMINOLOGIES
Throughout this paper, k& denotes an algebraically closed field of characteristic zero.

2.1. Generalized root systems. In this subsection, we recall the definition of the simply

laced generalized root system introduced by K. Saito [25, 27].

Definition 2.1. A simply-laced generalized root system R consists of
e a free Z-module Ky(R) of finite rank (=: p) called the root lattice,
e a symmetric bi-linear form I : Ko(R) X Ko(R) — Z, -
e a subset A, (R) of Ko(R) called the set of real roots such that:
(i) Ko(R) = ZAc(R),
(i) For all @ € A.(R), I(a, @) = 2,
(iii) For all & € A,¢(R), the element 7, of Aut(Ky(R), Ir), the group of auto-
morphisms of Kq(R) respecting Ig, defined by | 4

Ta(A) := A= Ig(\,@)a, X € Ky(R), (2.1)
makes A,.(R) invariant, namely, 74(Ae(R)) = A,(R),



(iv) Let W(R) be the Weyl group of R defined by
W(R) :=(ra | a € Are(R)) C Aut(Ko(R), I). (2.2)
Then there exists a subset B = {ay,...,a,} of Ar(R) called a root basis
of R which satisfies Ko(R) = éZai,AW(R) = (Tay, -, Ta,) and Ay (R) =
: i=1

W(R)B..
e an element cg of W(R) called the Cozeter transformation, which has the product

presentation cg = 74, - -+ 7, With respect to some root basis B = {oq,.. ., o}

i
An element of A,.(R) is called a real root and an element of B is called a real simple root.

For a real simple root a € B, the reflection r, is called a simple reflection.

Definition 2.2. Let R = (Ko(R), Ir, Ase(R), cr) be a simply-laced generalized root Sys-
tem with a root basis B = {a,...,a,} of R. The Cozeter-Dynkin diagram T'g is a finite
graph defined as follows:

o the set of vertices is B = {a1,...,au},

' the edge between vertices o; and o; of I'g is given by the following rule:

Ou; Oaj if IR(Oli, Otj) = O, (23&)
Oai Oaj lf IR(ai,aj) - —“1, (23b)
Oy ——0a, if Ip(as,05) = ~t, (t>2), (2.3¢)
SS— O, if Ip(ou,q;) = +1, (2.3d)
O, Humms Oaj if IR(ai, Ozj) = “|‘2, (236)
Oqi ------ t ------ Oaj if IR(OZZ', Otj) = +t, (t Z 3) (23f)

2.2. Generalized root systems from triangulated categories. In this subsectioﬁ,
we deduce a simply laced generalized root system from a certain algebraic triangulated

category which satisfies plausible conditions.

Definition 2.3. Let D be a k-linear triangulated category with the translation . functor
[1]. Consider a free abelian group F with generators {[X] | X € D} and a subgroup F
of F" generated by [X] — [Y] 4 [Z] for all exact triangles X — Y — Z — X][1] in D.
The Grothendieck group Ko (D) of D is a quotient group F'/Fy.

Any triangulated category of our interest in this paper is equipped with an enhance-

ment. We briefly recall some terminologies.
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Definition 2.4 ([15]). Let D be a k-linear triangulated category. We say that D is
algebraic if it is equivalent as a triangulated category to the stable category of some

k-linear Frobenius catecgory.

It is important to note that for an algebraic k-linear triangulated category D, we
have functorial cones and RHom-complexes once we fix an enhancement, a differential

graded category which yields D (see Theorem 3.8 in [16] for precise statements).

Definition 2.5. Let D be an algebraic k-linear triangulated category with the translation
functor [1] with a fixed enhancement.

(i) For X,Y € D, denote by RHom%,(X,Y) € D(k) the RHom-complex such that
Homyp(X,Y[p]) = H?(RHom}(X,Y)) for all p € Z, where D(k) is the derived
category of complexes of k-modules.

(ii) A k-linear triangulated category D is said to be of finite type if the total dimension
of the graded k-module Hom%,(X,Y) := @ Homp (X, Y [p])[—p] is finite for all

: pEZ
X,Y € D.
Definition 2.6. Let D be an algebraic k-linear triangulated category of finite type with
a fixed enhancement. |
(i) An object E in D is called an exceptional object (or is called ezceptional) if
RHom%,(E, E) 2 k -idg in D(k).

(ii) An exceptional collection € = (Ey, ..., E,) in D is a finite ordered set of excep-
tional objects satisfying the condition that RHomy,(E;, E;) 22 0 in D(k) for all
i > j. An exceptional collection consisting of two objects is an ezceptional pair.

(i) An exceptional collection & = (Ey,...,E,) in D is said to be isomorphic to
another exceptional collection & = (Ef,...,E!) in D if E; = E! in D for all
1=1,..., 1.

(iv) An exceptional collection & = (Ei,...,E,) in D is called a strongly excep-
tional collection if, for all 4,5 = 1,...,n, the complex RHom%(E;, Ej) is iso-
morphic in D(k) to a complex concentrated in degree zero, equivalently, we have
Homyp(E;, E;[p]) = 0 for p # 0.

(v) An exceptional collection £ in D is called full if the smallest full triangulated
subcategory of D containing all elements in £ is equivalent to D.

