Continuous wavelet transforms on spaces of vector-valued functions

Kazuhide Oshiro Graduate School of Mathematics, Nagoya University

Abstract

Let G be the semidirect product of a locally compact abelian group N with a closed subgroup H of $\operatorname{Aut}(N)$. We consider continuous wavelet transforms associated to unitary representations of G realized on spaces of vector-valued square integrable functions on N.

1 Introduction

Continuous wavelet transforms for the semidirect product group with a commutative normal subgroup have been studied by many authors. The simplest example is the one associated to a quasi-regular representation of the ax + b group [2]. Furthermore wavelet transforms for a semidirect group with a unimodular, not necessarily commutative, normal subgroup are studied in [8].

Let G be the semidirect group $N \rtimes H$ of a locally compact abelian group N and a closed subgroup H of $\operatorname{Aut}(N)$. An element $g \in G$ is written as g = (n, h) with $n \in N$ and $h \in H$. This group law is given by

$$(n,h)(n',h') = (n+hn',h'h) \quad (n,n' \in N, h,h' \in H).$$

Let $d\mu_H(h)$ denote a left Haar measure of H and dn a Lebesgue measure on N. We define the measure of G by

$$d\mu_G(g) = \delta(h)^{-1} dn d\mu_H(h), \quad g = (n, h) \in N \rtimes H,$$

where δ is the map from H to \mathbb{R}_+ such that $d(hn) = \delta(h)dn$. Then $d\mu_G$ is a left Haar measure of G. Let σ be an irreducible unitary representation of H

on a Hilbert space \mathcal{H}_{σ} . We define the unitary representation π of G on the space $L^2(N, \mathcal{H}_{\sigma})$ of \mathcal{H}_{σ} -valued square integrable functions on N by

$$\pi(n,h)f(n_0) = \delta(h)^{-\frac{1}{2}}\sigma(h)f(h^{-1}(n_0 - n)) \quad (n, n_0 \in N, h \in H).$$

This representation is equivalent to the induced representation $\operatorname{Ind}_H^G \sigma$. In particular, when σ is trivial, π is called a *quasi-regular representation*. In this case, continuous wavelet transforms arising from π have been developed in various directions [7, 8, 11, 12, 13, 14]. In this paper, we consider a more general case. We introduce the wavelet transforms obtained from the unitary representation π with σ not necessarily finite dimensional.

2 Preliminaries

In this section, we recall basic notions about wavelet transform associated to a unitary representation of a locally compact group. Let G be a locally compact group and π an irreducible unitary representation of G defined on a complex separable Hilbert space \mathcal{H}_{π} . The representation π is said to be square-integrable if there exists a nonzero vector $\varphi \in \mathcal{H}_{\pi}$ such that the image of the map $\widetilde{W}_{\varphi}: \mathcal{H}_{\pi} \to C(G)$ given by

$$\widetilde{W}_{\varphi}\psi(g) = \langle \psi, \pi(g)\varphi \rangle \quad (\psi \in \mathcal{H}_{\pi}, \ g \in G)$$

is contained in $L^2(G)$, that is,

$$\int_{G} |\widetilde{W}_{\varphi}\psi(g)|^{2} d\mu(g) < \infty$$

for all $\psi \in \mathcal{H}_{\pi}$. Then φ is called an *admissible vector*.

Theorem 1 ([1, Theorem 3.1]). Suppose π is a square integrable representation of G defined on \mathcal{H}_{π} . There exists a unique positive self-adjoint operator C whose domain coincides with the set of admissible vectors such that

$$\int_{G} \langle W_{\varphi_1} \psi_1(g), W_{\varphi_2} \psi_2(g) \rangle \, d\mu(g) = \langle \psi_1, \psi_2 \rangle \, \langle C\varphi_2, C\varphi_1 \rangle \quad (g \in G, \ \psi_1, \psi_2 \in \mathcal{H}_{\pi}).$$

for any admissible vectors φ_1 and φ_2 .

