
Evolution of crystal surface by a single screw
dislocation with multiple spiral steps

Takeshi Ohtsuka
Division of Pure and Applied Sciences,

Graduate School of Science and Technology,

Gunma University
4-2, Aramaki-machi, Maebashi, Gunma 371-8510, Japan

tohtsuka@gunma-u.ac.jp

1. Introduction

This is a preliminary version to the mathematical results on the growth rate
of the surface with rotating spiral steps evolving by an eikonal-curvature
equation.

The theory of crystal growth with aid of screw dislocations is proposed

by [1]. According to the theory spiral steps on the growing crystal surface
are proposed by the screw dislocations across with the surface, and the steps

evolve with an eikonal-curvature flow

$V=v_{\infty}(1-\rho_{c}\kappa)$ , (1.1)

where $V$ denotes the normal velocity in the normal direction $n$ which is a
continuous unit normal vector field of the curve $\Gamma_{t}$ denoting spirals, $\kappa$ is
the curvature of the spirals in the direction of $-n,$ $v_{\infty}$ and $\rho_{c}$ are constants
denoting the mobility and the critical radius of the two dimensional kernel,
respectively. The steps evolve on the helical crystal surface going around the
screw dislocations, and then the the surface evolves in the vertical direction.
Burton, et al. [1] also give some speculations on the growth rate of the
evolving crystal surface, in particular by co-rotating pair of spirals. They

pointed out if the distance of the pair is enoughly closer than $\rho_{c}$ , then the
growth rate by the pair is twice of that with a single spiral step.

A level set formulation of evolving spirals $\Gamma_{t}$ is proposed by [10] or [11]. In
the formulation we regard the surface without spiral centers as the bounded
domain $W\subset \mathbb{R}^{2}$ . Then, the spirals are described as a zero point set of $u-\theta$

with an auxiliary function $u$ and the predetermined multiple-valued function

$\theta(x)=\sum_{j=1}^{N}m_{j}\arg(x-a_{j})$ (1.2)

which is introduced by [8] in the Allen-Cahn type equation for evolving
spirals, where $a_{j}$ denotes a center of j-th screw dislocation for $j=1$ , . . . $N.$
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The right angle condition between $\Gamma_{t}$ and $\partial W$ , i.e.,

$\Gamma_{t}\perp\partial W$ (1.3)

is considered in [10] or [11]. Moreover, a simple method reconstructing the
surface from solutions to the level set equation is proposed by [11].

In this paper we investigate the vertical growth rate of the surface with
$m(\geq 1)$ rotating spiral steps by $(1.1)-(1.3)$ . The goal of this paper is to
demonstrate that the growth rate of the surface evolving with rotating $m(\geq$

1) spiral steps by the eikonal-curvature flow is $m$ times of that with a single
rotating spiral step under some suitable assumptions.

Ogiwara and Nakamura [9] obtained similar result of the above with the
Allen-Cahn type equation introduced by [8]. The crucial difference between
ours and the result in [9] is that the solution as in [9] forms $1/m$ times
rotational symmetric pattern. The solution in our level set method does not
form such a pattern and keep the rotation angle of the curves in whole time.

This paper is organized as follows. We first introduce the level set method
for spirals and a way reconstructing the surface with spiral steps in \S 2. Then
we investigate the vertical growth rate of the surface with rotating spiral
steps in \S 3.

2. Preliminaries

We first introduce briefly the level set formulation for spirals by [10] or [11].
Although we consider only a single spiral case in the next section, we here
consider the general case: with multiple screw dislocations and multiple spi-
rals. In \S 2.2 we propose a way reconstructing the surface with spiral steps
from the solution to the level set equation, which is introduced by [11].

2.1. Level set formulation for spirals

Let $\Omega\subset \mathbb{R}^{2}$ be a bounded domain. We here assume that there exist $N\in \mathbb{N}$

spiral centers denoted by $a_{j}\in\Omega$ for $j=1$ , . . . , $N$ . Let $m_{j}\in \mathbb{Z}\backslash \{O\}$ be
a signed number of spirals associated with $a_{j}$ ; there exist $|m_{j}|$ spirals asso-
ciated with $a_{j}$ rotating with counter-clockwise (resp. clockwise) rotational
orientation if $m_{j}>0$ (resp. $m_{j}<0$) provided that $V>0$ . See [11] for details
of signed number of spirals.

