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Abstract

The main purpose of this note is to summarize part of results on a
classical problem, originally, posed by Brenke in 1945 [12] and on its
related topics. A full description in detail is given in [6].

1 Preliminaries

Let $\{P_{n}(x)\}$ be a system of monic polynomials, $P_{n}(x)$ of degree $n$ , and func-
tions $h(x)$ , $\rho(t)$ and $B(t)$ be analytic around the origin, $h(x)= \sum_{n=0}^{\infty}h_{n}x^{n},$

$\rho(t)=\sum_{n=1}^{\infty}r_{n}t^{n}$ and $B(t)= \sum_{n=0}^{\infty}b_{n}t^{n}$ with $h_{n}\neq 0$ for $n\geq 0$ and
$h(O)=B(O)=\rho’(0)=1$ just for normalizations. Suppose that a gener-
ating function $\psi(t, x)$ of $\{P_{n}(x)\}$ has the following form,

$\psi(t, x):=h(\rho(t)x)B(t)=\sum_{n=0}^{\infty}h_{n}P_{n}(x)t^{n}$ (1.1)

$\psi(t, x)$ is called a generating function of the Boas-Buck type [8].
On the other hand, it is known [15] that $\{P_{n}(x)\}$ is the orthogonal poly-

nomials with respect to a probability measure $\mu$ on $\mathbb{R}$ with finite moments
of all orders if and only if there exists a pair of sequences $\alpha_{0},$

$\alpha_{1}\ldots\in \mathbb{R}$ and
$\omega_{1},$ $\omega_{2}$ , . . . $>0$ satisfying the recurrence relation

$\{\begin{array}{l}P_{0}(x)=1, P_{1}(x)=x-\alpha_{0},P_{n+1}(x)=(x-\alpha_{n})P_{n}(x)-\omega_{n}P_{n-1}(x) , n\geq 1\end{array}$ (1.2)

where $P_{-1}(x)=0$ by convention. A pair of sequences $\{\alpha_{n}, \omega_{n}\}$ is called the
Jacobi-Szeg\"o parameters in this note.

It is quite natural to ask if one can
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determine all orthogonal polynomials having the Boas-Buck type gen-
erating functions in Eq.(l.l).

It has been remained as a longstanding open problem, although particular

cases have been considered as follows.

Example 1.1 (Classical Meixner type). If $h(x)=\exp(x)$ , Eq.(l.l) is called
the (classical) Meixner type, which is also called the orthogonal Sheffer
type. This type provides the classical Meixner class of orthogonal polyno-
mials, which consists of Hermite, Charlier, Laguerre, Meixner, and Meixner-
Pollaczek polynomials. If we restrict our consideration to $h(x)=\exp(x)$

with $\rho(t)=t$ , Eq.(l.l) is called the Appell type. It is known that orthogonal
polynomials obtained from this type contain the Hermite polynomials only.

Example 1.2 (Free Meixner type). If $h(x)=(1-x)^{-1}$ , let us call Eq.(l.l)

the free Meixner type, because this choice provides the free analogue of the
classical Meixner class. More generally, the case $h(x)=(1-x)^{-\alpha}$ for $\alpha>0$

has been considered. We do not mention this case in this note.

See [6] for relevant papers on classical, free Meixner, and other classes.

Example 1.3 (Brenke type). Eq.(l.l) with $\rho(t)=t$ is called the Brenke
type. The Brenke type provides Hermite, Laguerre, and (Szeg\"o’s) general-

ized Hermite polynomials. Moreover, this type generates some $q$-orthogonal
polynomials such as Al-Salam-Carlitz (I and II), little $q$-Laguerre (Wall),
$q$-Laguerre (generalized Stieltjes-Wigert), and discrete $q$-Hermite (I and II)

polynomials. These polynomials will be appeared in Section 2 and 3.