(vi) For an exceptional pair (X,Y), one has new exceptional pairs (LxY, X) called
the left mutation of (X,Y) and (Y, RyX) called the right mutation of (X,Y).

Here the object LxY[1] is defined as the cone of the evaluation morphism ev

RHom$,(X,Y)®" X =5 Y, (2.4a)



where (=) ®" X is the left adjoint of the functor RHomp(X, —) : D —s D(k).

Similarly, the object Ry X is defined as the cone of the evaluation morphism ev*
X <% RHomS (X, Y)* gL Y. (2.4b)
where (—)* denotes the duality Hom(—, k).

Here we recall the braid group action on the sct of isomorphism classes of full

exceptional collections.

Definition 2.7. The Artin’s braid group B, on u-strands is a group presented by the
following generators and relations:
Generators: {b;, |i=1,...,u—1}
Relations:
bb; = bjb; for |i—j| > 2, (2.5a)
bibii1b; = bisibibiyy for i=1,...,u—2. (2.5b)

Consider the group G, := B, x Z*, the semi-direct product of the braid group B,
and the free abelian group of rank u, defined by the group homomorphism B, —»6,—
AutzZ*, where the first homomorphism is b ~ (4,4 + 1) and the second one is induced

by the natural actions of the symmetric group &, on Z*.

Proposition 2.8 (cf. Proposition 2.1 in [3]). Let D be an algebraic k-linear triangu-
lated category of finite type with a fized enhancement.. The group G, acts on the set of

isomorphism classes of full exceptional collections in D by mutations and translations:

bi(El, ceey Eu) = (El, ey Ei—l; Eli+1, RE1‘+1Ei3 Ei+2, caey E“), (26&)

b;l(El, BN Eﬂ) = (El, ey Ez'—-la ‘CE,-E'H—la Ei, E@L_;r_g, ceey Eli)’ (26]3)

ei(El, ey Eli) = (Ela ey Ei——17 El[l], Ei+17 ceey Eﬂ)’ (26C)

where we denote by e; the i-th standard basis of Z*. O

Proposition 2.9. Let D be an algebraic k-linear triangulated category of finite type with
the translation functor [1] and a fized enhancement. Assume that D satisfies the following
conditions: |
(i) There exists a full strongly exceptional collection £ = (B, .. ., E,) inD.
(ii) The action of the group G, on the set of isomorphism classes of full exceptional
collections in D is transitive.

(iii) For any ezceptional object E' € D, there exists a full exceptional collection &' in
D such that E' € £'.
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Then the following quadruple

o the- Grothendieck group Ko(D) of D,
o the Cartan form Ip : Ko(D) x Ko(D) — Z;

Ip([X], [Y]) := xo([X], ¥]) + xo([Y], [X]), XY €D, (2.7)
where xp : Ko(D) x Ko(D) —> Z is the Euler form defined by
xo([X],[Y]) :== > _(—1)? dim; Homp(X, Y [p]), (2.8)

o the subset A.(D) of Ko(D) defines by
A.(D) :=W(B)B, B:=({[E],...,[E,]}, (2.9)
where W(B) s a subgroup of Aut(Ky(D), Ip) generated by reflections
rieg\) = A= Ip(\ [EDIE], A€ Ko(D), i=1,...,p, (2.10)

e the automorphism cp on Ko(D) induced by the Cozeter functor Cp := Sp[—1] on
D where Sp is the Serre functor on D,

forms a simply-laced generalized root system Rp, which does not depend on the choice of

the full exceptional collection £.

Sketch of Proof. The lattice and the Cartan form are derived invariants. Thus we only
have to check the assertion about the set of the real root and the Coxeter element. The
following lemma holds from a relation between the Serre functor Sp on D and the helix

generated by the full exceptional collection £. See p. 223 in [3].

Lemma 2.10. We have

CD =TE " T[BL) (2.11)
By direct calculation, we have the following lemma:
Lemma 2.11. For any a € A,(D), we have
T[ETa = Trip(@T(E]- (2.12)

Note that Lemma 2.11 implies that W (D) = W(B). By Lemma 2.11 and the

assumption (ii) and (iii), we have the following lemma:

Lemma 2.12. For an ezceptional object E' € D, the class [E'] € Ko(D) belongs to
A.(D).



Set B' := {[E}],....[E]]} for aﬁy full exceptional collection £ = (E,...,E,) in
D. Lemma 2.12 implies that W(D)B' c W (D)W (D)B C W(D)B and hence W(D)B’ =
W (D)B. Therefore the set A,.(D) does not depend on the particular choice of the full

exceptional collection &. O

Remark 2.13. We assumed in Proposition 2.9 the existence of a full strongly exceptional
collection £ in D in order to ensure that D has a unique enhancement in a suitable sense.
We refer [14] and [19] for some results on the uniqueness of enhancements for triangulated

categories and do not discuss this matter more in detail.

Definition 2.14. The generalized root system Rp in Proposition 2.9 is called the simply-

laced generalized root system associated to D.

