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ABSTRACT. In this paper, we introduce implicit iterative scheme for finding a common
element of the split equilibrium problem and the fixed point problem for a set of one-
parameter nonexpansive semigroup {T'(s)|0 £ s < oo} in real Hilbert spaces. We prove
the sequence generated by the implicit viscosity iterative algorithm in Hilbert spaces under
certain mild condition converge strongly to the common solution of the split equilibrium
problem and the fixed point problem for a set of one-parameter nonexpansive semigroups,
which is the unique solution of a variational inequality problem.
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1. INTRODUCTION

Throughout the paper, unless otherwise stated, let H; and H; be real Hilbert spaces with inner
product (-,-) and norm || - ||. Let C and Q be nonempty closed convex subsets of H; and Ha,
respectively. Recall, a mapping T with domain D(T') and range R(T') in H is called nonezpansive
iff for all z,y € D(T), ||Txz — Tyl| < ||z — yll. A family S = {T'(s)|0 < s < oo} of mappings of
C into itself is called a one-parameter nonexpansive semigroup on C iff it satisfies the following
conditions:

(a) T(s+t)=T(s)T(t) for all s,t > 0 and T(0) = I;
) IT(s)x — T(s)yll < ||z — yl| for all z,y € C and s > 0;
(c) the mapping T'(-)z is continuous, for each x € C.

The set of all the common fixed points of a family S is denoted by Fixz(S), i.e., Fiz(S) :=
{xeC:T(s)z=12,0 < s <0} =Ngcycoo Fiz(T(s)), where Fiz(T(s)) is the set of fixed points
of T(s). It is well known that Fiz(S) is closed and convex. It is clear that T(s)T(t) = T(s+t)=
T(t)T(s) for s,t > 0.

Recall that f is called to be weakly contractive [1] iff for all z,y € D(T), ||f(x) — f(W)| <
llz —yll — ¢(llz — y||), for some ¢ : [0, +00) — [0, +00) is a continuous and nondecreasing function
such that ¢ is positive on (0, +00) and ¢(0) = 0. If ¢(t) = (1 —k)t for a constant k with0 < k < 1
then f is called to be contraction. If ¢(t) = 0, then f is said to be nonexpansive.

Let C be a nonempty closed convex subset of H and F : C x C — R be a bifunction, where R
is the set of real numbers. The equilibrium problem (for short, EP) to find z € C such that for
ally € C,

F(z,y) > 0. (1.1)
The set of solutions of (1.1) is denoted by EP(F). Given a mapping T : C — H, let F(z,y) =
(Tz,y — z) for all z,y € C. Then z € EP(F) if and only if x € C is a solution of the variational
inequality (Tz,y —z) >0 forall y € C.
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To study the equilibrium problems, we assume that the bifunction F : C x C — R satisfies
the following conditions:

(Al) F(x,y)=0for all z € C;

(A2) F is monotone, i.e., F(z,y) + F(y,z) <0 for all z,y € C;

(A3) for each z,y,z € C, limsup;_,q F'(tz + (1 — t)z,y) < F(z,y);

(A4) for each z € C fixed, the function y — F(z,y) is convex and lower semicontinuous.
Iterative methods for nonexpansive mappings have recently been applied to solve convex mini-
mization problems; see, e.g., [2, 3] and the references therein. Let B be a strongly positive linear
bounded operator (i.e., there is a constant 5 > 0 such that (Bz,z) > ¥||z]|2,Vz € H), and T be
a nonexpansive mapping on H. A typical problem is to minimize a quadratic function over the
set of the fixed points of a nonexpansive mapping on a real Hilbert space H:

.1
min —

LS5 (Bz,z) — (z,b) (1.2)

where F(T") is the fixed point set of the mapping 7 on H and b is a given point in H. Starting
with an arbitrary initial zo € H, define a sequence {zn} recursively by

Tnt+1 = (I —anB)Tzn + anb, n >0 (1.3)

It is proved [3] (see also [4]) that the sequence {z,} generated by (1.3) converges strongly to
the unique solution of the minimization problem (1.2) provided the sequence an satisfies certain
conditions.