Let us prepare minimum notations from $q$-calculus for later use in Section
3 (see [18][19], for example). In this paper, we always assume that $0<q<$
$1$ for simplicity. The $q$ -shifled factorials $(q$-analogue of the Pochhammer
symbol $(\cdot)_{n}$ defined by (2.2)) are defined by

$(a;q)_{n}=\{\begin{array}{ll}1, n=0,\prod_{k=1}^{n}(1-aq^{k-1}) , n=1, 2, . . . , \infty,\end{array}$

and the multiple $q$ -shifled factorials are by

$(a_{1}, a_{2}, \ldots, a_{k};q)_{n}:=\prod_{j=1}^{k}(a_{j};q)_{n}.$
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The $q$ -hypergeometric $\mathcal{S}eries_{0}\phi_{0},$ $0^{\Phi_{0}},$ $0^{\Phi_{1}}$ are defined respectively $by^{1}$

$\{\begin{array}{ll}0\phi_{0} -;q, z)=\sum_{n=0}^{\infty}\frac{(-1)^{n}q^{(_{2}^{n})}z^{n}}{(q;q)_{n}},0\Phi_{0} -;q, z)=\sum_{n=0}^{\infty}\frac{z^{n}}{(q;q)_{n}},0\Phi_{1} b_{1};q, z)=\sum_{n=0}^{\infty}\frac{z^{n}}{(q,b_{1};q)_{n}}.\end{array}$ (1.3)

It can be shown that

$\{\begin{array}{ll}\lim_{qarrow 1^{-}}0\Phi_{0} -;q, (1-q)z)=e^{z},\lim_{qarrow 1^{-}}0\phi_{0} -;q, (1-q)z)=e^{-z}\end{array}$ (1.4)

It is convenient to introduce notations $e_{q}(z)$ and $E_{q}(z)$ by

$\{\begin{array}{ll}e_{q}(z):=0^{\Phi_{0}} -;q, z) ,E_{q}(z):=0\phi_{0} -;q, z) .\end{array}$ (1.5)

$\mathbb{R}om$ the consequence of (1.4), $e_{q}(z)$ and $E_{q}(z)$ are usually considered as $q$

exponential functions known as Euler’s formulas.
Remark 1.4. One should be careful about a definition of $q$-exponential when
referring other literatures. In [16] [18][19], $E_{q}(z)$ is defined as

$E_{q}(-z):=0\phi_{0} -;q, z)$ .

On the other hand, in [2],

$\{\begin{array}{l}e_{q}(z):=0^{\Phi_{0}} -;q, (1-q)z) ,E_{q}(-z):=0\phi_{0} -;q, (1-q)z) .\end{array}$

are adopted. Our definitions in (1.5) are slightly different from theirs. How-
ever, these differences do not make any essential effects on our discussion in
Section 3.

2 The Brenke-Chihara Problem

As mentioned in Example 1.3, we shall consider another subclass of the
Boas-Buck type generating functions with $\rho(t)=t$ , that is,

$\psi(t, x)=h(tx)B(t)$ . (2.1)

1The second and third series in (1.3) are special cases of the old basic hypergeometric
series $r\Phi_{S}$ defined by Bailey [7]. The first series is a particular case of so-called the basic
hypergeometric series $r\phi_{s}.$
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Such a generating function $\psi(t, x)$ is named the Brenke type after the pio-
neer work by Brenke [12]. He tried to determine all orthogonal polynomials
$\{P_{n}(x)\}$ generated from the Brenke type generating functions (2.1), explic-
itly. Geronimus [17] independently considered a slightly more general prob-
lem (see Remark in Section 4). However, they could not solve the problem.
Chihara [13][14] examined it and claimed that the Brenke type generating
functions are classified into the four classes, Class I, II, III, and IV in terms
of the Jacobi-Szeg\"o parameters. However, it is quite difficult for us to follow
his results in details because papers were written in a very sketchy way, that
is, no complete proofs were presented. Moreover, no general forms of the
Jacobi-Szeg\"o parameters were given, for instance. One cannot fill up them
by simple and routine calculations. Therefore, it was one of our motivation
[6] to fill up these gaps by reformulating the problem as follows.

The Brenke-Chihara Problem

Determine all orthogonal polynomials $\{P_{n}(x)\}$ generated from the
Brenke type generating functions (2.1) satisfying the recurrence rela-
tion in (1.2) and compute $\{\alpha_{n}, \omega_{n}\}$ and $(h(x), B(t))$ , explicitly.