It is natural to expect the assumptions of Proposition 2.9. Indeed, they are proven
for derived categories of hereditary Artin algebras by Crawley-Boevey [7] and Ringel [22]
and for derived categories of coherent sheaves on an orbifold projective line ]P’k 4 (we
shall recall the definition later) by Meltzer [21]. The transitivity of the action of G, is
conjectured by Bondal-Polishchuk (Conjecture 2.2 in [3]), and is known for the derived
categories of coherent sheaves on IP? and P! x P' by Rudakov [24], by arbitrary del Pezzo

surfaces by Kuleshov and Orlov [18], for example.

Remark 2.15. One can also consider the subset A:, (D) of Ko(D) defined by
A7.(D) :={[E] € Ko(D) | E is an exceptional object in D}, (2.13)

which is known as the set of Schur roots. Under the assumptions of Proposition 2.9, we
always have Af (D) C A,.(D), however, AS (D) # A,.(D) in general. Criteria to have
A7.(D) in terms of the Weyl group W (D) is recently given by Hubery-Krause [10] for

derived categories of hereditary Artin algebras.

2.3. Generalized root systems associated to star quivers. We recall the definition

of quivers and their path algebras.

Definition 2.16. A quiver Q is a quadruple (Qo, Q1; s, t) where Q is a set called the sct
of vertices, (1 is a set called the set of arrows and s,t are maps from @; to @y which
associate the source vertex and the target vertex for each arrow. An arrow f with the
source bs(f) and the target ¢(f) is often written as s(f) AN t(f).

Definition 2.17. Let Q = (Qq, Q1; 5,t) be a quiver.
(i) A path of length 0 is a symbol (v|v) defined for each vertex v € Q.
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(ii) A path of length | > 1 from the vertex v to the vertex v’ in a quiver @ is a symbol
(v|fi--- filv') with arrows f;, i = 1,...,1 such that s(f1) = v, t(f)) = v and
s(fir1)=t(fi),i=1,...,1 -1

(iii) For a path p = (v|f1--- fi[v'), set s(p) := v and t(p) :=v'.

(iv) An ordered pair of paths (p1,ps) is composable if t(plj = $(p2).

(v) The composition of composable paths ((vy|f1 - filv}), (valgy - - -‘gmlvg)) is a path

(il fi--- fig1 - - gm|v3).

Definition 2.18. Let @ be a quiver.

(i) The path algebra kQ of a quiver @ is defined as the k-module generated by all
paths in @) together with the associative product structure defined by the com-
position of paths, where the product of two non-composable paths is set to be
Zero.

(ii) A bound quiver is a pair (Q,Z) where @ is a quiver and Z is an ideal of kQ.

(iii) A bound quiver algebra k(Q,Z) of a bound quiver (Q,Z) is defined as the algebra

kQ/T.

We recall a special class of quivers called star quivers, which are of our interest.

Definition 2.19. Let r > 3 be a positive integer and A = (ay, ..., a,) a tuple of positive

integers greater than one. Define a quiver T4 = (T4, T4,1;3,t) as follows:

e The set T, of vertices is

Tao:={1}]] (H ﬁ{(m)}) . (2142)

i=1 j=1
® The set T, ; of arrows is

r a;—1

Tar =[] []{fis} (2.14b)

i=1 j=1

whose source s(f) and target t(f) of cach arrow f is given as follows;
S(f,;jl) = 1, t(fi,l) = (Z, 1), 1= 1,...,7", (2140)

s(fis)=0,3-1), t(fi;)=(03), i=1...,r,j=1,...,a~1 (2.144)
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The quiver T /.1 is called the star quiver of type A.

e ° 'Y N 'y e
(1,a1-1) (1.1) / \ (r,1) (r,ar—1)
[ ] [ ]

/ N

(2,02-1) (r-Lar-1-1)

Definition 2.20. Let T4 be a star quiver of type A.
(i) Denote by R, the generalized root system associated to D?(kT A)-
(ii) Let a, be the equivalence class in Ko(R4) = Ko(D(kT4)) of the simple kT 4-
module corresponding to the vertex v € T A,0- Set
| BTA = {av}vETA,oa (215)

v which is a root basis of Ry.
(iii) Denote by T4 the Coxeter-Dynkin diagram for I Br,» Which is given by

o] [}

e fo) fe) T o e
(1,a1-1) (1.1) / \ (r,1) (rar—1)
' o ()

7 N AN

o o
(2,a2—1) (r-l,ar-1-1)

We often write v € T4 instead of v E Tap.
(iv) For each v € Ty, define the simple reflection r, on Ko(R4) by

ro(A) ==X = Ig, (A, a)ow, A€ Ko(Ry). | (2.16)

Since Br, is a root basis of Ry, the Weyl group W(R4) of R4 is generated by
simple reflections;
W(RA) = (ry | v € Ty). (2.17)

Note that the Cartan matrix (Ig, (v, o)) is a generalized Cartan matrix in the

sense of [12]. Therefore one can naturally associate to Ry a Kac-Moody Lie algebra
g(Ra).
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2.4. Octopus. We introduce a bound quiver, a “one point extension” of the star quiver.