As we explained in the previous section, the spirals at time $t\geq 0$ , which
is denoted by $\Gamma_{t}$ , is described as the zero point set of $u-\theta$ with an auxiliary
continuous function $u$ . However, we have to remove an open neighborhood
$U_{j}$ of $a_{j}$ from $\Omega$ because of the singularity of $\theta$ at $a_{j}$ . Thus we now set
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$W= \Omega\backslash (\bigcup_{j=1}^{N}\overline{U}_{j})$ . Assume that $U_{i}\cap U_{j}=\emptyset$ if $i\neq j,$ $\overline{U}_{j}\subset\Omega$ , and the
boundaries $\partial U_{j}$ for $j=1$ , . .. , $N$ or $\partial\Omega$ are smooth so that $\partial W$ is smooth.
Then, we now give a level set formulation for spirals as

$\Gamma_{t}=\{x\in\overline{W};u(t, x)-\theta(x)\equiv 0 mod 2\pi \mathbb{Z}\},$ $n=-\frac{\nabla(u-\theta)}{|\nabla(u-\theta)|}$ . (2.1)

Although the above includes a multiple-valued function, (2.1) is locally sim-
ilar as the usual level set method with locally smooth function $u-\theta$ . Then
$V$ and $\kappa$ are represented as

$V= \underline{u_{t}} \kappa=-div\frac{\nabla(u-\theta)}{|\nabla(u-\theta)|}.$

$|\nabla(u-\theta)|$
’

Thus, we obtain the level set equation for $(1.1)-(1.3)$ as follows.

$u_{t}-v_{\infty}| \nabla(u-\theta)|\{\rho_{c}div\frac{\nabla(u-\theta)}{|\nabla(u-\theta)|}+1\}=0$ in $(0, T)\cross W$, (2.2)

$\langle\vec{v},$ $\nabla(u-\theta)\rangle=0$ on $(0, T)\cross\partial W$, (2.3)

where $\vec{v}\in S^{1}$ is the outer unit normal vector field of $\partial W$ . See [5] for details
of the level set method.

When we define $n$ as in (2.1), we have to clarify “interior” and “exterior
of spirals. In [10] or [11] we introduce a covering space of $\overline{W}$ as

$X=\{(x, \xi)\in\overline{W}\cross \mathbb{R}^{N};(\cos\xi_{j}, \sin\xi_{j})=\overline{x-a_{j}}$ for $j=1$ , . . . , $N\}$ , (2.4)

where $\xi=(\xi_{1}, \ldots, \xi_{N})$ and $\overline{x}=x/|x|$ for $x\in \mathbb{R}^{2}\backslash \{0\}$ . Then, the single-valued
function

$\tilde{u}(t, x, \xi) :=u(t, x)-\sum_{j=1}^{N}m_{j}\xi_{j}$

on $[0, \infty)\cross X$ plays a.role of $u-\theta$ on $X$ , and thus the (interior” $\tilde{I_{t}}$ “exterior”’
$\tilde{O}_{t}$ , and spirals $\tilde{\Gamma}_{t}$ on $X$ is defined as

$\tilde{I_{t}} =\{(x, \xi)\in X;\tilde{u}(t, x, \xi)>0\},$

$\tilde{O}_{t} =\{(x, \xi)\in X;\tilde{u}(t, x, \xi)<0\},$

$\tilde{\Gamma}_{t} =\{(x, \xi)\in X;\tilde{u}(t, x, \xi)=0\}.$

The definition of $n$ in (2.1) reflects the direction of the interior and exterior
as the above.

Much analysis of $(2.2)-(2.3)$ has been done. Note that the equation (2.2)
is degenerate parabolic and has singularities at where $\nabla(u-\theta)=0$ , so that
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the solutions to $(2.2)-(2.3)$ should be considered in viscosity sense; see [3],
[2], [4] for details on theory of viscosity solutions. The comparison principle
which implies the uniqueness of the viscosity solutions, and the existence of
viscosity solutions to $(2.2)-(2.3)$ for a continuous initial data $u_{0}\equiv u(0, \cdot)$

globally-in-time are established by [10]. Then, $\Gamma_{t}$ is derived with following
way.