Let us first give classical examples in the Brenke class. Non-trivial examples
will be given in Section 3.

2.1 Classical Examples

In this section, we shall give three examples generated from the generating
functions of the Brenke type by Eq.(2.1).

Example 2.1 (Hermite polynomials). It is well known that

$\psi(t, x)=\exp(tx-\frac{1}{2}t^{2})$

is a generating function of the standard Hermite polynomials $\{H_{n}(x)\}$ for
$N(O, 1)$ . It is clear to see that $h(x)=\exp(x)$ and $B(t)=\exp(-t^{2}/2)$ . The
Jacobi-Szeg\"o parameters are $\alpha_{n}=0,$ $\omega_{n}=n$ . We remark that this example
is in the intersection of the Appell, Meixner and Brenke types.

Example 2.2 (Laguerre polynomials). Let $(\kappa)_{n},$ $\kappa>0$ , be the Pochhammer
symbol defined by

$(\kappa)_{n}=\{\begin{array}{ll}1, n=0,\kappa(\kappa+1)\cdots(\kappa+n-1) , n\geq 1,\end{array}$ (2.2)

and a hypergeometric function $0^{F_{1}}$ $\kappa;x$) by

$0^{F_{1}} \kappa;x):=\sum_{n=0}^{\infty}\frac{1}{n!(\kappa)_{n}}x^{n}$
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It is known that
$\psi(t,x)=0^{F_{1}} \kappa;tx)\exp(-t)$ (2.3)

is a generating function of the Laguerre polynomials $\{L_{n}^{(\kappa-1)}(x)\}$ (see [19]
for example). It is also clear to see that $h(x)=0^{F_{1}}$ $\kappa;x$ ) and $B(t)=$

$\exp(-t)$ . The Jacobi-Szeg\"o parameters are $\alpha_{n}=2n+\kappa,$ $\omega_{n}=n(n+\kappa-1)$ .
The corresponding orthogonality measure is the Gamma distribution of a
parameter $\kappa>0.$

On the other hand, as mentioned in Example 1.1, the Laguerre polyno-
mials can be obtained from the Meixner type, too. In fact, if $h(x)=\exp(x)$
and $\rho(t)=t(1+t)^{-1}$ and $B(t)=(1+t)^{-\kappa}$ , then the Laguerre polynomials
can be also generated from

$h( \rho(t)x)B(t)=\exp(\frac{tx}{1+t})(1+t)^{-\kappa},$

which has a different form from the Brenke type of Eq.(2.3).

Example 2.3 (Generalized Hermite polynomials). For $k>0$ , consider

$h(x)={}_{0}F_{1}(-;k; \frac{1}{4}x^{2})+oF_{1}(-;k+1;\frac{1}{4}x^{2})\frac{x}{2k}$ (2.4)

and $B(t)=\exp$ $(- \frac{1}{2}t^{2})$ . The above $(h(x), B(t))$ provides (Szeg\"o’s) gen-

eralized Hermite polynomials $\{H_{n}^{(k)}(x)\}$ , with respect to the generalized
symmetric Gamma distribution of parameter 2 with the density,

$\frac{1}{2^{k}\Gamma(k)}|x|^{2k-1}\exp(-\frac{1}{2}x^{2}) , x\in \mathbb{R}.$

The above density with $k=1$ is called the two sided Rayleigh distribution.
The Jacobi-Szeg\"o parameters are $\omega_{2n}=2n,$ $\omega_{2n+1}=2n+2k$ . Obviously, one
can get the standard Hermite polynomials $\{H_{n}(x)\}$ for $N(O, 1)$ in Example
2.1 if $k=1/2$ is taken. In addition, substitute $k=1/2$ into Eq.(2.4), one
can see

$h(x)=0^{F_{1}}(-; \frac{1}{2};\frac{1}{4}x^{2})+{}_{0}F_{1}(-;\frac{3}{2};\frac{1}{4}x^{2})x$

$=\cosh x+\sinh x$

$=\exp(x)$

as in Example 2.1.

