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Abstract

Let GG be the semidirect product of a locally compact abelian group
N with a closed subgroup H of Aut(N). We consider continuous
wavelet transforms associated to unitary representations of G realized
on spaces of vector-valued square integrable functions on N.

1 Introduction

Continuous wavelet transforms for the semidirect product group with a com-
mutative normal subgroup have been studied by many authors. The simplest
example is the one associated to a quasi-regular representation of the ax + b
group (2]. Furthermore wavelet transforms for a semidirect group with a uni-
modular, not necessarily commutative, normal subgroup are studied in [8].

Let G be the semidirect group N x H of a locally compact abelian group
N and a closed subgroup H of Aut(N). An element g € G is written as
g = (n,h) withn € N and h € H. This group law is given by

(n,h)(n/,h') = (n+hn',K'h) (n,n' € N, h,h € H).

Let dug(h) denote a left Haar measure of H and dn a Lebesgue measure on
N. We define the measure of G' by

dpe(g) = 6(h)~'dndun(h), g=(n,h) € N x H,

where ¢ is the map from H to R, such that d(hn) = §(h)dn. Then du¢ is a
left Haar measure of G. Let o be an irreducible unitary representation of H



on a Hilbert space H,. We define the unitary representation 7 of G on the
space L*(N,H,) of H,-valued square integrable functions on N by

1

m(n,h)f(ng) = 6(h) 2o (h)f(h '(ng —n)) (n,ng € N,h € H).

This representation is equivalent to the induced representation Indga. In
particular, when o is trivial, 7 is called a quasi-reqular representation. In
this case, continuous wavelet transforms arising from 7 have been developed
in various directions [7, 8, 11, 12, 13, 14]. In this paper, we consider a more
general case. We introduce the wavelet transforms obtained from the unitary
representation m with o not necessarily finite dimensional.

2 Preliminaries

In this section, we recall basic notions about wavelet transform associated
to a unitary representation of a locally compact group. Let G be a locally
compact group and 7 an irreducible unitary representation of G defined on
a complex separable Hilbert space H,. The representation 7 is said to be

square-integrable if there exists a nonzero vector ¢ € H, such that the image
of the map W, : H, — C(G) given by

Wa(g) = (W, 7(9)¢) (¥ € Ha, g € G)

is contained in L?(G), that is,

/G W,(g) Pdu(g) < o0

for all ¢ € H,. Then ¢ is called an admissible vector.

Theorem 1 ([1, Theorem 3.1]). Suppose 7 is a square integrable representa-
tion of G defined on H,. There exists a unique positive self-adjoint operator
C whose domain coincides with the set of admissible vectors such that

/G<Wm¢1(g), We,2(9)) du(g) = (1, 102) (Cpa, Cip1) (g € G, ¥1,92 € Hy).

for any admissible vectors ¢y and ps.

95



96

For an admissibe vector ¢, we define C, = (Cp,Cp). Applying ¢ =
= 1)1 = 99 = ¢ in Theorem 1, we have

Cyp = W/GIWW(Q)J du(g) < oo

We define the map W, from H, into L*(G) by

Wb = C W (4 € ).
Then W,, is isometry by Theorem 1, so that for any i) € H, we have

v = [ Wonlgr(pduts

in the weak sense. The map W, is called a continuous wavelet transform.

3 Construction of the wavelet transforms as-
sociated to 7

From now on, let G be the semidirect product group as in Section 1. We
denote by N the unitary dual of N. Since N is commutative, any element of
N is one-dimensional. The dual action of G on N is defined by

g-v(n)=v(g"'ng) (g€ G,veN,neN)
For each v € N , we denote by G, the stabilizer of v, that is,
G,={9€eG; g-v=u}

which is a closed subgroup of G. We define H, = G,NH. Then G, = NxH,.
We denote by O, the G-orbit in N through v :

O,={g9-v, g€ G}

In this section, we construct the wavelet transforms associated to the unitary
representation 7 after giving an irreducible decomposition of .
For the study of irreducible subrepresentation of , it is useful to introduce

a unitary representation which is equivalent to w. We define the Fourier
transform F on L?*(N,H,) b

—~

Fflv)= (V):/Nu(n)f(n)dn (UG]\Af).