Definition 2.21. Let r > 3 be a positive integer, A = (a1, ..., a,) an r-tuple of positive
integers greater than one and A = (A, ..., \;) an r-tuple of pairwise distinct elements of
P!(k) normalized such that \; =00, \ =0and A3 = 1.
(i) Define a quiver 'TA = (ﬁ‘A,o, "]f‘A,l, s,t) as follows:
e Theset T a,0 of vertices is given by

r o a;—1

Fio=Tollo) - O T (Tl T s

i=1 j=1
e The set ’E‘A,l of arrows is given by

Tas=Ta: ][] (ﬁ{fi,l‘}) (H ]l_[{f” ) 11 (H{fi’l*}> , (2.18b)

=1 j=1

whose source s(f) and target t(f) of each arrow f is given as follows:

S(fiy]-) = 17 t(fi,l) = (Za 1), 1= 1; e Ty (218C)
s(fi)=G,5-1), t(fi;)=03), i=1,...,rj=2...,a~1, (2.18d)
s(firr) = (4,1), t(firr)=1" i=1,...,7 (2.18¢)

(ii) Define an ideal Z, of the path algebra kT 4 by

A= <Z)‘z(‘l)fi,lfi,l*,Z)\z(‘2)fi,1fi,1*>, (2.18f)
=1 i=1

where ()\gl ,)\(2 ) =(1,0) and A\, APy = (A, 1) for i = 2,.

1 Y7

We denote by ’]I‘A A the bound quiver ('II'A,IA) for simplicity. The bound qulver algebra
k’H‘A A is called the octopus of type (A, A).

// \\

/ \

[ ] N P L}
(2,a2-1) (r-l,a,-1-1)




Remark 2.22. In [8], Clawley-Boevey defines a bound quiver algebra associated to (4, A),
which is called the squid. A squid and an octopus are different but very similar, more

precisely, these algebras are not isomorphic but derived equivalent.

2.5. Algebro-geometric aspect of octopuses. We associate to a pair (4, A) an algebro-

geometric object following Geigle-Lenzing (cf. Section 1.1 in [9]).

Definition 2.23. Let 7 > 3 be a positive integer, A = (ay,...,a,) an r-tuple of positive
- integers greater than one and A = (\y,...,\,) an r-tuple of pairwise distinct elements of

P*(k) normalized such that A\; = 0o, A\; = 0 and A3 = 1.
(i) Define a ring S4 4 by
San=RXy LX) (X - X+ N XS =3, 7). (2.19)

(ii) Denote by L4 an abelian group generated by r-letters X;, i = 1, ... , 7 defined as
the quotient

Ly := @ZXZ/(alj,—a]XJ,1$l<]ST) (220)
i=1

Note that S4 4 is naturally graded with respect to L4. Denote by gr¥4-S, 5 the cate-
gory of finitely generated L 4-graded S4 s-modules and by tor®4-S a,a the full subcategory
of gr4-Sy A consisting of modules of finite length.

Definition 2.24. Define a stack P}, , by

Pia = [(Spec(Saa)\{0}) /Spec(kLa)], (2.21)
which is called the orbifold projective line of type (A, A). Denote by coh(Py ,) the category
of coherent sheaves on P} , and by DPcoh(PY ,) its bounded derived category.

Properties of categories coh(P}, ,) and D°coh (PP}, ,) are extensively studied by Geigle-

'Lenzing [9]. Among them, the following is of our interest in this paper.

Proposition 2.25 (Proposition 4:1 in [9]). There exists an equivalence of triangulated
categories

Dcoh(PY 4) =~ DP(kT40). (2.22)
2.6. Generalized root systems associated to octopuses. Since the assumptions of
Proposition 2.9 are proven for D’coh (PP} ) by Meltzer [21], we obtain a generalized root

system.

Definition 2.26. Let kﬁ'A,A be an octopus of type (A, A).
(i) Denote by R4 the generalized root system associated to Db(k'f‘A,A).

27



28

(ii) For any v € TA,O, denote by P, the corresponding indecomposable projective
ki‘A,A-module, which satisfies kT4 5 = @ P,asa k’f’A,A—module. Note that the

’UGTA
collection (P, ) ve7, forms a full strongly exccptional collection in ’Db(k’]I'A A)-

- (iii) For any v € 'H‘A 0, denote by S, the corresponding simple k’ﬂ‘A a-module. Note
that the collection (Sv)yes, forms a full exceptional collection in Db(kT 4.4) such
that

Xps(ii ) ([P [Sw]) = Sur,  0,0" € Tay, (2.23)
where 0, denotes the Krohecker’s delta.

(iv) For any simple k'fA,A-module Sy, UV E '?I:A,O, denote by a, the equivalence class
[S,] € Ko(Ra) = Ko(Db(kT44)). Set

B-

Ta,a = {&”}vé'i‘A,o’

(2.24)

which is a root basis of R.
(v) Denote by T4 the Coxeter-Dynkin diagram FBTAA’ which turns out to be the

following diagram by using the property (2.23):

// \\

a AN

o . [e]
(2,a2-1) (r-l,ap-1-1)

We often write v € ZFA instead of v € 'iI"A,O.
(vi) For each v € TA, define the simple reflection 7, on KO(EA) by
7o(A) == X =I5, (N, @)&, X€ Ko(Ra). (2.25)

Since By, is a root basis of Ra, the Weyl group W(EA) of R4 is generated by

simple reflections;