2.2 General forms of the Jacobi-Szeg\"o parameters in the
Brenke class ([6])

In this section, we shall present general forms of the Jacobi-Szeg\"o parameters
associated with the Brenke type generating functions in Asai-Kubo-Kuo[6].
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First of all, due to the expression in Eq.(2.1), it is easy to obtain the
expresslon,

$P_{n}(x)= \sum_{k=0}^{n}\frac{h_{k}}{h_{n}}b_{n-k}x^{k}$ . (2.5)

By substituting Eq.(2.5) into Eq.(1.2), we derive the relation

$\frac{h_{m}}{h_{n+1}}b_{n-m+1}-\frac{h_{m-1}}{h_{n}}b_{n-m+1}+\alpha_{n}\frac{h_{m}}{h_{n}}b_{n-m}+\omega_{n}\frac{h_{m}}{h_{n-1}}b_{n-m-1}=0$ (2.6)

for $0\leq m\leq n$ with the convention $h_{-1}=b_{-1}=b_{-2}=$ O. For $m=n$ , we
have

$\frac{h_{n}}{h_{n+1}}b_{1}-\frac{h_{n-1}}{h_{n}}b_{1}+\alpha_{n}=0.$

Hence, we get

$\alpha_{n}=-b_{1}(\frac{h_{n}}{h_{n+1}}-\frac{h_{n-1}}{h_{n}})$ for $n\geq 0$ (2.7)

with the convention $h_{-1}=$ O. From Eq.(2.7) and put $A_{n}= \sum_{j=0}^{n}\alpha_{j}$ , we
have

$b_{1} \frac{h_{n}}{h_{n+1}}=-A_{n}$ . (2.8)

Proposition 2.4. If $b_{1}\neq 0$ , then the Jacobi-Szeg\"o parameter $\omega_{n}$ is given
$by$

$\omega_{n}=-\frac{A_{n-1}}{b_{1}^{2}}(b_{2}(\alpha_{n}+\alpha_{n-1}-b_{1}^{2}\alpha_{n}))$ . (2.9)

Moreover, the following three terms recurrence relation holds:

$(b_{3}-2b_{1}b_{2}+b_{1}^{3})\alpha_{n}-(b_{3}-b_{1}b_{2})\alpha_{n-1}+b_{3}\alpha_{n-2}=0$ . (2.10)

Proof. Due to Eq.(2.8), one has

$h_{n}=(-b_{1})^{n} \prod_{i=0}^{n-1}\frac{1}{A_{i}}, A_{n}=\sum_{j=0}^{n}\alpha_{j}\neq 0.$

In particular, $h_{1}=-b_{1}/\alpha_{0}$ . Putting $m=n-1$ in Eq.(2.6), we have

$\frac{h_{n-1}}{h_{n+1}}b_{2}-\frac{h_{n-2}}{h_{n}}b_{2}+\alpha_{n}\frac{h_{n-1}}{h_{n}}b_{1}+\omega_{n}=0$ . (2.11)

By Eqs.(2.7), (2.8), and (2.11), one can get the first assertion in Eq.(2.9),

Next, we shall derive the second assertion. From Eqs.(2.6), (2.7) and
(2.9), we obtain

$( \frac{h_{n}}{h_{n+1}}-\frac{h_{m-1}}{h_{m}})b_{n-m+1}+\alpha_{n}b_{n-m}+(\frac{b_{2}}{b_{1}}(\alpha_{n}+\alpha_{n-1})-b_{1}\alpha_{n})b_{n-m-1}=0,$
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which implies

$b_{n-m+1}( \sum_{j=m}^{n}\alpha_{j})-b_{1}b_{n-m}\alpha_{n}-b_{n-m-1}(b_{2}(\alpha_{n}+\alpha_{n-1})-b_{1}^{2}\alpha_{n})=0.$ $(2.12)$

By setting $m=n-2$ , we have

$b_{3}(\alpha_{n}+\alpha_{n-1}+\alpha_{n-2})-b_{1}b_{2}\alpha_{n}-b_{1}b_{2}(\alpha_{n}+\alpha_{n-1})+b_{1}^{3}\alpha_{n}=0.$