Recently, Moudafi [5] introduced the following split equilibrium problem (SEP): Let Fy :
CxC —Rand Fo: Q x @ — R be nonlinear bifunctions and A : H; — H2 be a bounded linear
operator, then the SEP is to find 2* € C such that

Fi(z*,z) >0, Vx € C, (1.4)

and such that

y* = Az™ € Q solves Fa(y*,y) >0, Vy € Q. (1.5)
When looked separately, (1.4) is the classical EP, and we denoted its solution set by EP(F1).
SEP (1.4)-(1.5) constitutes a pair of equilibrium problems which have to be solved so that the
image y* = Az*, under a given bounded linear operator A, of the solution z* of EP (1.4) in H;
is the solution of another EP (1.5) in another space H2, and we denote the solution set of EP
(1.5) by EP(Fy).

The solution set of SEP (1.4)-(1.5) is denoted by Q = {p € EP(F1) : Ap € EF(F)}. The
SEP (1.4)-(1.5) includes the split variational inequality problem which is the generalization of
the split zero problem and the split feasibility problem (see, for instance, [5, 6, 7]).

In 2013, Kazmi and Rizvi [8] introduced implicit iteration method for finding a common
solution of split equilibrium problem and fixed point problem for a nonexpansive semigroup.

Motivated by works of Moudafi [5], Kazmi and Rizvi [8], we suggest and analyze an implicit
iterative method for approximation of a common solution of the split equilibrium problem and
the fixed point problem for one-parameter nonexpansive semigroup in a real Hilbert space.

2. PRELIMINARIES

Definition 2.1. A mapping U : H; — Hj is said to be
(i) monotone, if (Uz — Uy, z —y) > 0,Vxz,y € Hy;
(ii) o-inverse strongly monotone (or, a-ism), if there exists a constant a > 0 such that
(Uz ~ Uy,z —y) > al|lUz — Uy||?,Vz,y € Hy;
(iii) firmly nonerpansive, if is 1-ism.
Definition 2.2. A mapping U : H1 — H; is said to be averaged if and only if it can be written
as the average of the identity mapping and a nonexpansive mapping, ie., U := (1 — o) + aV,
where a € (0,1) and V : Hy — Hj is nonexpansive and I is the identity operator on Hi.

Proposition 2.3. [5] Let U : H; — H1 be a nonlinear mapping. Then,
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(i) fU=Q1-a)D+aV, where D : Hi — H) is averaged, V : Hy — Hj is nonezpansive
and o € (0,1), then U is averaged;
(ii) The composite of finite many averaged mappings is averaged;
(iii) IfU s T-ism, then for v > 0,7U is %-ism;
(iv) U is averaged if and only if, its complement I — U is T-ism for some T > %
For every point x € H1, there exists a unique nearest point in C denoted by Pcox such that
lz - Pez|l < llz - yll, Vy € C. (2.1)
Pc is called the metric projection of Hy onto C. It is well known that Pc is a nonexpansive
mapping and is characterized by the following property:
(x — Pox,y— Pcz) <0, Vr € Hi,y € C. (2.2)
Further, it is well known that every nonexpansive operator T : Hy — H; satisfies, for all (z,y) €
H1 X Hl,

(z=T(z)) - (y— T(y), T(y) - T(z)) < %II(T(m) —z) = (T(y) - )II? (2.3)
and therefore, we get, for all (z,y) € H1 x Fiz(T),
(@~ T(@),y - TW) < 3I1T(@) - =] 24

A set valued mapping M : Hy; — 2H1 is called monotone if for all z,y € Hy,u € Mz and v € My
imply (z — y,u — v) > 0. A monotone mapping M : H; — 2H1 is marimal if the graph G(M)
of M is not properly contained in the graph of any other monotone mappings. It is know that a
monotone mapping M is maximal if and only if for (z,u) € Hy x H1,{(z —y,u—v) > 0, for every
(y,v) € G(M) implies u € Bz. Let D : C — H; be an inverse strongly monotone mapping and
let Ncz be the normal cone to C at ¢ € C, i.e., Ncx := {2 € H1 : (y — x,2) > 0,Vy € C}. Define
_ Dv+ Nez, ifx € C,
M"‘{ 0, ifzxgC.
Then, M is maximal monotone and 0 € Mz if and only if v € VI(C, M) (see [9] for more details).

