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1 Introduction

In this paper we study the temperature dependence of the nonzero solution to the BCS
gap equation for superconductivity [2, 4]:

$u(T, x)= \int_{0}$

充

$D \frac{U(x,\xi)u(T,\xi)}{\sqrt{\xi^{2}+u(T,\xi)^{2}}}$ tanh $\frac{\sqrt{\xi^{2}+u(T,\xi)^{2}}}{2T}d\xi.$

Here, the solution $u$ is a function of the absolute temperature $T\geq 0$ and the energy $x$

$(0\leq x\leq\hslash\omega D)$ , and $\omega_{D}$ stands for the Debye angular frequency. The potential $U$ satisfies
$U(x, \xi)>0.$

The integral with respect to the energy $\xi$ in the BCS gap equation is sometimes replaced
by the integral over $\mathbb{R}^{3}$ with respect to the wave vector of an electron. Odeh [9], and Billard
and Fano [3] established the existence and uniqueness of the positive solution to the BCS
gap equation in the case $T=$ O. For $T\geq 0$ , Vansevenant [10] showed that there is a
unique positive solution. Bach, Lieb and Solovej [1] dealt with the gap equation in the
Hubbard model for a constant potential and showed that the solution is strictly decreasing
with respect to the temperature. Recently, Frank, Hainzl, Naboko and Seiringer [5] gave
a rigorous analysis of the asymptotic behavior of the transition temperature at weak
coupling. Hainzl, Hamza, Seiringer and Solovej [6] proved that the existence of a positive
solution is equivalent to the existence of a negative eigenvalue of a certain linear operator

to show the existence of a transition temperature. Moreover, Hainzl and Seiringer [7]

derived upper and lower bounds on the transition temperature and the energy gap for the

BCS gap equation.

Since the existence and uniqueness of the solution were established for each fixed $T$ in

the previous literature, the temperature dependence of the solution is not covered except

for the work by Bach, Lieb and Solovej [1]. It is well known that studying the temperature

dependence of the solution to the BCS gap equation is very important in condensed matter
physics. This is because, by dealing with the thermodynamical potential, this study leads
to a mathematical proof of the statement that the transition to a superconducting state
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is a second-order phase transition in the BCS model. So it is highly desirable to study the

temperature dependence of the solution to the BCS gap equation.

To this end we define a nonlinear integral operator $A$ by

$Au$ $(T, x)= \int_{0}^{\hslash\omega_{D}}\frac{U(x,\xi)u(T,\xi)}{\sqrt{\xi^{2}+u(T,\xi)^{2}}}\tanh\frac{\sqrt{\xi^{2}+u(T,\xi)^{2}}}{2T}d\xi.$

Here the right side of this equality is exactly the right side of the BCS gap equation. Our

nonlinear integral operator $A$ is defined on the sets $V_{T}$ and $V$ specified later. Since the

solution to the BCS gap equation is a fixed point of the operator $A$ , we apply fixed point

theorems to the operator $A$ and study the temperature dependence of the nonzero solution

to the BCS gap equation.

2 The simple gap equation with a constant potential

We first deal with the case where the potential of the BCS gap equation is a positive

constant. Let $U(x, \xi)=U_{1}$ at all $(x, \xi)\in[0, \hslash u_{D}]^{2}$ , where $U_{1}>0$ is a positive constant.

Then the solution to the BCS gap equation depends on the temperature $T$ only. So we

denote the solution by $\triangle_{1}$ in this case, i.e., $\triangle_{1}$ : $T\mapsto\triangle_{1}(T)$ . Then the BCS gap equation

reduces to the simple gap equation [2]

$1=U_{1} \int_{0}^{\hslash\omega_{D}}\frac{1}{\sqrt{\xi^{2}+\triangle_{1}(T)^{2}}}\tanh\frac{\sqrt{\xi^{2}+\triangle_{1}(T)^{2}}}{2T}d\xi.$

The following is the definition of the temperature $\tau_{1}>0.$

Definition 2.1 (See Bardeen, Cooper and Schrieffer [2]).

$1=U_{1} \int_{0}^{\hslash\omega_{D}}\frac{1}{\xi}\tanh\frac{\xi}{2\tau_{1}}d\xi.$

See also Niwa [8] and Ziman [14]. The implicit function theorem implies the following.