Hence, we obtain the recurrence relation in Eq.(2.10). $\square$

Proposition 2.5. Let $\Omega_{n}:=\sum_{j=1}^{n}\omega_{j}$ . If $b_{1}=0$ , then $\alpha_{n}=0$ for any
$n\geq 0$ . Moreover, one can obtain

$1_{\omega_{2n+1}}^{\omega_{2n}=}= \frac{\omega_{2n-1}}{\Omega_{2n-1}}(\Omega_{2n}-\omega_{1}\prod^{\frac{\omega_{2n-1}}{\Omega_{2n-1}}}\frac{\Omega_{2j}}{\Omega_{2j-1}}(\Omega_{2n-1}-\omega_{1}\prod_{n}^{n-1}\frac{\Omega_{2j+1}}{\Omega_{2j}}j=1j=1\{,$

for $n\geq 2$ and given $\omega_{1},$ $\dot{\omega}_{2},$ $\omega_{3}>0.$

Proof. The first assertion is due to Eq.(2.7). Lemma 3.1, 3.2, and 3.5 in [20]
and Eq.(2.6) can provide our second assertion. See our paper [6] in details.

$\square$

3 Results on the Problem

In this note we will not describe the full derivation of our results for readers
to avoid being disgusted with technical computations with a $q$-deformation
parameter and many other parameters. Those who would like to go into
details can refer to our paper [6], which is more complete and general than
that in [13][14].

In conclusion, one can say

for $q\neq 1$

the Brenke type generating functions generate four classes of q-
orthogonal polynomials

and
for $q=1$

the Brenke type generating functions generate Laguerre, shifted Hermite
and generalized Hermite polynomials, essentially.
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Remark 3.1. The reason why a $q$-deformation parameter is appeared origi-
nates in a solution of the recurrence relation on $\{\alpha_{n}\}$ given by Eq.(2.10). In
this sense, $q$ in the Brenke class is not an artificially added object, but an
intrinsic parameter.

We simply give typical forms of the Jacobi-Szeg\"o parameters and $(h(x), B(t))$

for each class.

3.1 Class I

(1) For $0<q<1$ a particular choice of parameters as in Remark 4.2 for
Theorem 4.1 of [6] gives us

$\{\begin{array}{l}h(x)=0\Phi_{1} aq;q;x) ,B(t)=E_{q}(t) ,\alpha_{n}=q^{n}(1+a(1-q^{n}-q^{n+1})) ,\omega_{n}=aq^{2n-1}(1-q^{n})(1-aq^{n}) .\end{array}$

Due to the equality (see Appendix in [6]),

$\frac{1}{(x;q)_{\infty}}0\phi_{1} a;q, ax)=0^{\Phi_{1}} a;q, x)$ , (3.1)

one can get
$\psi(t,x)=0^{\Phi_{1}} aq;q, tx)E_{q}(t)$ . (3.2)

It is a generating function of the little $q$ -Laguerre polynomials (see [19], for
example). Moreover, if $0<q<1,$ $0<a<q^{-1}$ , then the corresponding
orthogonality measure is uniquely given by

$\mu=\sum_{k=0}^{\infty}\frac{(aq;q)_{\infty}(aq)^{k}}{(q;q)_{k}}\delta_{q^{k}}.$

Remark 3.2. As soon as our paper [6] was published, M. Ismail kindly in-
formed the author that the formula (3.1) is closely related with the relation-

ship between $q$ -Bessel functions (Jackson, 1905) of the first kind $J_{\nu}^{(1)}(z;q)$

and second kind $J_{\nu}^{(2)}(z;q)$ of a parameter $v,$

$J_{\nu}^{(1)}(z;q)= \frac{J_{\nu}^{(2)}(z;q)}{(-z^{2}/4;q)_{\infty}}$ (3.3)

in Theorem 14.1.3 of [18] (see also page 23 in [19]). That is, the formula
(3.1) with $a=q,$ $x=-z^{2}/2$ is nothing but the formula (3.3) with $v=0.$

(2) The case of $q=1$ ends up with Laguerre polynomials by a special choice
of parameters as in Remark 4.4 for Theorem 4.3 of [6]. See Example 2.2.
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3.2 Class II