(i) Construct $u_{0}\in C(\overline{W})$ describing $\Gamma_{0}$ in our level set formulation.

(ii) Solve $(2.2)-(2.3)$ with $u|_{t=0}=u_{0}.$

(iii) Extract $\Gamma_{t}$ given by (2.1).

It remains two problems: how to establish (i), and uniqueness of $\Gamma_{t}$ with
respect to choice of $u_{0}$ . On (i), the existence of $u_{0}\in C(\overline{W})$ describing $\Gamma_{0}$

is proved in [6], and a practical way of the construction $u_{0}$ is proposed by
[11]. The uniqueness of $\Gamma_{t}$ with respect to $\Gamma_{0}$ is also established by [6]. The
crucial result is the comparison of interior in $X$ , which is as follows.

Lemma 2.1 ([6]) Let $u$ and $v$ be a $visco\mathcal{S}ity$ sub-and supersolution to $(2.2)-$

(2.3) on $[0, T)\cross\overline{W}$ for some $T>$ O. $As\mathcal{S}ume$ that $u(O,$ $)$ or $v(O,$ $)$ are
continuous, $u$ and $v$ are upper and lower semicontinuous, $re\mathcal{S}$pectively. If

$\{(x, \xi)\in X;\tilde{u}(0, x, \xi)>0\}\subset\{(x, \xi)\in X;\tilde{v}(0, x, \xi)>0\}$

$(resp. \{(x, \xi)\in X;\tilde{u}(0, x, \xi)<0\}\supset\{(x, \xi)\in X;\tilde{v}(0, x, \xi)<0$

then

$\{(x, \xi)\in X;\tilde{u}(t, x, \xi)>0\}\subset\{(x, \xi)\in X;\tilde{v}(t, x, \xi)>0\}$

$($ resp. $\{(x, \xi)\in X;\tilde{u}(t, x, \xi)<0\}\supset\{(x, \xi)\in X;\tilde{v}(t, x, \xi)<0$

for $t\in(0, T)$ .

Note that only the comparison of interior sets is proved in [6], but the com-
parison of exterior sets is also derived with parallel argument in [6].

2.2. Height function

A simple way to construct the height function $h(t, x)$ of evolving crystal
surface for solution $u$ to $(2.2)-(2.3)$ is introduced by [11].
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From the theory of linear elasticity (see e.g. [7]), the crystal surface can
be described by the graph of a function $h(t, x)$ which satisfies

$\{\begin{array}{l}\triangle h=0 except on \Gamma_{t},h has jump discontinuities with height a>0 only on \Gamma_{t}.\end{array}$

The equation for $h$ is represented as

$\triangle h=-adiv(\delta_{\Gamma_{t}}n)$ . (2.5)

In [11] the function
$h(t, x)= \frac{a}{2\pi}\theta_{\Gamma_{t}}(x)$

is introduced instead of solving (2.5) with a suitable boundary condition,

where $\theta_{\Gamma_{t}}$ is a branch of $\theta$ whose discontinuities are only on $\Gamma_{t}$ . In fact, the
above $h$ is a solution to (2.5) by straightforward calculation. A symple way
to construct $\theta_{\Gamma_{t}}$ is proposed by [11]. Let $k=k(t, x)\in \mathbb{Z}$ be such that

$-\pi\leq u(t, x)-(\Theta(x)+2\pi k(t, x))<\pi,$

where $\Theta=\sum_{j=1}^{N}m_{j}\Theta_{j}(x)$ and $\Theta_{j}:\overline{W}arrow[-\pi, \pi$ ) is the principal value of
$\arg(x-a_{j})$ . Then,

$\theta_{\Gamma_{t}}(x)=\Theta(x)+2\pi k(t, x)+\pi\theta(u(t, x)-(\Theta(x)+2\pik(t, x$ (2.6)

is our desired function, where $\theta:\mathbb{R}arrow \mathbb{R}$ is the Heaviside function, i.e.,
$\theta(\sigma)=1_{[0,\infty)}(\sigma)-1_{(-\infty,0)}(\sigma)$ ; here $1_{J}$ denotes the indicator function for
$J\subset \mathbb{R}$ . The continuity of $\theta_{\Gamma_{t}}$ on $\overline{W}\backslash \Gamma_{t}$ is established from the definition.