For an admissible vector φ , we define $C_{\varphi} = \langle C\varphi, C\varphi \rangle$. Applying $\varphi_1 = \varphi_2 = \psi_1 = \psi_2 = \varphi$ in Theorem 1, we have

$$C_{\varphi} = \frac{1}{\langle \varphi, \varphi \rangle} \int_{C} |\widetilde{W}_{\varphi} \varphi(g)|^{2} d\mu(g) < \infty.$$

We define the map W_{φ} from \mathcal{H}_{π} into $L^{2}(G)$ by

$$W_{\varphi}\psi = C_{\varphi}^{-\frac{1}{2}}\widetilde{W}_{\varphi}\psi \quad (\psi \in \mathcal{H}_{\pi}).$$

Then W_{φ} is isometry by Theorem 1, so that for any $\psi \in \mathcal{H}_{\pi}$ we have

$$\psi = \int_G W_{\varphi} \psi(g) \pi(g) \varphi d\mu(g)$$

in the weak sense. The map W_{φ} is called a continuous wavelet transform.

3 Construction of the wavelet transforms associated to π

From now on, let G be the semidirect product group as in Section 1. We denote by \widehat{N} the unitary dual of N. Since N is commutative, any element of \widehat{N} is one-dimensional. The dual action of G on \widehat{N} is defined by

$$g \cdot \nu(n) = \nu(g^{-1}ng) \quad (g \in G, \nu \in \widehat{N}, n \in N).$$

For each $\nu \in \widehat{N}$, we denote by G_{ν} the stabilizer of ν , that is,

$$G_{\nu} = \{ g \in G ; g \cdot \nu = \nu \},$$

which is a closed subgroup of G. We define $H_{\nu} = G_{\nu} \cap H$. Then $G_{\nu} = N \rtimes H_{\nu}$. We denote by \mathcal{O}_{ν} the G-orbit in \widehat{N} through ν :

$$\mathcal{O}_{\nu} = \{g \cdot \nu, g \in G\}.$$

In this section, we construct the wavelet transforms associated to the unitary representation π after giving an irreducible decomposition of π .

For the study of irreducible subrepresentation of π , it is useful to introduce a unitary representation which is equivalent to π . We define the Fourier transform \mathcal{F} on $L^2(N, \mathcal{H}_{\sigma})$ by

$$\mathcal{F}f(\nu) = \widehat{f}(\nu) = \int_{N} \nu(n) f(n) dn \quad (\nu \in \widehat{N}).$$

Taking the conjugate of π by \mathcal{F} , we obtain the unitary representation $\widehat{\pi} = \mathcal{F} \circ \pi \circ \mathcal{F}^{-1}$ on $L^2(\widehat{N}, \mathcal{H}_{\sigma})$. The representation $\widehat{\pi}$ is described as

$$\widehat{\pi}(n,h)\varphi(\nu) = \nu(n)\delta(h)^{\frac{1}{2}}\sigma(h)\varphi(h^{-1}\cdot\nu) \quad (\varphi\in L^2(\widehat{N},\mathcal{H}_\sigma)). \tag{1}$$

Now let us assume the following [3, 8]:

- (A1) The orbit space is *countably separated*, that is, there is a countable family $\{E_j\}$ of G-invariant Borel set in \widehat{N} such that each orbit in \widehat{N} is the intersection of all the $\{E_j\}$'s that contain it.
- (A2) For each $\nu \in \widehat{N}$, the map $G/G_{\nu} \ni gG_{\nu} \mapsto g \cdot \nu \in \mathcal{O}_{\nu}$ is a homeomorphism.
- (A3) Let μ be the Plancherel measure on \widehat{N} . There exists elements ν_k $(k \in K)$ of \widehat{N} , indexed by some set K, such that $\mu(\mathcal{O}_{\nu_k}) > 0$ and $\mathcal{O}_{\nu_k} \cap \mathcal{O}_{\nu_{k'}} = \emptyset$ $(k \neq k')$ and $\mu(\widehat{N} \setminus \bigsqcup_{k \in K} \mathcal{O}_{\nu_k}) = 0$.
- (A4) The stabilizer $H_{\nu_k} = \{ h \in H ; h \cdot \nu_k = \nu_k \}$ at each $\nu_k \in \widehat{N}$ is compact.
- (A5) For every $k \in K$, the restriction $\sigma|_{H_{\nu_k}}$ is multiplicity free. Namely, there exists a index set Λ_k such that $\sigma|_{H_{\nu_k}} = \bigoplus_{\alpha \in \Lambda_k} \rho_{\alpha}$ and $\rho_{\alpha} \not\simeq \rho_{\alpha'}$ ($\alpha \neq \alpha'$).