Lemma 2.4. [8] Let C be a nonempty closed convez subset of Hy and let F1 : Cx C -+ R be a
bifunction satisfying (A1)-(A4). For r > 0 and for all x € H;, define a mapping TH o > ¢
as follows:
Thiy ={z€C: Fi(z,y) + %(y—-z,z —z)>0,Vy € C}.
Then the following hold:
() TF(z) # 0 for each z € Hy;
(i) T is single-valued;
(iii) TF' is firmly nonezpansive, i.e., |[TF 'z — TFy)2 < (T 2 =Ty, 2 — y),Va,y € Hy;
(iv) Fiz(Ty?) = EP(F1);
(v) EP(F1) is closed and convez.
Further, assume that F2 : Q@ x Q — R satisfying (A1)-(A4). For s > 0 and for all w € Ha,
define a mapping TF2 . Hy Q as follows:

TR (w)={d€Q: Fald,e) + (e~ d,d~w) >0,Ve € Q).

Then, we easily observe that TS2(w) # @ for each w € Q; TI? is single-valued and firmly
nonexpansive; EP(F2,Q) is closed and convex and Fiz(TsF 2) = EP(F2,Q), where EP(F2,Q) is
solution set of the following equilibrium problem: Find y* € @ such that Fa(y*,y) > 0,Vy € Q.
We observe that EP(F2) C EP(F2,Q). Further, it is easy to prove that € is closed and convex
set.

Lemma 2.5. [10] Assume A is a strongly positive linear bounded operator on a Hilbert space H
with coefficient ¥ >0 and 0 < p < ||A|| 7. Then ||I — pA| <1 — p7.
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Lemma 2.6. [11] Let C be a nonempty bounded closed convex subset of H and let S = {T'(s) : 0 <

s < oo} be a nonerpansive semigroup on C, then for any h > 0, lim¢—eco SUPLco ||% f(f T(s)xzds —
t

T(h)(} fE T(s)ads)] = o.

Lemma 2.7. [12] Let C be a nonempty bounded closed convexr subset of a Hilbert space H and

S={T(t):0<t< oo} be a nonexpansive semigroup on C. If {zn} is a sequence in C satisfying

the properties: (i) xn — z; (it) limsup,_, . limsup,,_, o ||T(t)zn —2zn|| = 0, where z, — z denote

that {xn} converges weakly to z, then z € Fiz(S).

Lemma 2.8. [13] Let {A\n} and {Bn} be two nonnegative real number sequences and {an} a

positive real number sequence satisfying the conditions > .00 ( an = 00 and limp—co % =0 or

Y omeg Bn < 00. Let the recursive inequality Ant1 < An —anP(An)+Pn, n=10,1,2--- , be given,

where () is a continuous and strict increasing function for all A > 0 with ¥(0) = 0. Then

{An} converges to zero, as n — oo.

3. IMPLICIT VISCOSITY ITERATIVE ALGORITHM

Theorem 3.1. Let Hy and Hy be two real Hilbert spaces and let C C H1 and Q C H2 nonempty
closed convex sets. Let A: Hy — Hp be a bounded linear operator . Assume that F1 : CxC — R
and Fy : Q X Q — R are the bifunctions satisfying (A1)-(A4) and Fy is upper semiconlinuous.
Let f be a weakly contractive mapping with a function p on Hy, B a strongly positive linear
bounded self-adjoint operator with coefficient ¥ > 0 on H1,S = {T'(s) : s > 0} a one parameter
nonezpansive semigroup on C, respectively. Assume that Fiz(S)NQ # O, then for any 0 < v < ¥
and let sequences {zn}, {un} and {zn} be generated by the following iterative algorithm:

Un = JEL (zn + SA*(JE2 — I) Azy),
2n = (1— ﬂn)# fg" T(s)unds + Bnun, (3.1)
zn = (I — anB)zn + anyf(za),Vn > 1,

where T, C (0,00) and § € (0, %),L 1is the spectral radius of the operator A*A and A* is the
adjoint of A and {an},{Bn} C (0,1),{tn} C (0,00) are real sequences satisfying the following
conditions:

(3) limp 00 an = 0; (%) limp—oo Bn = 0; (345) limp— 00 tn = 00; () liminfn_yo0 7n > 0.
Furthermore, the sequence {xn} converges strongly to z* € Fiz(S) N Q which is uniquely solves
the following variational inequality

((vf = B)z*,p—2") <0, Vp € Fix(S)N Q. (3.2)

Proof. Step 1. We will show that the sequence {zn} generated from (3.1) is well defined and
{zn} is bounded.

Since an —+ 0 as n — 00, we may assume, with no loss of generality, that an, < ||B||~?! for all
n > 1. Then, a, < % for all n > 1.

First, we show that the sequence {zn} generated from (3.1) is well defined. For each n > 1,
define a mapping S{; in Hy as follows

Siz = (I-anB)[(1- ﬂn)ti /t" T(s)(JE (z + 8A™(JF2 — 1) Az))ds
n JO

+Bn(JEL (z + 6A* (JF2 — 1) Az))] + anvf(2).

Indeed, since Jf,f and JrF,f both are firmly nonexpansive, they are averaged. For § € (0, %), the
mapping (I + JA*(J,F,? — I)A) is averaged, see [5]. It follow from Proposition 2.3 (ii) that the
mapping Jf;} I+ (SA’*(J,Fn2 — I)A) is averaged and hence nonexpansive. For any z,y € H, we
compute

tn
1842 — SEyll < (I - anB)[(1 - ﬂn)% /0 IT(s)(JE (2 + A" (JF2 — 1) Az))

—T(s)(J72 (y + A" (JF2 — DAy))llds + Bnll(JF (z + A (Jf2 — I) Ax))
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~(I}(y+ A" (IF2 = DAY + anllf(@) = F@)I < (1 = @nW(L = Bn)llz — yll + Bnllz — yl]
+an||f(2) = FW < [1 - an(¥ = Vil — yll = anye(llz - yl) < llz - yll - ¥z - yl),

where (|| — y||) := anyp(|lz — y||). This shows that S{ is a weakly contractive mapping with
a function ¢ on H; for each n > 1. Therefore, by Theorem 5 of [14], S;f has a unique fixed point
(say) zn € Hy. This means (3.1) has a unique solution for each n > 1, namely,

tn
zn = (I —anB)[(1 - Bn)t_i—/o T(s)unds + Bnun] + anvyf(zn).

Next, we show that {z»} is bounded. Indeed, for any p € Fiz(S) N Q, we have p = anlp, Ap =
Jf,‘pr and p = T'(s)p. We estimate
lun —plI> = 55} (@n + 64" (JF2 — DAzn) = I72pI? < [lon + 647 (Jf2 — 1) Azn - pl?
< lzn = plI? + 82| A" (JF2 — DAza|? + 28(2n — p, A*(JF2 = I)Azs).  (3.3)
Thus, we have
lun —pli? < llzn =pl>+82((JF2 = 1) Azn, AA* (JF2 — 1) A2p) +28(zn ~p, A*(JF2 — 1) Az,). (3.4)
Now, we have
8 ((JF2—I)Azn, AA* (JF2 — 1) Azpn) < LE*((JF2 1) Azn, (JF2 — 1) Azn) = L6*||(JF2 — 1) Aza|?.
3.5
Denoting A := 26(zn — p, A*(J,I.':f — I)Azy) and using (2.4), we have e
A = 28(zn —p,A"(JF2 — I)Azs) = 26(A(zn — p), (JE2 — 1) Azn)
= 20(A(zn —p) + (JF2 — Az — (JF2 — I)Azn, (JF2 - 1) Azy)