(1) For $0<q<1$ , a certain choice of parameters as in Remark 5.2 for
Theorem 5.1 [6] provides us

$\{\begin{array}{l}h(x)=0\Phi_{1} a;q^{2}, x^{2})-\frac{x}{1-a}0\Phi_{1} aq^{2};q^{2}, x^{2}) ,B(t)=(1+t)E_{q^{2}}(q^{2}t^{2}) ,\alpha_{2n}=(1-a)q^{2n}, \alpha_{2n+1}=(a-q^{2})q^{2n},\omega_{2n}=q^{2n}(1-q^{2n}) , \omega_{2n+1}=aq^{2n}(1-aq^{2n}) .\end{array}$

Chihara [14] gave the unique corresponding orthogonality measure $\mu$ as

$\mu=\sum_{k=0}^{\infty}\frac{a^{k}(a;q^{2})_{\infty}}{2(q^{2};q^{2})_{k}}((1-q^{k})\delta_{-q^{k}}+(1+q^{k})\delta_{q^{k}})$ .

We do not know whether or not a particular name of orthogonal polynomials
has been given to this example.
(2) The case $q=1$ is reduced to Class IV.

3.3 Class III

(1) If $0<q<1$ , a particular choice of parameters as in Remark 6.3 for
Theorem 6.1 of [6] gives us

$\{\begin{array}{l}h(x)=e_{q}(x) ,B(t)=E_{q}(t)E_{q}(at) ,\alpha_{n}=(1+a)q^{n},\omega_{n}=-aq^{n-1}(1-q^{n}) .\end{array}$

If $0<q<1$ and $a<0$ , then the generating function

$\psi(t, x)=e_{q}(tx)E_{q}(t)E_{q}(at)$

generates Al-Salam-Carlitz I polynomials and its corresponding orthogonal-
ity measure is uniquely given by

$\mu=\sum_{n=0}^{\infty}(\frac{q^{n}}{(q,q/a;q)_{n}(a;q)_{\infty}}\delta_{q^{n}}+\frac{q^{n}}{(q,aq;q)_{n}(1/a;q)_{\infty}}\delta_{aq^{n}})$

on the interval $[a$ , 1 $]$ . See [1] [19].
(2) The case of $q=1$ ends up with shifted Hermite polynomials for the
Gaussian measure $N(a, 1)$ , $a\neq 0$ , by a special choice of parameters as in
Theorem 6.4 of [6]. Characteristic quantities are given by

$\{\begin{array}{l}h(x)=\exp(x) ,B(t)=\exp(\frac{1}{2}t^{2}-at) , a\neq 0,\alpha_{n}=a, \omega_{n}=n.\end{array}$

Because of $a\neq 0$ , Example 2.1 cannot be recovered from this class.
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3.4 Class IV

(1) For $0<q<1$ , a special choice of parameters as in Remark 7.3 for
Theorem 7.2 of [6] gives us

$\{\begin{array}{l}h(x)=0\Phi_{1} aq;q^{2}, x^{2})+\frac{x}{1-aq}0\Phi_{1} aq^{3};q^{2}, x^{2}) ,B(t)=E_{q^{2}}(t^{2}) ,\alpha_{n}=0,\omega_{2n}=aq^{2n-1}(1-q^{2n}) , \omega_{2n+1}=q^{2n}(1-aq^{2n+1}) .\end{array}$

If $a=1$ is taken under the condition $0<q<1$ , then

$\alpha_{n}=0, \omega_{n}=q^{n-1}(1-q^{n}) , h(x)=e_{q}(x) , B(t)=E_{q^{2}}(t^{2})$ .