W(R4) = (7, | v € Ta). (2.26)



2.7. A relation between octopuses and star quivers. Set § := @;- —&,. It is easy to
see that § belongs to the radical of the Cartan form I 7, On Kg(ﬁ 4), therefore the natural

projection map

Ko(Ra) — Ko(R4)/Z8 = Ko(Ra) (2.27)
induces the surjective group homomorphism
p: W(R4) » W(Ra). (2.28)
Indeed, we have
p(r1) = p(r1+) =71, (2.29a)
p(F) =10, v€Tap. (2.29b)

Moreover, the correspondence o, — @, for v € T4 gives the splitting of the surjective

map (2.27) and induces the isomorphism of Z-modules
Ko(R4) = Ko(R4) & Z5, (2.30)

which is compatible with the Cartan forms I %, and Ig,. Hence we obtain the group

homomorphism
i: W(Ra) — W(Rs), 7157 (2.31)

such that p o = idw(g,).
3. PRESENTATIONS OF WEYL GROUPS

In this section, we describe the Weyl group W(EA) as the “affinization” of the Weyl
group W(R,). Lemmas, Propositions and Theorem in this section can be obtained by

elementary calculations. For precise proofs, see [31].

Definition 3.1. For each vertex v € Ty, define an element 7, € W(EA) by induction as
follows:

e For the vertex 1, set

T o= FiTpe. (3.1a)

o Set
Ta1) = Ta)TTanT , 1=1,...,7 (3.1b)
) = Tai) Tad-1T i) Ta g1y 6= L.ooymy J=2,...,a;— 1. (3.1c)

Denote by N the smallest normal subgroup of W(EA) containing 7.

Lemma 3.2. For allv € T,, the element 7, belongs to N.
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Proposition 3.3. For all v € Ty, we have

F(N) =X=1I5,(X\,&@)8, X € Ko(Ra). (3.2)
In particular, there is a natural surjective group homomorphism
¢ : Ko(Ra) > N, Z MyQty —> H ", (3.3)
veTy veTy

which induces an isomorphism

KO(RA)/rad(IRA) ~ N. (34)
Note that rad(Ig,) is zero if x4 # 0 and is of rank one if x4 = 0.

Proposition 3.4. For v, v' € Ty, we have

F’U;'UF'U = ?’U—l’ (3 Sa)
ToTo'Ty = Tt if IﬁA(ava av’) =0, (3 5b)
Fv?v’rv = TyTo!, Zf IRA (av) av’) =-1 (3 5C)

Since the Weyl group W (R ) is a subgroup of Aut(Ko(Ra), Ir,), we can consider the
group W(R4) x Ko(R4), the semi-direct product of W(R,4) and Ky(R4). Note that the
equations (3.5a), (3.5b) and (3.5¢) can be thought of as the adjoint action of W (R4) on the
free generators of Ky(R4) expressed in multiplicative notation since we have 7,(a,) = —a,,
To(0y) = ay if I, (G, @) = 0 and 7 (Qw) = @y + G if I5, (@, &) = —1.

Moreover, since the Weyl group W(R4) respects the radical rad(Ig,), we can also
consider the group W(R4) x (Ko(Ra4)/rad(Ig,)), the semi-direct product of W(R,4) and
Ko(R4)/rad(Ig,), which is isomorphic to W(EA). More precisely, we have the following.

Theorem 3.5. There is an exact sequence of groups
(1} — N — W(Ra) 2> W(R4) — {1}. (3.6)
In particular, we have an isomorphism
W(Ra) = W(Ra) x (Ko(Ra)/rad(Ig,)) . (3.7)
Therefore it turns out that W(EA) is an affine Weyl group if x4 > 0.

Definition 3.6. Let the notations be as above.

(i) If x4 < 0, then the group W(EA) is called the cuspidal Weyl group of type A,
which is isomorphic to W(R4) X Ko(R4) by Theorem 3.5.

(i) If x4 = 0, then the group W (Ry,) is called the elliptic Weyl group of type A.



(iii) If x4 = 0, then the group W(R,4) x Ko(Ry4) is isomorphic to the non-trivial
central extension of W(EA) by Z, which is called the hyperbolic extension of the
elliptic Weyl group W (R,4) (cf. Section 1.18 in [25)).

4. WEYL GROUPS AS GENERALIZED COXETER GROUPS

In this section, we express the Weyl group W(E 4) as a generalized Coxeter group.
Lemmas, Propositions and Theorem in this section can be also obtained by elementary

calculations. For precise proofs, see [31]. First we note the following fact.