25{<J,{':3Az,, — Ap,(JF2 — D) Azpn) - ||(JF2 - I)Azn||2}

IN

) .
26{§||(Jf,3 = DAza||* = 1(J72 — I)Aznn"’} < =8ll(Jrz = DAzal®. (3.6)

Using (3.4), (3.5) and (3.6), we obtain

llun = plI? < llzn = pII* + 6(L8 — DI|(J72 ~ 1) Azn]|?. (3.7
Since 6 € (0, %), we obtain
llun — plI% < [|lzn — pl|%. (3.8)
Now, setting gn := & [I" T(s)unds, we obtain

. Jo

1 tn 1 tn
ngn—pn=H— [ T@unds=p| < = [ IT(6un ~T(plds < llun = pll = l12n . (39
tn Jo tn Jo

By (3.8) and (3.9), we get

llzn =pll = (1= Bn)llgn —pll+ Ballun —pll < (1-Bn)llun = pll+Brllun —pll = lun —p|| < f|ﬂ’?n(—P|’)~
3.10

Further, we estimate

llzn "P“2 = (Tn —p,ZTn —p)

((I = anB)(zn —p),Zn —p) + an¥(f(zn) = f(p), 2n — p) + an{vf(p) — Bp,zn - p)
[1 = an(¥ = Nllizn = plI2 + an(vf(p) — Bp,zn — p) — anyp(l|lzn ~ pl)lIzn — pll
llzn — plI* + an(vf(p) = Bp,2n — p) — anve(llzn — pl)llzn — pl- (3.11)
Therefore, p(|lzn —p||) < %H'yf(p)—Bp”, which implies that {¢(||zr —p||)} is bounded. We obtain

that {(||zrn —p||)} is bounded by property of ¢. So {zr} is bounded and so are {un}, {zn}, {gn}, {Bzn}
and {f(zn)}.

Step 2. We claim that there exists a subsequence {ny} of {n} such that z,, — z* and
z* € Fiz(S). Indeed, for p € Fiz(S) N and from (3.9), then ||gn — p|| < [lun — p|| < llzn — ]|
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Since {un},{gn}, {Bzn}, {f(zn)} are bounded and the conditions limn— 00 @n = 0 = limp—co Bn,
we see that
lzn = gnll = lI(1 = Bn)gn + Bnun — gnll = Bnllun — gnll = 0 (n — o) (3.12)
and
lzn = znll = (I — anB)zn + an¥f(zn) — znll = anllvf(zn) = Bznl = 0 (n = 00).  (3.13)
In view of (3.12) and (3.13), we obtain that
len = gnll < llzn — 2nll + ll2n — gnll = 0 (n — o0). (3.14)

Let Ki ={we C:p(Jw-p|) < %H'yf(p) — Bp||}, then K7 is a nonempty bounded closed convex
subset of C which is T'(s)-invariant for each 0 < s < oo and contain {zn} C K1. So without loss
of generality, we may assume that S := {T'(s) : 0 < s < oo} is nonexpansive semigroup on Kj.
By Lemma 2.6, we have

limsup limsup ||gn — T'(s8)gn|| = 0. (3.15)

83— 00 n—oo

From (3.14) and (3.15), we obtain that ||zn — T(s)zn|| < ||zn — gnll + llgn — T(8)gnll + | T(s)gn —
T(s)znll < llzn = gnll + llgn — T(8)gnll + llgn — znll < 2llzn — gnll + llgn — T(s)gnll, we arrive at

limsup limsup ||z — T(s)zx| = 0. (3.16)
88— 00 n—o0

On the other hand, since {zn} is bounded, we know that there exists a subsequence {zn, } of
{zn} such that z,, — z*. By Lemma 2.7 and (3.16), we arrive at z* € Fiz(S).

In (3.11), interchange z* and p to obtain ¥(||zn, — 2*||) < (Yf(z*) — B2*,zn, — 2z*), where
Y(llzn, — 2*]1) == vo(l|Zn, — 2*||)||zn, — 2*]|. From zn, — z*, we get that

limsup ¥([lzn, — 2*[|) < limsup(yf(z*) — Bz*,zn, — 2*) =0.
k—o0 n—00
Namely, ¥(||zn, — 2*]|) = 0 (k — oco) which implies that z,, — z* as k — oo by the property of
1 and since ||zn — zn|| — O thus z5, — z*.