To investigate the evolution of the surface by spiral steps we define the
mean growth height $H(t)$ of the surface as

$H(t)= \frac{1}{|W|}\int_{W}(h(t, x)-h(0, x))dx$ . (2.7)

3. Surface evolution by multiple spirals asso-
ciated with a single center

In this section we investigate the surface evolution by a single screw disloca-
tion with multiple spiral steps.

Let $\Omega\subset \mathbb{R}^{2}$ be a bounded domain with smooth boundary. Assume that
$0\in\Omega$ and let $U\Subset\Omega$ be an open neighborhood of $0\in\Omega$ with smooth
boundary. Set $W=\Omega\backslash \overline{U}$ and then $\partial W$ is also smooth.
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Assume that $m(\geq 1)$ spirals which are denoted by $\Gamma_{0}=\bigcup_{j=0^{\Gamma_{j)}}}^{m-1}0$ asso-
ciated with a single center $0\in\Omega$ . Let

$\Gamma_{0,0}=\{P(\sigma)\in\overline{W};\sigma\in[0, \sigma_{0}]\}$

be a continuous curve which has no self-intersections. Assume that there
exists $\alpha_{j}\in[0, 2\pi$ ) for $j=0$ , 1, . . . , $m-1$ such that

(A1) $0=\alpha_{0}<\alpha_{1}<\alpha_{2}<\cdots<\alpha_{m-1}<2\pi,$

(A2) $R_{\pm\alpha_{j}}\overline{W}=\overline{W}$ for $j=0$ , 1, 2, . . . , $m-1,$

(A3) $\Gamma_{j,0}=R_{\alpha_{j}}\Gamma_{0,0}$ for $j=0$ , 1, 2, . . . , $m-1,$

(A4) $\Gamma_{i,0}\cap\Gamma_{j,0}=\emptyset$ if $i\neq j,$

where $R_{\beta}$ is the $2\cross 2$ rotation matrix with angle $\beta\in \mathbb{R},$ $R_{\beta}A=\{R_{\beta}x\in$

$\mathbb{R}^{2};x\in A\}$ for $A\subset \mathbb{R}^{2}$ . In this section we consider two kind of the surface
evolution:

(E1) by $m$-spiral steps on $\Gamma_{t}$ which evolves with (1.1), (1.3) and the initial
condition $\Gamma_{t}|_{t=0}=\Gamma_{0},$

(E2) by only a single spiral step on $\Gamma_{j,t}$ which evolves with the same equations
to (E1) and the initial condition $\Gamma_{j,t}|_{t=0}=\Gamma_{j,0}$ for $j=0$ , 1, 2, . . . , $m-1.$

We now denote the mean growth height of (E1) or (E2) as $H(t)$ and $H_{j}(t)$ ,
respectively. The goal of this section is to prove $H(t)=mH_{0}(t)$ .

The situation (E1) is described by our level set formulation as follows.

Step 1. We first construct $u_{0}\in C(\overline{W})$ satisfying

$\Gamma_{0}=\{x\in\overline{W};u_{0}(x)-m\theta_{0}(x)\equiv 0 mod 2\pi \mathbb{Z}\}$ , (3.1)

where $\theta_{0}(x)=\arg(x)$ . In particular we construct $u_{0}\in C(\overline{W})$ satisfying

$\Gamma_{j,0}=\{x\in\overline{W};u_{0}(x)-m\theta_{0}(x)\equiv 2\pi j mod 2\pi m\mathbb{Z}\}$ (3.2)

by the method as in [11].