Proposition 4.1. Define a group W(Ty) by the following generators and the Cozeter

relations attached to the diagram Ty :

Generators: {w, | v € Ty}

Relations:
w2i=1 forall veTy, (4.1a)
Wy Wy = Wywy if Ig, (0, o) =0, (4.1b)
WyWy Wy = WyWeWy  if I, (0, ) = =1, (4.1¢) |

Then the correspondence w, — r,, for v € T4 induces an 1somorphism of groups

W(T4) = W(Ra). (4.2)

Proposition 4.2. Define a group W(Ty) x Ko(Ra) by the following generators and the

relations:

Generators: {w,, 7, | v € Ty}

Relations:
wl=1 forall veTy (4.3a)
WoWy = WyWy tf Ip,(0n, ) =0, (4.3b)
Wy W Wy = Wey Wey Wy z'f" Ip, (o, ) = -1, (4.3¢)
Ty = TyTy for all v,v' € Ty, (4.3d) |
WyTyWy =T, " for all v € Ty, ; (4.3¢)
WyTy = TyWy  if Ig,(q,0n) =0, - (4.3f)
Wy, = Tty if Iy (o o) = —1. (4.3g)

Identify the subgroup generated by 7, v € Ty with a free qbelian group Ko(R4) expressed

n vmuliz’plicatz’ve notation.
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(i) The correspondence wy, — Ty, Ty — Ty for v € T4 induces an isomorphism of
groups ’

W(Ta) x Ko(Ra) = W(R4) x Ko(Ra), (4.4)
where the semi-direct pmduct in the right hand side is given by the natural inclu-
sion W(R4) — Aut(Ko(Ra), Ir,)-

'(ii) The correspondence w, — Ty, T, — T, for v € T4 induces a surjective group
homomorphism

W (T4) x Ko(Ra) - W(Ry), (4.5)

whose kernel is isomorphic to rad(Ig,).

Definition 4.3. Define a group W(fA) by the following generators and the generaliied

Coxeter relations attached to the diagram Ty :

Generators: {w, | v € TA}

Relations:
@2 =1 forall veTy, (WO0)
Wyly = WyW, if IﬁA(&U, Gy ) =0, (W1.0)
WyWey Wy = Wy WyW,y  if Iy, (q, Q) = —1, (W1.1)
{D(i,l)dlw(i,l)al = Ulw(i,1)0113(i,1), (W2)
W 1)0 (1) = 0.1 W

~(1,1) (4,1) (4.1 ~(t,1) forall 1<i<j<r (W3)

W, 1)03,1) = @)W

where o1 := w1 w1+ and o1 = {6(1-,1)01&7(,-‘1)01_1 foralli=1,...,7.

The conditions (W2) and (W3) are different from the definition in [28]. However
we can deduce the original ones from (W2) and (W3) under the conditon (WO):

Proposition 4.4 (cf. Lemma 4.1 and Lemma 4.2 in [33]). Under the relation WO, we

have the following equivalences of relations:

Ba oW1 = O1WEno ey <> (W) 01T))° = 1, (4.7a)
B0 = 0GBy <= (@anTe) BTG De)” = 1, (4.7b)
Winoan = oanbey < (@e)Breden @G d)? = 1. (4.7¢)

Note that the Coxeter-Dynkin diagram Ty is symmetric under the permutation
=1, 121" v—uv if v#11% (4.8)

This symmetry of T, induces the automorphism on W(ﬁA) which sends o, to o' and

hence W(TA) depends only on the Coxeter-Dynkin diagram Ta.



Theorem 4.5. We have an isomorphism of groups

W(T4) = W(R4) x Ko(Ra). (4.9)
In particular, W(T4) = W(Ra4) if xa # 0 and W (T,) is isomorphic to the hyperbolic
extension of the elliptic Weyl group W(Ry4) if xa = 0.

5. CUSPIDAL ARTIN GROUPS

In this section, we obtain a relation between the generalized Coxeter group W(TA)

and the fundamental group of regular orbit space for W(R4) x Ky(Ry4).

Definition 5.1. Define a group G(Cf ') by the following generators and the generalized

Coxeter relations attached to the diagram T4 :

Generators: {g, | v € TA}

Relations:
99v = GuwGv if Ig (G, ) =0, (A1.0)
9090 Gy = GvGugv if Ig, (G, ) = —1, (A1.1)
96,1)PL961)P1 = P19G,1P1GG,1) foralli=1,...r (A2)

JenPun) = Pandey oo all 1<i<j<r (A3)
9G,1)PGEL) = PiE,1)33G,1)
where p; := g1g1- and p; 1) = 'g'(i,l)ﬁfg“(;,l)ﬁl_l foralli=1,...,r.
Definition 5.2. Let the notations be as above.
(i) If x4 = 0, then the group G(TA) is called the elliptic Artin group of type A.
(ii) If x4 < 0, then the group G(’1~" 4) is called the cuspidal Artin group of type A.

Remark 5.3. 1t turns out later that the group G(TA) is an affine Artin group by Theo-
rem 5.8 if x4 > 0.

In addition to p1, p; 1), we also define the element 7y; j;1) inductively as follows:
Dlij+1) = E(i,j+1)ﬁ(i,j)@i,j—kl)ﬁéb)a i=1,...,r,=1,...,a; = 2. (5.2)
The following proposition is obvious from Definition 4.3:

Proposition 5.4. The correspondence g, — w, for v € TA induces a surjective group

homomorphism
G(Ta) » W(Ta), (5.3)

which yields an isomorphism

G(Ta) /@ | ve Ta) = W(Ta). (5.4)
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Definition 5.5. Define a complex manifold £(R4) by

E(Ra) == {h € Ko(Ra)¢ | Im(h) € C(R4)}, (5.5)
where C(R,) is the topological interior of the Tits cone C(R4) of Ry :
CRa)= |J w({heKo(Ra)g | h(aw) >0, forall ve Ta}). (5.6)
weW(R4)
Set
ERA):=ER)\ | Han (5.7)

aEAre(RA),TLGZ

where we denote by H,, the reflection hyperplane associated to TA, ie.,

Hypn = {h € Ko(R4)¢ |h(a) = n}. (5.8)

The group W(R4) x Ko(R4) naturally acts on £(R4) in a properly. discontinuous

way. It is known that the action is free on E(R4)".