Step 3. We will show that limp— o0 ||un — zn| = 0.
Further, we estimate by (3.1), (3.7) and (3.8), we have

(T = anB)(2n — p) + an(vf(zn) — Bp)||*

(1= an¥)?llzn = plI* + 20n (vf(zn) — Bp + vf(p) — 7f(p), zn — p)

(1+ (an9)? ~ 2an¥)llun — plI* + 2envellen — plI* + 2an (vf(p) — Bp,zn — p)
lun ~ P“2 + (an’7)2llun - I’”2 + 2anypllzn — p||2 + 2an|lvf(p) — Bpllllza — pl|
l&n = plI* + 8(Lé — DI (JfZ — DAznll® + (@n¥)?llzn — plI* + 2anv0llzn — pl1?
+2an|lvf(p) — Bpllllzn — pl|. (3.17)

Since {xn} is bounded, we may assume that p := supo<n<il|zn — p||. Therefore, (3.17) reduces
to §(1— Lo)[|(J52 — I)Azn||? < a25%p% +2anv0p? + 2an 7S (p) — Bpllp = anlan¥?p? + 2vpp? +
2|lvf(p) — Bp||p). Further, since §(1 — L§) > 0, an — 0, preceding inequality implies that

. Fy __ __
Xim_[|(JF2 — ) Azn]l = 0. (3.18)

It

llzn — pII®

IA NN IA

Next, we observe that
llun — P”2
= |[JF (a0 + 6A™(JF2 — I)Azn) — TEp|? < (un — p,2n + 8A*(JF2 — ) Azn — p)

1 . :
= 5{uun = PI* + llon + 8A™(J2 = DAzn = pl* = |(un — p) = [2n + 84" (J2 = 1) Azn _,,1”2}

1 *
= 5 {Iun =1+ on =9I = o = 2 - 547 U2 — DAzl

< 5 { e =PI o =l =l = 2l = 820A4° U = Dz + 281 Alun = 2IEE = DAzl ).



Hence, we have
lun =l < llzn = plI% = llun — 2all? = 82| A*(JF2 — D) Azn|| + 26|l A(un — z)|lI(JF2 — 1) Azn||
< lzn = plI? = llun — znl? + 26| A(un — z)III(JF2 ~ I)Azn]. (3.19)

Since {zn} and {un} are bounded and A is a bounded linear operator then ||A(un — )| is
bounded and hence we may assume that ! := supo<n<1||A(un — z5)||. If follows from (3.17) and
(3.19) that

len = plI* < llun — plI® + a23?lzn — pll? + 2anypllzn — pl|* + 2an|7f(P) - Bpllllzn — pll
< llzn = 2l = llun — zall® + 26| A(un — zn)|I(JF2 = I Aznl] + a2 5?20 — plI®

+2anvpllza — pll* + 2017 (p) — Bpllllzn — pl|

£n — plI? ~ llun — znll® + 20U|(J52 — I)Azn| + anQ,

where Q := (2yp + an¥?)p? + 2||7f(p) — Bp||p. Therefore, from (3.18) and an — 0, we obtain
llun — znll® < 20U|(JE2 = I)Azn]| + anQ = 0, (n - ).

This implies that ||lun — zn|| — 0, (n —= 00).
Step 4. We will show that z* € €2, where z* is obtain in Step 2.
First, we show that z* € EP(F1). Since un, = J,.F,Ll Zn, we have Fi (un, y)+%(y—um Un—Tp) >

0, Vy € C. It follows from monotonicity of F; that ;1: (y—Un,un—2zn) > Fi(y, un) and hence <y—

unk,ffﬂ;:__z"k.> > Fi(y,un,). Since [lun — zn| — 0 and zn, — z*, we get un, — z* and
ng
“—"fgnL:-zh — 0. It follows by (A4) that 0 > Fy(y,z*),Vz* € C. For t with 0 < ( <l and y € C,
let yo = Cy+ (1~ ¢)z*. Sincey € C, 2* € C, we get y¢ € C, and hence, F1(y¢,2*) < 0. So, from
(Al) and (A4), we have 0 = Fi(y¢,y¢) < CFi(ye,y) + (1 — Q) Fi(yc, 2*) < ¢(Fi(y¢,y). Therefore
0 < Fi(y¢,y). From (A3), we have 0 < Fi(z*,y). This implies that z* € EP(F}).