Taking the conjugate of m by JF, we obtain the unitary representation 7 =
FomoF ton L*(N,H,). The representation 7 is described as

7(n, h)p(v) = v(n)d(h)

Now let us assume the following [3, 8] :

o(R)p(h™ - v) (p€ L} (N,H,). (1)

(ST

(A1) The orbit space is countably sepamted that is, there is a countable

family {E;} of G-invariant Borel set in N such that each orbit in N is
the intersection of all the {E;}’s that contain it.

(A2) For each v € N, the map G/G, 3 ¢gG, — g-v € O, is a
homeomorphism.

(A3) Let u be the Plancherel measure on N. There exists elements
v, (k € K) of N, indexed by some set K, such that u(0,,) > 0 and
0, N0, =0 (k#K)and p(N\ Upex Ou,) = 0.

(A4) The stabilizer H,, = {h € H ; h- v = 13} at each 1 € N is
compact.

(A5) For every k € K, the restriction o a,, is multiplicity free. Namely,
there exists a index set Ay such that o H, = D, A, P and p, #

Po’ (Oﬁ 7£ O/)'

We say that G is regular if the two conditions (A1) and (A2) are satisfied.

If v € N and p is an irreducible representation of H,, we define a unitary
representation v ® p of GG, by

(v ®p)(n,h) =v(n)p(h) (n€ N,he H,).

Theorem 2 ([3, Theorem 6.42]). Suppose G is reqular. If v € N and p is
an irreducible unitary representation of H,, then Indguu@) p 1s an irreducible
representation of G. FEvery irreducible unitary representation of G is equiva-
lent to one of this form. Moreover, Indgyy® p and Inde, V' ®p are equivalent
if and only if v and V' belong to the same orbit, say v/ = g-v, and h — p(h)
and h — p'(g7 hg) are equivalent representation of H,.

The following theorem is useful in order to investigate whether IndG vRp
is square-integrable.
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Theorem 3 ([10, Theorem 2]). Let v € N and p be an irreducible unitary
representation of H,. The representation Indgyl/ ® p s square-integrable if
and only if u(O,) > 0 and p is square-integrable.

For k € K, we regard L*(0,,, H,) as a subspace of L%(N,H,) by zero
extension. Thanks to (1), the space L?(0,,,H,) is G-invariant. We denote
by 7 the subrepresentation 7|12(0,, x,). By the assumption (A3), we have

Proposition 1. The unitary representation 7 is equivalent to Ind(G;Uk Ve @
O'lH

l/k‘

Proof. We denote by Il the unitary representation Indguk v Q@ 0| m,, - Let g
be the canonical quotient map from G to G,,. The unitary representation

II; is the left-regular representation on the Hilbert space completion £y ,of
the space Ly, defined by

Ly, ={F:G—H,; q(suppF) is compact and
F((n,h)(n', 1)) = ve(n) o (h) "1 F(n, h) for
n,n' € Nyhe Hh € H, }

with the inner product
(FF) = [ (Pl Fle)), diora, (96
G/Gy,

We define the map ® from Ly, to L*(O,,, H,) by

=

O(F)(v)=6(h)2a(h)F(0,h) (v=h-w).
The inverse map ®~! is given by
&' p(n, h) = (k) 2h- v (n)o(h) o (h - ).

The map ® extends to a unitary operator from ENIW onto [42((9,,,c ,H,). There-
fore, it suffices to show that Tix(n,h) o ® = ® o Ix(n, k) for all (n,h) € G.
For any F' € L ,, we have

(STl

Te(n, h) o ®F(v) = v(n)d(h)2o(h)®(F)(h™' - v).



On the other hand, we have
do Hk(n, h)F(V) =

1

h') 2o (W) (n, h)F(0,h")
)2o(R)p(=h~"n, h™h)

R)zh 'R (b In)o(h)®(F) (R R - 1)
= o(h)2v(n)o(R)R(F)(h™"  v),

Il
S O
—~ o~
>

(SIS M N~
R = 9

where v = h' - v;. Therefore we see that ® intertwines 7, and Il. O

Proposition 2 ([3, Proposition 6.9]). Let G’ be a closed subgroup of G. If
{75} is any family of unitary representations of G', then Ind%, (€ 73) is equiv-
alent to @ Ind, 7.