Proposition 2.2 ([11, Proposition 2.2]). Set

$\triangle=\frac{\hslash\omega_{D}}{\sinh\frac{1}{U_{1}}}.$

Then there is a unique nonnegative solution $\triangle_{1}$ : $[0, \tau_{1}]arrow[0, \infty$ ) to the simple gap

equation such that the solution $\triangle_{1}$ is continuous and strictly decreasing with respect to the

temperature on the closed interval $[0, \tau_{1}]$ :

$\triangle_{1}(0)=\triangle>\Delta_{1}(T_{1})>\triangle_{1}(T_{2})>\triangle_{1}(\tau_{1})=0, 0<T_{1}<T_{2}<\tau_{1}.$

Moreover, the solution $\triangle_{1}$ is of class $C^{2}$ on the interval $[0, \tau_{1}$ ) and satisfies

$\triangle_{1}^{J}(0)=\triangle_{1}"(0)=0$ and $\lim_{T\uparrow \mathcal{T}1}\triangle_{1}’(T)=-\infty.$
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Proof. Set $Y=\Delta_{1}(T)^{2}$ . Then the simple gap equation above becomes

$1=U_{1} \int_{0}^{\hslash\omega_{D}}\frac{1}{\sqrt{\xi^{2}+Y}}\tanh\frac{\sqrt{\xi^{2}+Y}}{2T}d\xi.$

Note that the right side of this equality is a function of the two variables $T$ and $Y$ after
integration with respect to the variable $\xi$ . We moreover see that there is a unique function
$T\mapsto Y$ implicitly defined by this equality. The implicit function theorem thus implies the
result. $\square$

Remark 2.3. We set $\Delta_{1}(T)=0$ for $T>\tau_{1}.$

We introduce another positive constant $U_{2}>0$ . Let $0<U_{1}<U_{2}$ . When $U(x, \xi)=U_{2}$

at all $(x, \xi)\in[0, \hslash\omega_{D}]^{2}$ , an argument similar to that in the proposition above gives that
there is a unique nonnegative solution $\Delta_{2}$ : $[0, \tau_{2}]arrow[0, \infty$ ) to the simple gap equation

$1=U_{2} \int_{0}^{\hslash\omega D}\frac{1}{\sqrt{\xi^{2}+\triangle_{2}(T)^{2}}}\tanh\frac{\sqrt{\xi^{2}+\Delta_{2}(T)^{2}}}{2T}d\xi, 0\leq T\leq\tau_{2}.$

Here, $\tau_{2}>0$ is defined by

$1=U_{2} \int_{0}^{\hslash\omega_{D}}\frac{1}{\xi}\tanh\frac{\xi}{2\tau 2}d\xi.$

We again set $\Delta_{2}(T)=0$ for $T>\tau_{2}$ . A straightforward calculation gives the following.

Lemma 2.4 ([12, Lemma 1.5]). (a) The inequality $\tau_{1}<\tau_{2}$ holds.
(b) If $0\leq T<\tau_{2}$ , then $\Delta_{1}(T)<\triangle_{2}(T)$ . If $T\geq\tau_{2}$ , then $\Delta_{1}(T)=\triangle_{2}(T)=0.$

A2 (o)

$\Delta_{1}(0)$

$0$ $r_{1}$ r2

Tenperature

Figure 1: The graphs of the functions $\Delta_{1}$ and $\triangle_{2}.$

86



3 The BCS gap equation with a nonconstant potential

We assume the following condition on $U$

$U_{1}\leq U(x, \xi)\leq U_{2}$ at all $(x, \xi)\in[0, \hslash wD]^{2},$ $U$ ) $\in C([O, hx_{D}]^{2})$ .

Let $0\leq T\leq\tau_{2}$ and fix $T$ . We consider the Banach space $C[O, \hslash\omega D]$ consisting of con-
tinuous functions of $x$ only, and deal with the following temperature dependent subset
$V_{T}$ :

$V_{T}=\{u(T, \cdot)\in C[0, \hslash\omega_{D}] : \triangle_{1}(T)\leq u(T, x)\leq\Delta_{2}(T) at x\in[0, \hslash uD]\}.$

The Schauder fixed-point theorem implies the following.

Theorem 3.1 ([12, Theorem 2.2]). Assume the condition above on $U$ Let $T\in[0, \mathcal{T}2]$

be fixed. Then there is a unique nonnegative solution $u_{0}(T, \cdot)\in V_{T}$ to the $BCS$ gap equation
$(x\in[0, \hslash u_{D}])$

$u_{0}(T, x)= \int_{0}^{\hslash\omega_{D}}\frac{U(x,\xi)u_{0}(T,\xi)}{\sqrt{\xi^{2}+u_{0}(T,\xi)^{2}}}\tanh\frac{\sqrt{\xi^{2}+u_{0}(T,\xi)^{2}}}{2T}d\xi.$

Consequently, the solution is continuous with respect to $x$ and varies with the temperature

as follows:

$\Delta_{1}(T)\leq u_{0}(T, x)\leq\triangle_{2}(T)$ at $(T, x)\in[0, \tau_{2}]\cross[0, hx_{D}].$

Proof. Clearly, $V_{T}$ is a bounded, closed and convex subset of the Banach space $C[O, \hslash\omega_{D}].$