Next, we show that Az* € EP(F2). Since zn, - z* and A is bounded linear opera-

tor, Axn, — Az*. Now, setting vn, = Axn, — Jf,‘fk Azy, . It follows that from (3.18) that

limg_y00 Un, = 0 and Azn, —vn, = Jf:fk Azy, . Therefore from Lemma 2.4, we have Fo(Axn, —

Uny, 2) + r#(z — (Azny —vng), (Any — Un,) — AZn,) >0, Vz € Q. Since F; is upper semicon-
Tk

tinuous in the first argument, taking limsup to above inequality as k — oo and using condition
(iv), we obtain F2(Az*,2) > 0, Vz € Q, which means that Az* € EP(F2) and hence z* € Q.
Step 5. We claim that z* is the unique solution of the variational inequality (3.2).
Firstly, we show the uniqueness of the solution to the variational inequality (3.2) in Fiz(S)NS2.
In fact, suppose that a,b € Fiz(S) N $ satisfy (3.2), we see that

((B=~f)a,a—b) <0, (3.20)
(B=vf)bb—a) <0. (3.21)
Adding these two inequalities (3.20) and (3.21) yields
0> (B(a —b),a—b) = v(f(a) = £(b),a = b) > (¥ = lla — bl|* + ve(lla — b])|a - bll,
thus ¢(|la — b||) < 3%7-”(1 — b||. From 3—;—'7- < 0, we get that ¢(||la — b]|) < 0. By the property of

p, we must have a = b and the uniqueness is proved.
Next, we show that z* is a solution in Fixz(S) N 2 to the variational inequality (3.2). Indeed,

since xn = (I —an B)(1 _ﬁ")t%{ Ot" T(s)unds+ (I — an B)Brun + anvyf(zn), we can rewrite that
Bzn—7f(zn) = — (I —anB)(1-Ba)(I - & o T(s)ds)un + 2 [(I - anB)un — (I — an B)zn).
For any p € Fiz(S8) N, it follows that

(B(mn) - ’Yf(xn): Un — P)
—_ tn tn
= L = /0 T(s)ds)un — (1 = - /0 T(s)ds)p, un — p) (3.22)

Qn




1 fin 1
(1= Bu)(BU = = [ T()ds)un, n = B} + == (un — 2, um = B} + (B = Buim, un — p).
n JO n

Now, we consider the right side of (3.22), (un — zn,un — p) < rnF1(un,p). Note from p €
Fiz(S8) N Q, we see that Fi(p,un) > 0, then Fi(un,p) < —Fi(p,un) < 0, which implies that

T.l,‘;(”n — Zn,un —p) < 0. On the other hand, we see that I — 21: Jo™ T(s)ds is monotone, that is,

{1 - % Jo T(s)ds)un — (I — t—% Ot" T(s)ds)p, un — p) > 0. Thus, we obtain from (3.22) that

tn
(B(2n)—f(2n), un—p) < (1~Bn)(3(1—$ /O T(s)ds)un, un—p)-+(Bn—Bun, un—p). (3.23)

Also, we notice from ||zn — un| — 0 (n = o0) and zn, — z* € Fiz(S) N Q that

1 [t
limsup(B(I — — * T(s)ds)uny , uny, —p) =0, (3.24)
k—oo tnk 0
and
limsup(B(Zn, — Uny,Un; —p) = 0. (3.25)
k—o0

Now replacing n in (3.23) with n; and take limsup, we have from (3.24) and (3.25) that

((B=~f)z",2" —p) <0, (3.26)

for any p € Fiz(S) N Q. This is, 2* € Fiz(S) N N is unique solution of (3.2).
Step 6. We claim that