We say that G is regular if the two conditions (A1) and (A2) are satisfied. If $\nu \in \widehat{N}$ and ρ is an irreducible representation of H_{ν} , we define a unitary representation $\nu \otimes \rho$ of G_{ν} by

$$(\nu \otimes \rho)(n,h) = \nu(n)\rho(h) \quad (n \in N, h \in H_{\nu}).$$

Theorem 2 ([3, Theorem 6.42]). Suppose G is regular. If $\nu \in \widehat{N}$ and ρ is an irreducible unitary representation of H_{ν} , then $\operatorname{Ind}_{G_{\nu}}^{G}\nu \otimes \rho$ is an irreducible representation of G. Every irreducible unitary representation of G is equivalent to one of this form. Moreover, $\operatorname{Ind}_{G_{\nu}}^{G}\nu \otimes \rho$ and $\operatorname{Ind}_{G_{\nu}}^{G}\nu' \otimes \rho'$ are equivalent if and only if ν and ν' belong to the same orbit, say $\nu' = g \cdot \nu$, and $h \to \rho(h)$ and $h \to \rho'(g^{-1}hg)$ are equivalent representation of H_{ν} .

The following theorem is useful in order to investigate whether $\operatorname{Ind}_{G_{\nu}}^{G}\nu\otimes\rho$ is square-integrable.

Theorem 3 ([10, Theorem 2]). Let $\nu \in \widehat{N}$ and ρ be an irreducible unitary representation of H_{ν} . The representation $\operatorname{Ind}_{G_{\nu}}^{G} \nu \otimes \rho$ is square-integrable if and only if $\mu(\mathcal{O}_{\nu}) > 0$ and ρ is square-integrable.

For $k \in K$, we regard $L^2(\mathcal{O}_{\nu_k}, \mathcal{H}_{\sigma})$ as a subspace of $L^2(\widehat{N}, \mathcal{H}_{\sigma})$ by zero extension. Thanks to (1), the space $L^2(\mathcal{O}_{\nu_k}, \mathcal{H}_{\sigma})$ is G-invariant. We denote by $\widehat{\pi}_k$ the subrepresentation $\widehat{\pi}|_{L^2(\mathcal{O}_{\nu_k}, \mathcal{H}_{\sigma})}$. By the assumption (A3), we have $\widehat{\pi} = \bigoplus_{k \in K} \widehat{\pi}_k$.

Proposition 1. The unitary representation $\widehat{\pi}_k$ is equivalent to $\operatorname{Ind}_{G_{\nu_k}}^G \nu_k \otimes \sigma|_{H_{\nu_k}}$.

Proof. We denote by Π_k the unitary representation $\operatorname{Ind}_{G_{\nu_k}}^G \nu_k \otimes \sigma|_{H_{\nu_k}}$. Let q be the canonical quotient map from G to G_{ν_k} . The unitary representation Π_k is the left-regular representation on the Hilbert space completion $\widetilde{\mathcal{L}}_{k,\sigma}$ of the space $\mathcal{L}_{k,\sigma}$ defined by

$$\mathcal{L}_{k,\sigma} = \{ F : G \to \mathcal{H}_{\sigma}; \quad q(\text{supp}F) \text{ is compact and}$$

$$F((n,h)(n',h')) = \nu_k(n')^{-1}\sigma(h')^{-1}F(n,h) \text{ for }$$

$$n,n' \in N, h \in H, h' \in H_{\nu_k} \}$$

with the inner product

$$\langle F, F' \rangle = \int_{G/G_{\nu_k}} \langle F(g), F'(g) \rangle_{\sigma} d\mu_{G/G_{\nu_k}}(gG_{\nu_k}).$$

We define the map Φ from $\mathcal{L}_{k,\sigma}$ to $L^2(\mathcal{O}_{\nu_k},\mathcal{H}_{\sigma})$ by

$$\Phi(F)(\nu) = \delta(h)^{\frac{1}{2}}\sigma(h)F(0,h) \quad (\nu = h \cdot \nu_k).$$

The inverse map Φ^{-1} is given by

$$\Phi^{-1}\varphi(n,h) = \delta(h)^{-\frac{1}{2}}h \cdot \nu_k^{-1}(n)\sigma(h)^{-1}\varphi(h \cdot \nu_k).$$