A straightforward calculation gives that our nonlinear integral operator $A:V_{T}arrow V_{T}$ is
compact. The Schauder fixed-point theorem thus implies the result. We can show the

uniqueness of the nonzero fixed point of $A$ defined on $V_{T}$ by deriving a contradiction. $\square$

A2 (0)

$\Delta_{1}(0)$

$0$ $r\tau$ T2

Temperature

Figure 2: For each $T$ , the solution $u_{0}(T, x)$ lies between $\triangle_{1}(T)$ and $\triangle_{2}(T)$ .
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4 Continuity of the solution with respect to the tempera-
ture

Let $U_{0}>0$ be a positive constant satisfying $U_{0}<U_{1}<U_{2}$ . An argument similar to that
in the proposition above gives that there is a unique nonnegative solution $\Delta_{0}:[0, \tau_{0}]arrow$

$[0, \infty)$ to the simple gap equation

$1=U_{0} \int_{0}^{\hslash\omega_{D}}\frac{1}{\sqrt{\xi^{2}+\Delta_{0}(T)^{2}}}\tanh\frac{\sqrt{\xi^{2}+\triangle_{0}(T)^{2}}}{2T}d\xi, 0\leq T\leq\tau_{0}.$

Here, $\tau_{0}>0$ is defined by

$1=U_{0} \int_{0}^{\hslash\omega_{D}}\frac{1}{\xi}\tanh\frac{\xi}{2\tau_{0}}d\xi.$

We set $\triangle_{0}(T)=0$ for $T>\tau_{0}$ . A straightforward calculation gives the following.

Lemma 4.1 ([13, Lemma 1.1]). (a) $\tau_{0}<\tau_{1}<\tau_{2}$

(b) If $0\leq T<\tau_{0}$ , then $0<\Delta_{0}(T)<\Delta_{1}(T)<\Delta_{2}(T)$ .
(c) If $\tau_{0}\leq T<\tau_{1}$ , then $0=\Delta_{0}(T)<\Delta_{1}(T)<\Delta_{2}(T)$ .
(d) If $\tau_{1}\leq T<\tau_{2}$ , then $0=\triangle 0(T)=\triangle_{1}(T)<\triangle_{2}(T)$ .
(e) If $\tau_{2}\leq T$ , then $0=\triangle 0(T)=\Delta_{1}(T)=\triangle_{2}(T)$ .

Remark 4.2. Let the functions $\triangle\iota(l=0,1,2)$ be as above. For each $\triangle_{l}$ , there is the
inverse $\Delta_{l}^{-1}:[0, \triangle_{l}(0)]arrow[0, \tau l]$ . Here,

$\triangle_{l}(0)=\frac{\hslash\omega_{D}}{\sinh\frac{1}{U_{l}}}$

and $\Delta_{0}(0)<\Delta_{1}(0)<\triangle_{2}(0)$ . See [13] for more details.

We introduce another temperature $T_{1}$ . Let $T_{1}$ satisfy $0<T_{1}< \Delta_{0}^{-1}(\frac{\Delta_{0}(0)}{2})$ and

$\frac{\triangle_{0}(0)}{4\triangle_{2}^{-1}(\triangle o(T_{1}))}\tanh\frac{\triangle o(0)}{4\triangle_{2}^{-1}(\triangle_{0}(T_{1}))}>\frac{1}{2}(1+\frac{4\hslash^{2}\omega_{D}^{2}}{\triangle 0(0)^{2}})$ .

Consider the following subset $V$ of the Banach space $C([0_{\}}T_{1}]\cross[0, \hslash\omega_{D}])$ consisting
of continuous functions of both the temperature $T$ and the energy $x$ :

$V = \{u\in C([O, T_{1}]\cross[0, \hslash u_{D}]):\Delta_{1}(T)\leq u(T, x)\leq\Delta_{2}(T)$

at $(T, x)\in[0, T_{1}]\cross[0, \hslash\omega_{D}]\}.$

The Banach fixed-point theorem implies the following.

Theorem 4.3 ([13, Theorem 1.2]). Assume the condition above on $U$ Let $u_{0},$ $T_{1}$

and $V$ be as above. Then $u_{0}\in V$ . Consequently, the solution $u_{0}$ to the $BCS$ gap equation
is continuous on $[0, T_{1}]\cross[0, \hslash x_{D}].$

Proof. Clearly, $V$ is a closed subset of our Banach space $C([O, T_{1}]\cross[0,$ $\hslash w_{D}$ A straight-
forward calculation gives that our nonlinear integral operator $A$ : $Varrow V$ is contractive
as long as $T_{1}$ satisfies the conditions mentioned before. The Banach fixed-point theorem
thus implies the result. $\square$
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Figure 3: The solution $u_{0}$ is continuous on $[0, T_{1}]\cross[0, \hslash\omega D].$
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