Note that the equality,

$0^{\Phi_{1}} q;q^{2}, x^{2})+ \frac{x}{1-q}0^{\Phi_{1}} q^{3};q^{2}, x^{2})=e_{q}(x)$ , (3.4)

has been used to derive the expression of $h(x)$ . The derivation of Eq.(3.4)
can be found in Appendix of [6]. Thus we obtain the generating function

$\psi(t, x)=e_{q}(tx)E_{q^{2}}(t^{2})$

of discrete $q$ -Hermite I polynomials. The corresponding orthogonality mea-
sure is uniquely given by

$\mu=\sum_{k=0}^{\infty}\frac{(q^{k+1},-q^{k+1};q)_{\infty}q^{k}}{(q,-1,-q;q)_{\infty}}(\delta_{q^{k}}+\delta_{-q^{k}})$ .

See [19]. This is a special case ofAl-Salam-Carlitz I polynomials with $a=-1$

in Class III.

Remark 3.3. In $B^{\cdot}$ k $\succ$K\"ummerer-Speicher [10], $q$-Hermite”’ polynomials
play a key role to realize a $q$-Brownian motion on a certain $q$-Fock space,
which interpolates Fermion $(q=-1)$ , Ree $(q=0)$ , and Boson $(q=1)$

Fock spaces. Their $q$-Hermite” polynomials mean that the Jacobi-Szeg\"o
parameters are given by

$\{\begin{array}{l}\omega_{n}=[n]_{q}:=1+q+\cdots+q^{n-1}=\frac{1-q^{n}}{1-q}, q\in[-1, 1],\alpha_{n}=0.\end{array}$

and the corresponding orthogonality measure $v_{q}(dx)$ (Szeg\"o, 1926) is given

by

$v_{q}(dx)= \frac{1}{\pi}\sqrt{1-q}\sin\theta\prod_{n=1}^{\infty}(1-q^{n})|1-q^{n}e^{2i\theta}|^{2}dx,$

on the interval $[-2/\sqrt{1-q},$ $2/\sqrt{1-q\rfloor}$ where $x= \frac{2}{\sqrt{1-q}}\cos\theta$ for $\theta\in[0, \pi].$

Therefore, discrete $q$-Hermite polynomials are different from $q$-Hermite”
polynomials.
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(2) The case of $q=1$ ends up with (Szeg\"o’s) generalized Hermite polynomials
(see Example 2.3) by a special choice of parameters as in Remark 7.6 for
Theorem 7.5 of [6].

4 Additional Remark

(1) As mentioned in Section 1, it is still open to characterize orthogonal
polynomials associated with the Boas-Buck type generating functions.

(2) It is open to determine all orthogonal polynomials, explicitly, of the form

$h_{n}P_{n}(x)=b_{n}+ \sum_{k=1}^{n}h_{k}b_{n-k}\prod_{i=1}^{k}(x-x_{i})$ .

This is called the Geronimus problem ([17]). The Brenke-Chihara problem
solves it if $x_{i}=0$ for $i\geq 1$ . See Eq.(2.5).

(3) Throughout this note, we have considered $0<q\leq 1$ just for simplicity.
One can start the Brenke-Chihara problem under a more general assumption
on $q$ and include other examples of $q$-orthogonal polynomials such as q-
Laguerre (generalized Stieltjes-Wigert), Al-Salam-Carlitz II, and discrete q-
Hermite II polynomials if $q>1$ (see [6]). In general, a range of a parameter
$q$ contains delicate analytical roles when one may discuss the existence of
a probability measure and the uniqueness of a moment problem associated
with the Jacobi-Szeg\"o parameters, and so on.

(4) One can ask how about the case of $q=0$ . It is a difficult question. The
derivation and classification of orthogonal polynomials in this case seem to
be open. The Brenke class of orthogonal polynomials for the case $q=0$

is different from the free Meixner class (see [3] [9] [22] for the free Meixner
class). Our $q$-parameter plays different roles from that of $q$-deformed quan-
tum stochastic calculus in the sense of $Bo\dot{z}$ejko-K\"ummerer-Speicher [10] [11].

(5) It would be interesting to construct $q$-deformed Bargmann measures
associated with the Brenke class along the line with [4] [5].

(6) A probabilistic role of the Brenke class has not been well-understood.
It would be interesting to pursue it from the non-commutative (algebraic)
probabilistic viewpoint in a sense.

Acknowledgments. The author thanks organizers giving me an opportu-
nity to present our results in the workshop held in RIMS, Kyoto University.
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