1 [t
lim sup(— / T(s)unds — z*,7f(z*) — Bz*) < 0. (3.27)
n—oco In Jo
To show (3.27), we may choose a subsequence {zn;} of {z»} such that
1 tn 1 t"i
lim sup(— f T(s)unds—z*,vf(z*)— Bz*) = limsup{— / T(s)un;ds—2z",vf(z*)— Bz*).
0 0

n—oo n i—00 tni
(3.28)

Since {xn,} is bounded, we can choose a subsequence {mnij} of {zn,} converges weakly to p.

‘We may assume without loss of generality, that z,, — p, then un, — p, note from Step 2
and Step 3 that p € Fiz(S) N Q and thus T,IT fot""‘ T(s)un;ds — p. It follows from (3.28) that
limsupn__,oo(% g“ T(s)unds — z*,vf(2*) — Bz*) = (p— z*,~vf(2*) — Bz*) < 0. So (3.27) holds,
thanks to (3.2).

Step 7. We claim that z,, — z* as n — oo.
First, from (3.14) and (3.27) we conclude that

limsup(yf(z*) — Bz*,zn — 2*) <0 (3.29)
n—oo

Now we compute ||zn — 2*||? and the following estimates:

llzn — 2*||?

(1 — an?¥)?ll2n — 2°[1? + 20m (7f (zn) — Bz*,zn — 2*)

(1 = an)?||l2n — 2* I + 2an7yllzn — 2° (12 + 20 (7f(2*) — Bz",zn — 2*) = 20ny¢(|lzn — 2*)

(1= an)?llzn = 2*|* + 2an7l|zn — 2|1 + 20m (vf(2*) = Bz*,2n — 2*) = 20nve(||zn — 2°|))

(1 + (an¥)? = 20n7)lon — 2|12 + 2anlien — 2|2 + 2an (1/(z*) = Bz",@n — 2*) - 2an79(lon — 2°]))
1+ (anW)?)llzn — 2*||* + 20m (1f(2*) = Bz*,@n — 2*) — 2anve([l2n — 2*|).

/AN VAN VAN VAN VAN

It follows that ¢(|lzn — 2*||) < gz-an”mn — 2% + %(yf(z*) — Bz*,xn — 2*).

By virtue of the boundedness of {z»}, (3.29) and the condition an — 0 (n — o), we can
conclude that limn—oo @(|lzn — 2*||) = 0. By the property of ¢, we obtain that z, — z* €
Fiz(S) N Q as n = co. This complete the proof of Theorem 3.1. O

From Theorem 3.1, setting one parameter nonexpansive semigroup for a single nonexpansive
mapping 7.



Corollary 3.2. Let Hy and H; be two real Hilbert spaces and let C C Hy and Q C Hz nonempty
closed convez sets. Let A: Hy — Ha be a bounded linear operator . Assume that F1 : CxC — R
and Fy : Q x Q — R are the bifunctions satisfying (A1)-(A4) and F> is upper semicontinuous.
Let f be a weakly contractive mapping with a function ¢ on Hi, B a strongly positive linear
bounded self-adjoint operator with coefficient ¥ > 0 on H1,T a nonezpansive on C, respectively.
Assume that Fiz(T) N # 0, then for any 0 < v < 7 and let the iterative sequences {zn}, {un}
and {zn} be generated by iterative algorithm:

un = JE (zn + 6A*(JE2 — 1) Azy),
zn = (1 = Bn)Tun + Bnun, (3.30)
zn = (I.— anB)zn + anvf(zn),¥n > 1,

where rn C (0,00) and é € (0, %),L 8 the spectral radius of the operator A*A and A* is the
adjoint of A and {an},{Bn} C (0,1) be real sequences satisfying the following conditions:

(i) limn— 00 0tn = 0; (43) limp—y00 Br = 0; (i4i) lim infn—00 7n > 0.
Then, the sequence {zn} converges strongly to z* € Fiz(T) N Q which is uniquely solves the
following variational inequality (8.2).
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