Definition 5.6. Define a group G(EA) as the fundamental group of the regular orbit
space:

G(Ry4) := m(E(Ra)™ /(W (Ra) x Ko(Ra)), ). (5.9)
Remark 5.7. Since the complex manifold £(R4)™ is connected, the group G(Ry4) does
not depend on the base point *.

By definition of fundamental groups, we have the following commutative diagram
of groups:

{1} {1}

{1} —— m (E(Ra)"™9, %) — m1 (E(Ra)™9/Ko(Ra), ¥) ——— Ko(Ra) — {1}

{1} —> m1 (E(RA)"™, %) — > G(Ra) —————> W(Ra) x Ko(Ra) —> {1}

W(Ra) W(Ra4)

{1} {1}
Generalizing the result for x4 = 0 by Yamada [33], we obtain the following:

Theorem 5.8. There exists an isomorphism of groups

G(Ta) = G(Ra). (5.10)



Sketch of Proof. We can obtain the natural surjective homomorphism from G(ﬁA) to
G (TA) by using the following description of G (EA) by Van der Lek {32]:

Proposition 5.9 ([32]). The group G(Ry) is described by the following generators and

relations:

Generators: {g,,p, | v € T4}

Relations:
99 = guwGs Y Ir,(ow,an) =0, (5.11a)
v 9o = Gugugv Y Ir,(ow, o) = =1, (5.11b)
DuPut = PurPy for all v,V € Ty, (5.11¢)
Py = pu Gy if Ig,(0n,0y) =0, (5.11d)
GoPuwGv = pypy  if IRr4(Qw, ) = —1. (5.11e)

We can construct the inverse homomorphism by putting the element g;~ of the group
G (ﬁ 4) by g1+ := g7 'p1. This argument is exactly the same as in Yamada [33]. O

The following corollary is obvious from Proposition 4.2 and Proposition 5.9:

Corollary 5.10. The correspondences g, — Wy, py F—~ Ty for v € Ty induces a surjective

group homomorphism

G(Ry) - W(T4) x Ko(T4), (5.12)

which yields an isomorphism
G(EA) /(93, GvPvGvPu | v TA> = W(RA) X KD(RA) (513)

There exists the following commutative diagram of groups

G(T4) —> G(Ry4)

l l , (5.14)

W(Ta) —— W(Ra) x Ko(Ra)
where the upper horizontal homomorphism is the isomorphisms in Theorem 4.5, the lower
horizontal homomorphism is the isomorphisms in Theorem 5.8, the left vertical homomor-
phisms is the one in Proposition 5.4 and finally, the right vertical homomorphism is the

one in Corollary 5.10.
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6. AUTOEQUIVALENCE GROUP

In this section, we compare the cuspidal' Artin group G(TA) with a subgroup of
autoequivalence group for the derived category of the 2-Calabi-Yau completion of kTA,A

generated by some spherical twist functors.

Definition 6.1. Put A := k’fA,A and consider it as a dg k-algebra concentrated in the
degree 0. Let © 4 be the cofibrant replacement of the complex RHom 4g, 4or (A, A®y A%).
The 2-Calabi-Yau completion (or derived 2-preprojective algebra) of A is the following
tensor dg k-algebra:

T(A) == AED (Ol ®a4 - ®404[1)). (6.1)

-~
neN n—times

Remark 6.2. Since kT a4 is a directed finite dimensional algebra over the field k of global

dimension two, the above definition agrees with the original one in [17].

Let D(II(A)) be the derived category of dg II;(A)-modules. Note that we have
a natural functor D(kT4 4) — D(II,(A)) given by the restriction along the projection
onto the first component II,(4) — A = k:]f‘A,A. Therefore we shall often regard M €
D(k’ﬁl:A,A) also as a dg II,(A)-module.

Let Day be the smallest full triangulated subcategory of D(II;(A)) containing
kT 4., closed under isomorphisms and taking direct summand. By the definition of D 4,

we have the following proposition:

Proposition 6.3. The functo}* D(kT4n) — D(Ix(A)) induces an isomorphism of
abelian groups Ko(Ra) = Ko(DY(kTan)) = Ko(Daa)-

Proposition 6.4 (Lemma 4.4 b) in [17]). For any X,Y € Db(ki‘A,A), there is a canonical
isomorphism in D°(k) :
 RHomyp, , (X,Y) = RHompz, ) (X, Y) ® RHompsz, ) (Y, X)*[-2]. (6.2)

A)
Corollary 6.5. Under the isomorphism Ko(ﬁA) = Ko(ﬁA'A) n Proposition 6.3, the

Euler form xp, , is identified with the Cartan form Lok 4 0)-

Recall the definitions of spherical objects and spherical twist functors and their

properties in Seidel-Thomas [30).