Step 2. We next solve the level set equation $(2.2)-(2.3)$ with the initial data
$u(0, \cdot)=u_{0}$ and $\theta(x)=m\theta_{0}$ ;

$u_{t}-| \nabla(u-m\theta_{0})|\{div\frac{\nabla(u-m\theta_{0})}{|\nabla(u-m\theta_{0})|}+C\}=0$ in $(0, T)\cross W$, (3.3)

$\langle\vec{\nu},$ $\nabla(u-m\theta_{0})\rangle=0$ on $(0, T)\cross\partial W.(3.4)$
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Then, $\Gamma_{t}$ is extracted as

$\Gamma_{t}=\{x\in\overline{W};u(t, x)-m\theta_{0}(x)\equiv 0 mod 2\pi \mathbb{Z}\}.$

Step 3. Construct the surface height function $h$ to define the mean growth
height $H$ from $u$ as (2.7).

When we consider the situation (E2) in our formulation, rigorously we
have to execute the procedure listed above provided that $m=1$ and $\Gamma_{j,0}$

instead of $\Gamma_{0}$ . Hence we consider the equation (3.3), (3.4) with $m=1$ , i.e.,

$u_{t}-| \nabla(u-\theta_{0})|\{div\frac{\nabla(u-\theta_{0})}{|\nabla(u-\theta_{0})|}+C\}=0$ in $(0, T)\cross W$, (3.5)

$\langle\vec{\nu},$ $\nabla(u-\theta_{0})\rangle=0$ on $(0, T)\cross\partial W$. (3.6)

Then $\Gamma_{j,t}$ is described as

$\Gamma_{j,t}=\{x\in\overline{W};v_{j}(t, x)-\theta_{0}(x)\equiv 0 mod 2\pi \mathbb{Z}\}$

with a solution $v_{j}$ to (3.5), (3.6) with $v_{j}(0, \cdot)=v_{j,0}(x)$ satisfying

$\Gamma_{j,0}=\{x\in\overline{W};v_{j,0}(x)-\theta_{0}(x)\equiv 0 mod 2\pi \mathbb{Z}\}$ (3.7)

and the same orientation of interior and exterior on $X$ as (3.2), i.e.,

$\{(x, \xi)\in X;\tilde{u}_{0}(x, \xi)>2\pi j\}=\{(x, \xi)\in X;\tilde{v}_{j_{)}0}(x, \xi)>0\}$ , (3.8)

$\{(x, \xi)\in X;\tilde{u}_{0}(x, \xi)=2\pi j\}=\{(x, \xi)\in X;\tilde{v}_{j,0}(x, \xi)=0\}$ , (3.9)

where $\tilde{u}_{0}(x, \xi)=u_{0}(x)-m\xi$ , and $\tilde{v}_{j,0}(x, \xi)=v_{j,0}(x)-\xi$ . However, our
level set formulation enables us to obtain the above situation easily. In fact,
$v_{j}(t, x)$ $:=(u(t, x)-2\pi j)/m$ is also a viscosity solution to (3.5), (3.6) if $u$ is
a viscosity solution to (3.3) and (3.4). Moreover $v_{j,0}(x)$ $:=(u_{0}(x)-2\pi j)/m$

satisfies (3.7), (3.8) and (3.9). Hence we obtain

$\Gamma_{j_{\}}t}=\{x\in\overline{W};v_{j}(t, x)-\theta_{0}(x)\equiv 0 mod 2\pi \mathbb{Z}\}$

by the uniqueness result in [6]. Thus the height of the surface $h_{j}(t, x)$ and
the mean growth height $H_{j}(t)$ only by $\Gamma_{j,t}$ are defined similarly as $h$ and $H$

by $v_{j}=(u-2\pi j)/m.$

We are now in the position to state our main result.

Theorem 3.1 $As\mathcal{S}ume$ that $(Al)-(A4)$ . Then $H(t)=mH_{0}(t)$ for $t>0.$
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We here state only the idea of the proof of Theorem 3.1. We first prove the
following fundamental result.