By Proposition 1 and Proposition 2, the unitary representation 7y is
equivalent to EBQG Ax Indguk Vr ® po. Combining Theorem 2 with the remarks

following Theorem 3 and the assumption (A5), we see that 7 is multiplicity
free and T = @ Daca, Indgyk Uk @ po. By Theorem 3, an irreducible
unitary representation Indgwc Ur ® po 18 square-integrable by the assumption
(A4) because every irreducible unitary representation of a compact group is
square-integrable. Therefore we obtain the following proposition :
Proposition 3. Irreducible decomposition of the unitary representation T
into Diecx Dacay Indng Uy ® po 18 multiplicity free. Moreover, for each
k € K and o € Ak, the induced representation Indguk Vi @ pa 1S Square-
integrable.

We construct the representation space of Indgyk Uk ® po. By the assump-
tion (A5), 0|y, is decomposed into (P, ¢,, P and each p, is finite dimen-

sional representation on the Hilbert space H,,. Therefore H, is a direct sum
of irreducible H,, -invariant subspaces, that is,

Hcr - @ Hpa- (2)
a€Ay

We define the invariant subspace Ly .o of Ly, by
Lioa=1¢€ Lis; p(n,h) € H,, aa.(n h)e G}

The Hilbert completion Zk,a',a is the representation space of Indgyk Ve @ P
By (2), the space Ek,a is decomposed as @aeAK Ek@a. Now we denote by

Hk.0.a the subspace @(Zk,(,,a) of L?(0,,, H,).
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Lemma 1. For any v € O,,, we define
Hap =0o(h)H,,,

where v = h - v, (h € H). Then H,, is well-defined. Moreover Hy. ;o s
described as

Hioo = {¢ € L*(Oy,, Hy) ; ©(V) € Ha, a.a. v}

Proof. For any element ¢ € Hj,, there exists F' € Ek,o,a such that ¢ =
®(F'). Then

p(v) = ®(F)(v) = 6(h)20(h)p(0,h) € a(h)H,,,
therefore we have
Hioo C{F € L*(O,,,H,) ; ¢(V) € Hqay a.a. v}.

On the other hand, for any ¢ € L*(O,,,H,) satisfing ¢(v) € Hq, a.a. v, we
have

®'p(n,h) = (5(h)"%h -vg(n)o(h)p(h - vg) € H,,.
Therefore we see that ®~1p € Ek,(,,,,, so that ¢ € Hi. o q- 0

Proposition 4. Irreducible decomposition of the space Lz(ﬁ ,Hy) into
Drcx Puch . Hioa is multiplicity free.

Let us construct the wavelet transforms associated to 7. We choose an
admissible vector ¢y, € Hi o such that C,, =1 for each k and a. We
assume that

(A6) o =3 1k ZaeAK ¥k, COnverge in L2(]/\7, H,).

Theorem 4. Put f = F ' € L*(N,H,). We can define the map W; from
L2(N,M,) to L*(G) by

Wib(g) = (. m(9)f) (€ LN, H,)).
Then Wy is isometry, and for any ¢ € L*(N, H,) we have

¥ = / W(9)n(9) fdpc(g)
G

i the weak sense.



Proof. For any ¢ = F~1¢ € L*(N, H,) (¢ € LQ(]V, H,)), we have

/G|Wf¢(g)l2duc(g)=/G|<w,7f(n>h)f> Izduc(g)=/a\<¢ﬁ(n,h)<ﬁ> *duc(g)-

By Proposition 4 and the orthogonality formula, the last term equals

5 3 [ H6ra Rl bon) Paucls)

k€K aeAi

where ¢ = >, r Y nen, Pra (Pra € Hioa). Theorem 1 tell us that the
expression above equals

S 3 Cor (B Sha) = (6,60) = (0, 0)

keK acAk

since Cy, = 1. Therefore we have

/G W(0)Pdiclg) = ()

for any ¢ € L*(N,H,). Hence, Theorem 4 is proved. O
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