Definition 6.6. An object S € Dy, is called a 2-spherical object if the following condi-

tions are satisfied:



(i) There exists an isomorphism in D®(k):
RHomgp, , (S, 5) = k @ k[-2] (6.3)
(ii) For all X € ﬁA, A, the composition. induces the following perfect pairing:
Homp, (X, S[2]) ® Homp, , (S, X) — Homp, , (S, S[2]) = k. (6.4)

Definition 6.7. Let S be a spherical object in ZV)AyA and X an object in ﬁA,A. Define
TsX € T)A,A by the cone of the evaluation morphism ev

RHomj, , (S, X) &% S =5 X. (6.5)

Similarly, define Tg X € ﬁA, A by the —1-translation of the cone of the evaluation mor-
phism ev*

X <% RHomy, , (X, S)* 8" S. (6.6)

The operations Ts and Ty define endo-functors on bA, A, Which are called the spher-

ical twist functors.

We collect some basic properties of the spherical -twist functors. In particular, it

turns out that the spherical twist functors are autoequivalences on Zv)A’ A

Proposition 6.8 (Proposition 2.10, Lemma 2.11, Proposition 2.13 in [30]). Let S be a
spherical object in ’[)A,A.
(i) For an integer i € Z, we have Tgy = Ts.
(ii) We have TgTg = Idp, , and TsTg =1dp, ,.
(iii) We have TsS = S[-1].
(iv) For any spherical object S’, we have

TsTs & TrosTs. (6.7)

(v) For any spherical object S such that RHomp, , (5", 5) = k[~1] in D(k), we have

an isomorphism
TsTs:S =S in Dyy. (6.8)

Recall that S, is the simple ki‘A,A—module corresponding to the vertex v € TA
(see Definition 2.26), which we regard as a dg Hé(k'fA,A)—module. The following two

propositions hold from Propositon 6.4:
Proposition 6.9. For any v € TA, Sy s a spherical object in ﬁA‘A.

Proposition 6.10. Under the isomorphism Ky(Dy ) = KO(EA) in Proposition 6.3, the

automorphism of KO(EA) wnduced by T, is identified with the simple reflection 7, €.

W(Ry).
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Definition 6.11. Denote by Br(ﬁA,A) the subgroup of Auteq(ﬁA,A) generated by the
elements T, for v € TA.

Theorem 6.12. The correspondence g, +— Ts, for v € T 4 tnduces a surjective group

homomorphism

G(T4) - Br(Daa). (6.9)

Sketch of Proof. Set T, := T, for the simplicity. We only need to check that the elements
T, for v € T} satisfy the relations (A2) and (A3) since the relations (A1.0) and (A1.1)
are already known by Seidel~Thomas (Theorem 2.17 in [30]). We can show the assertion

mentioned above by using the following two lemmas:
Lemma 6.13. There are the following isomorphisms in D°(k) :
RHomp, , (S1+, T(i1)51) = k[-2], (6.10a)
RHomyp, , (T(;,1)S1, S1+) = k. (6.10b)
By this lemma and the equation (6.8), we getv
NT-Tr, 551+ =TT 1) S1[1] = S (1]
Therefore, Try 1.1, ), 1130 5,1y = T(3,1), Which gives the relation (A2), namely,
Ty T Ty ThTie =TTy Ty T T1- Ty (6.11)

Lemma 6.14. For 1 <1i < j <, there are the following isomorphisms in D(k) :

RHOI'ILDAYA (S(i,l),TlTl*S(j,l)) = 0, (6123,)
RHOH’LbA’A (TITPS(]'J), S(i,l)) = 0. (612b)
By this lemma, we get
T Tt 56,560 = T S61) = 56
Therefore, we have the relation (A3), namely,
TinTinThiT- Ty T Iy = T T T T T T Ty
We have finished the proof of the theorem. O

There exists the following commutative diagram of groups

G(TA) —_— Br(ﬁA,A)

1 l , (6.13)

W(Ts) —— W(R,)



where the upper horizontal homomorphism is induced by the above correspondence, the
lower horizontal homomorphism is the composition of the morphisms in Proposition 4.2
(i) and Theorem 4.5, the left vertical homomorphism is the surjective one in Theorem 5.4
and finally, the right vertical homomorphism is induced by the correspondence Ts, — 7,
for v € Ts. Recall that the lower horizontal homomorphism is an isomorphism when
x4 # 0. We expect that if x4 # 0 then the upper horizontal homomorphism is also an
isomorphism.

‘We conclude this report by stating the conjecture related to Theorem 6.12. Similar
to the results by Bridgeland for K3 surfaces in [4] and Kleinian singularities in [5], we

expect the following conjecture:

Conjecture 6.15. The group homomorphism G(T4) — Br(Dy4y) in Theorem 6:12 should
also be injective, and hence isomorphism. In other words, the space of stability condition

Stab(Da ) should be simply connected.

Similar known results for the injectivity of the group homomorphism in Conjecture
6.15 are obtained by Brav-Thomas [6], Ishii-Ueda-Uehara [11] and Seidel-Thomas [30].

The above conjecture is a further theme to be worked on.
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