Proposition 3.2 The formula $H(t)= \sum_{j=0}^{m-1}H_{j}(t)$ holds for $t\geq 0.$

We here mention the idea of the proof of Proposition 3.2 in a few words. The
crucial property is the following description: for $k,$ $k_{j}\in \mathbb{Z}$ and $t>0,$

$\theta_{\Gamma_{t}}(x)=m\xi-\pi(2k-1)$

if $(x, \xi)\in\{(y, \eta)\in X;-2\pi k\leq\tilde{u}(t, y, \eta)<-2\pi(k-1$

$\theta_{\Gamma_{j,t}}(x)=\xi-\pi(2k_{j}-1)$

if $(x, \xi)\in\{(y, \eta)\in X;-2\pi k_{j}\leq\tilde{v}_{j}(t, y, \eta)<-2\pi(k_{j}-1$

where $\tilde{u}(t, x, \xi)=u(t, x)-m\xi$ and $\tilde{v}_{j}(t, x, \xi)=v_{j}(t, x)-\xi$ . The above implies

$\theta_{\Gamma_{t}}=\sum_{j=0}^{m-1}\theta_{\Gamma_{j,t}}+\pi(m-1)$

and then we obtain $H(t)= \sum_{j=0}^{m-1}H_{j}(t)$ .
Thus, it suffices to prove $H_{j}(t)=H_{0}(t)$ for $j=0$ , 1, . . . , $m-1$ and $t>0.$

For this purpose we prove the rotational relations between the domain where
is not step on $\Gamma_{0}$ and that on $\Gamma_{j}$ , i.e.,

$\{(x, \xi)\in X;-2\pi k<\tilde{v}_{j,0}(x, \xi)<-2\pi(k-1)\}$

$=\tilde{R}_{\alpha_{j}}\{(x, \xi)\in X;-2\pi k<\tilde{v}_{0,0}(x, \xi)<-2\pi(k-1)\}$

$:=\{(R_{\alpha_{j}}x,\xi+\alpha_{j})\in X;-2\pi k<\tilde{v}_{0,0}(x, \xi)<-2\pi(k-1)\}$

$=\{(x, \xi)\in X;-2\pi k<\tilde{v}_{0,0}(R_{-\alpha_{j}}x, \xi-\alpha_{j})<-2\pi(k-1$

Note that
$\tilde{v}_{0,0}(R_{-\alpha_{j}}x, \xi-\alpha_{j})=\frac{u_{0}(R_{-\alpha_{j}}x)}{m}+\alpha_{j}-\xi,$

which is well-defined by (A2). Then, the function

$v_{j}(t, R_{-\alpha_{j}}x)+ \alpha_{j}=\frac{u(t,R_{-\alpha_{j}}x)}{m}+\alpha_{j}$

is also well-defined by (A2), and a viscosity solution to $(3.5)-(3.6)$ with initial
data $v_{j}(0, R_{-\alpha_{j}}x)+\alpha_{j}=u_{0}(R_{\alpha_{j}}x)/m+\alpha_{j}$ by the rotation invariance on
$(3.5)-(3.6)$ . Then, by Lemma 2.1 we obtain

$\{(x, \xi)\in X;-2\pi k<\tilde{v}_{j}(t, x, \xi)<-2\pi(k-1)\}$

$=\{(x, \xi)\in X;-2\pi k<\tilde{v}_{0}(t, R_{-\alpha}jx, \xi-\alpha_{j})<2\pi(k-1$ (3.10)
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Thus we obtain $h_{j}(t, x)=h_{0}(t, R_{-\alpha_{j}}x)+a(P+\alpha_{j}/2\pi)$ with a constant $\ell\in \mathbb{Z},$

which implies

$H_{j}(t)= \frac{1}{|W|}\int_{W}(h_{j}(t, x)-h_{j}(t, x))dx$

$= \frac{1}{|W|}\int_{W}(h_{0}(t, R_{-\alpha_{j}}x)-h_{0}(t, R_{-\alpha_{j}}x))dx$

$= \frac{1}{|W|}\int_{W}(h_{0}(t, x)-h_{0}(t, x))dx=H_{0}(t)$

for $j=0$ , 1, . . . , $m-1$ and $t>0$ . Hence we obtain Theorem 3.1.

Remark 3.3 It is known that $(2.2)-(2.3)$ is derived from asymptotic ex-
pansion of the Allen-Cahn type equation due to [8]. It is obtained in [9]
that solutions to the Allen-Cahn type equation converges to the solution de-
scribing a stationary rotating spirals with $1/m$-rotational symmetric pattern,

which is different behavior of that the rotational relation (3.10) expresses.
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