The map Φ extends to a unitary operator from $\widetilde{\mathcal{L}}_{k,\sigma}$ onto $L^2(\mathcal{O}_{\nu_k},\mathcal{H}_{\sigma})$. Therefore, it suffices to show that $\widehat{\pi}_k(n,h) \circ \Phi = \Phi \circ \Pi_k(n,h)$ for all $(n,h) \in G$. For any $F \in \mathcal{L}_{k,\sigma}$, we have

$$\widehat{\pi}_k(n,h) \circ \Phi F(\nu) = \nu(n)\delta(h)^{\frac{1}{2}}\sigma(h)\Phi(F)(h^{-1} \cdot \nu).$$

On the other hand, we have

$$\Phi \circ \Pi_{k}(n,h)F(\nu) = \delta(h')^{\frac{1}{2}}\sigma(h')\Pi_{k}(n,h)F(0,h')
= \delta(h)^{\frac{1}{2}}\sigma(h')\varphi(-h^{-1}n,h^{-1}h')
= \delta(h)^{\frac{1}{2}}h^{-1}h' \cdot \nu_{k}(h^{-1}n)\sigma(h)\Phi(F)(h^{-1}h' \cdot \nu_{k})
= \delta(h)^{\frac{1}{2}}\nu(n)\sigma(h)\Phi(F)(h^{-1} \cdot \nu),$$

where $\nu = h' \cdot \nu_k$. Therefore we see that Φ intertwines $\widehat{\pi}_k$ and Π_k .

Proposition 2 ([3, Proposition 6.9]). Let G' be a closed subgroup of G. If $\{\tau_{\beta}\}$ is any family of unitary representations of G', then $\operatorname{Ind}_{G'}^G(\bigoplus \tau_{\beta})$ is equivalent to $\bigoplus \operatorname{Ind}_{G'}^G \tau_{\beta}$.

By Proposition 1 and Proposition 2, the unitary representation $\widehat{\pi}_k$ is equivalent to $\bigoplus_{\alpha \in \Lambda_K} \operatorname{Ind}_{G_{\nu_k}}^G \nu_k \otimes \rho_{\alpha}$. Combining Theorem 2 with the remarks following Theorem 3 and the assumption (A5), we see that $\widehat{\pi}$ is multiplicity free and $\widehat{\pi} = \bigoplus_{k \in K} \bigoplus_{\alpha \in \Lambda_K} \operatorname{Ind}_{G_{\nu_k}}^G \nu_k \otimes \rho_{\alpha}$. By Theorem 3, an irreducible unitary representation $\operatorname{Ind}_{G_{\nu_k}}^G \nu_k \otimes \rho_{\alpha}$ is square-integrable by the assumption (A4) because every irreducible unitary representation of a compact group is square-integrable. Therefore we obtain the following proposition:

Proposition 3. Irreducible decomposition of the unitary representation $\widehat{\pi}$ into $\bigoplus_{k \in K} \bigoplus_{\alpha \in \Lambda_K} \operatorname{Ind}_{G_{\nu_k}}^G \nu_k \otimes \rho_{\alpha}$ is multiplicity free. Moreover, for each $k \in K$ and $\alpha \in \Lambda_K$, the induced representation $\operatorname{Ind}_{G_{\nu_k}}^G \nu_k \otimes \rho_{\alpha}$ is square-integrable.

We construct the representation space of $\operatorname{Ind}_{G_{\nu_k}}^G \nu_k \otimes \rho_{\alpha}$. By the assumption (A5), $\sigma|_{H_{\nu_k}}$ is decomposed into $\bigoplus_{\alpha \in \Lambda_k} \rho_{\alpha}$ and each ρ_{α} is finite dimensional representation on the Hilbert space $\mathcal{H}_{\rho_{\alpha}}$. Therefore \mathcal{H}_{σ} is a direct sum of irreducible H_{ν_k} -invariant subspaces, that is,

$$\mathcal{H}_{\sigma} = \bigoplus_{\alpha \in \Lambda_k} \mathcal{H}_{\rho_{\alpha}}.$$
 (2)

We define the invariant subspace $\mathcal{L}_{k,\sigma,\alpha}$ of $\mathcal{L}_{k,\sigma}$ by

$$\mathcal{L}_{k,\sigma,\alpha} = \{ \varphi \in \mathcal{L}_{k,\sigma} ; \varphi(n,h) \in \mathcal{H}_{\rho_{\alpha}}, \text{ a.a. } (n,h) \in G \}.$$

The Hilbert completion $\widetilde{\mathcal{L}}_{k,\sigma,\alpha}$ is the representation space of $\operatorname{Ind}_{G_{\nu_k}}^G \nu_k \otimes \rho_{\alpha}$. By (2), the space $\widetilde{\mathcal{L}}_{k,\sigma}$ is decomposed as $\bigoplus_{\alpha \in \Lambda_K} \widetilde{\mathcal{L}}_{k,\sigma,\alpha}$. Now we denote by $\mathcal{H}_{k,\sigma,\alpha}$ the subspace $\Phi(\widetilde{\mathcal{L}}_{k,\sigma,\alpha})$ of $L^2(\mathcal{O}_{\nu_k},\mathcal{H}_{\sigma})$.

Lemma 1. For any $\nu \in \mathcal{O}_{\nu_k}$, we define

$$\mathcal{H}_{\alpha,\nu} = \sigma(h)\mathcal{H}_{\rho_{\alpha}},$$

where $\nu = h \cdot \nu_k$ $(h \in H)$. Then $\mathcal{H}_{\alpha,\nu}$ is well-defined. Moreover $\mathcal{H}_{k,\sigma,\alpha}$ is described as

$$\mathcal{H}_{k,\sigma,\alpha} = \{ \varphi \in L^2(\mathcal{O}_{\nu_k}, \mathcal{H}_{\sigma}) ; \varphi(\nu) \in \mathcal{H}_{\alpha,\nu} \ a.a. \ \nu \}.$$

Proof. For any element $\varphi \in \mathcal{H}_{k,\sigma,\alpha}$ there exists $F \in \widetilde{\mathcal{L}}_{k,\sigma,\alpha}$ such that $\varphi = \Phi(F)$. Then

$$\varphi(\nu) = \Phi(F)(\nu) = \delta(h)^{\frac{1}{2}} \sigma(h) \varphi(0,h) \in \sigma(h) \mathcal{H}_{\rho_{\alpha}},$$

therefore we have

$$\mathcal{H}_{k,\sigma,\alpha} \subset \{ F \in L^2(\mathcal{O}_{\nu_k}, \mathcal{H}_{\sigma}) ; \varphi(\nu) \in \mathcal{H}_{\alpha,\nu} \ a.a. \ \nu \}.$$

On the other hand, for any $\varphi \in L^2(\mathcal{O}_{\nu_k}, \mathcal{H}_{\sigma})$ satisfing $\varphi(\nu) \in \mathcal{H}_{\alpha,\nu}$ a.a. ν , we have

$$\Phi^{-1}\varphi(n,h) = \delta(h)^{-\frac{1}{2}}h \cdot \nu_k(n)\sigma(h)\varphi(h \cdot \nu_k) \in \mathcal{H}_{\rho_\alpha}.$$

Therefore we see that $\Phi^{-1}\varphi \in \widetilde{\mathcal{L}}_{k,\sigma,\rho}$, so that $\varphi \in \mathcal{H}_{k,\sigma,\alpha}$.

Proposition 4. Irreducible decomposition of the space $L^2(\widehat{N}, \mathcal{H}_{\sigma})$ into $\bigoplus_{k \in K} \bigoplus_{\alpha \in \Lambda_K} \mathcal{H}_{k,\sigma,\alpha}$ is multiplicity free.

Let us construct the wavelet transforms associated to π . We choose an admissible vector $\varphi_{k,\alpha} \in \mathcal{H}_{k,\sigma,\alpha}$ such that $C_{\varphi_{k,\alpha}}=1$ for each k and α . We assume that

(A6)
$$\varphi = \sum_{k \in K} \sum_{\alpha \in \Lambda_K} \varphi_{k,\alpha}$$
 converge in $L^2(\widehat{N}, \mathcal{H}_{\sigma})$.

Theorem 4. Put $f = \mathcal{F}^{-1}\varphi \in L^2(N, \mathcal{H}_{\sigma})$. We can define the map W_f from $L^2(N, \mathcal{H}_{\sigma})$ to $L^2(G)$ by

$$W_f \psi(g) = \langle \psi, \pi(g) f \rangle \quad (\psi \in L^2(\widehat{N}, \mathcal{H}_{\sigma})).$$

Then W_f is isometry, and for any $\psi \in L^2(N, \mathcal{H}_{\sigma})$ we have

$$\psi = \int_{G} W_f \psi(g) \pi(g) f d\mu_G(g)$$

in the weak sense.

Proof. For any $\psi = \mathcal{F}^{-1}\phi \in L^2(N, \mathcal{H}_{\sigma}) \ (\phi \in L^2(\widehat{N}, \mathcal{H}_{\sigma}))$, we have

$$\int_{G} |W_{f}\psi(g)|^{2} d\mu_{G}(g) = \int_{G} |\langle \psi, \pi(n, h)f \rangle|^{2} d\mu_{G}(g) = \int_{G} |\langle \phi, \widehat{\pi}(n, h)\varphi \rangle|^{2} d\mu_{G}(g).$$

By Proposition 4 and the orthogonality formula, the last term equals

$$\sum_{k \in K} \sum_{\alpha \in \Lambda_K} \int_G |\langle \phi_{k,\alpha}, \widehat{\pi}(n,h) \varphi_{k,\alpha} \rangle|^2 d\mu_G(g),$$

where $\phi = \sum_{k \in K} \sum_{\alpha \in \Lambda_K} \phi_{k,\alpha}$ ($\phi_{k,\alpha} \in \mathcal{H}_{k,\sigma,\alpha}$). Theorem 1 tell us that the expression above equals

$$\sum_{k \in K} \sum_{\alpha \in \Lambda_K} C_{\varphi_{k,\alpha}} \langle \phi_{k,\alpha}, \phi_{k,\alpha} \rangle = \langle \phi, \phi \rangle = \langle \psi, \psi \rangle$$

since $C_{\varphi_{k,\alpha}} = 1$. Therefore we have

$$\int_{G} |W_f \psi(g)|^2 d\mu_G(g) = \langle \psi, \psi \rangle$$

for any $\psi \in L^2(N, \mathcal{H}_{\sigma})$. Hence, Theorem 4 is proved.

Acknowledgements

The present author would like to express his gratitude to his advisor Professor Hideyuki Ishi for his constant encouragement and helpful discusstion.

References

- [1] A. Grossmann, J. Morlet and T. Paul, Transforms associated to square integrable group representations I. General results., J. Math. Phys, 1985, 2473–2479.
- [2] A. Grossmann, J. Morlet and T. Paul, *Transforms associated to square integrable group representations II. Examples.*, Ann. Inst. Henri Poincaré, 1986, 293–309.
- [3] G. B. Folland, A course in abstract harmonic analysis, CRC press, 1995.

- [4] E. Kaniuth and K. F. Taylor, *Induced representations of locally compact group*, Cambridge University Press, 2013.
- [5] S. T. Ali, J-P Antoine, and J-P. Gazeau, Coherent States, wavelets and their generalizations, Springer-Verlag, 2000.
- [6] H. Führ, Abstract harmonic analysis of continuous wavelet transform, Springer, 2004.
- [7] H. Führ, Continuous wavelet transforms from semidirect products: cyclic representations and Plancherel measure, J. Fourier Anal. Appl, 2002, 375–397.
- [8] H. Ishi, Wavelet transforms for semidirect product groups with not necessarily commutative normal subgroups, J. Fourier Anal. Appl., 2006, 37–52.
- [9] H. Ishi, Continuous wavelet transforms and non-commutative Fourier analysis, RIMS Kôkyûroku Bessatsu, 2010, 173–185.
- [10] P. Aniello, G. Cassinelli, E. De Vito, and A. Levrero, Square-integrability of induced representations of semidirect products, Rev. Math. Phys, 1998, 301–313.
- [11] G. Kutyniok and D. Labate, Shearlets, Springer, 2012.
- [12] G. S. Alberti, L. Balletti, F. De. Mari and E. De Vito, Reproducing subgroup of $Sp(2,\mathbb{R})$. Part I: Algebraic classification, J. Fourier Anal. Appl, 2013, 651–682.
- [13] G. S. Alberti, F. De. Mari and E. De Vito and L. Mantovani, Reproducing subgroup of $Sp(2,\mathbb{R})$. Part II: admissible vectors, Monatsh. Math, 2014, 261–307.
- [14] R.A. Kamyabi-Goi and N. Tavallaei, Wavelet transforms via generalized quasi-regular representation, Appl. Comput. Harmon. Anal, 2009, 291–300.

Graduate School of Mathematics Nagoya university Nagoya 464-8602 JAPAN