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In this talk we consider automorphism groups SCTs of transversal designs
acting regularly on the set of point classes and determine the relations among
SCTs, RDSs and A-planar functions.

1 Transversal Designs and Difference Matrices

Definition 1.1. A transversal design TDy(k,u) (u > 1) is an incidence struc-
ture D = (P, B), where

(i) P is a set of uk points partitioned into k classes Cy,---,Ck

(called point classes), each of size u,
(ii) B is a collection of k-subsets of P (called blocks),

(iii) Any two distinct points in the same point class are incident with no blocks
and any two points in distinct point classes are incident with exactly A
blocks.

By definition, |P| = uk, |B| = u*X and every block B; of B intersects in each
point class Cp (1 < ¢ < k) in exactly one point.

B;
Cr <
: IP| = uk
Cop < I
: IB| = u2)\
(I —

\-—/
u

Example 1.2. Set ' = GF(q). Then the following is a TD(q, q).
P=FxF, B={y=az+blabeF}, €={C;,:={i} xF|i€F}.
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Transversal designs and their automorphism groups

Let D = (P,B) be a TD) (k,u) with k point classes Ci,---,Ck and let U be
a subgroup of Aut(D) acting regularly on each C;. Choose p; € C;(1 < i < k)
and let B1U,--- B, \U be the U-orbits on' B. Then a k x u) matrix

dig o dyun
: defined by p; d;; € B; (d;i; € U) has the following prop-

dea 0 diua
erty.

dindy1 + - +diundy oy = AU (€ Z[U]), Vi#4

Difference matrices

Definition 1.3. Let U be a group of order v and k, A € N

dl,l dl,uz\

A k x u) matrix [ } (dij € U) is called

di,1 o0 diua

a (u, k, A)-difference matrix over U (a (U, k,\)-DM) if
dindy1 + -+ diundy y, = AU € Z[U] (Vi # £)

Example 1.4. The following is a (3,3,1)-DM over (Zs, +).

0 00
M=|01 2
0 21

Transversal designs obtained from difference matrices

Definition 1.5. Let D = [d;;] be a (u, k, A)-difference matrix over a group U
of order u. A transversal design TDy(k,u) Dp (PP, B) is obtained from D in the
following way:

P={1,---,k} xU

B = {{(l’dl,jg)a (27d2,jg)a T ,(k,dk,jg)} | 1<j<uA g€ U}

We note that {1} x U,---,{k} x U is the point classes of (P, B).

Example 1.6. The following is a TD;(3, 3) obtained from M in Example 1.4.
2)

]P’={1,2,3}XZ3,
(L)) (L1} (@2) (Lo} (LY) (L2 (0] (LY] ((1,2)
B= { (2,0) 0,4(2,1) 2,4(22) 0,4 (1) 0,4 (2,2) 0,4 (2,0) 0,4(2,2) ,4(2,0) 4 (2,1 }
(3,0) (3,1 (32} 13,2)) 13,0) \BD) (B1) 13,2)) (3,0

€ (the point classes) : {1} x Zs3, {2} x Z3, {3} x Zs.
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Difference matrices and orthogonal arrays

Let U = {g1, - , gu} be a group of order u. A kxuA (U, k,X)-DM D = [d;;]
is said to be normalized if each entry in its first row and column is equal to the
identity of U.

Remark 1.7. Let notations be as mentioned above. Assume [d;;] is normalized.
Then (Dgy,Dga,---,Dg,) is an OA(k,u) ([13]) with entries from U. Denote
by d; = (di1,- -+ ,d;iuy) the i-th row of [d;;]. If A = 1, then the followimg is a
set of kK — 1 mutually orthogonal Latin squares.

dag: d3g: drg1

y . y ...,

da2gu d3gu dikgu
The following results on difference matrices are well known.
Result 1.8. (D. Jungnickel ([6])) If there exist a (u, k, A\)-DM then k£ < ul.

The above result says that the TD, (k, u) obtained from a (u, k, A)-DM must
satisfy £k < u). However, in general, the following holds.

Result 1.9. (Drake-Jungnickel [7]) If there exists a TDy(k,u), then
(x) k< (WXx-=1)/(u-1).

Example 1.10. Examples are known satisfying the equality in (%) ([13] Propo-
sition 1.7.10). For example, there actually exist a TDy(7,2) and a TD3(11, 2).

Given u > 0 and A > 0, the number of rows & of a (u, k, A)-DM over a group
U of order u depends on the group of U.

Result 1.11. (D. A. Drake [3]) Let U be any group of even order u with a
cyclic Sylow 2-subgroup. If M is a (u, k, A\)-DM over U with 2t A, then k < 2.

For example, it is well known that no (2,2n,n)-DM (i.e. Hadamard matrix)
exists for any odd integer n > 1. In general, if 2 1 A, there exists no (2, k, A\)-DM
for k > 3.

In what follows we use a notation I,,, = {1,2,--- ,m} for positive integer m.
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2 SCT groups

Definition 2.1. Let D(P,B) be a transversal design TD, (k,u) with the set of
point classes € = {C;|i € I}, where [P| = uk, [B| = 42X and |C;| = u,i € Iy.
Let G be an automorphism group of D. We say G is class-transitive if G is
transitive on €. If G is a class-transitive group of order k and acts semi-regularly
on B, we say G is an SCT(u, k, ) group. We note that G is semiregular on P.

G-orbits on P
Lo L

e
C e

In the rest of this article we use the following notations.

Notation 2.2. Let D(P,B) be a transversal design TD(k, u), where |P| = uk
and |B| = w2\ with the set of point classes {C;,---,Cx}. We fix a point class
C(e {C1, - ,Ck}) of D(P,B). Assume a group G (< Aut(D)) is an SCT(u, k, \)
group of D. Let Py,Ps,---,P, be the G-orbits on P (|P|/|G| = u) and set
{p:} = P; NC for each ¢ € I,,. Moreover, let B;,Bs,--- ,B, be the G-orbits on
B, where r = |B|/|G|, and choose blocks B; € By, Bz € By, -- and B, € B,.

P By e Py
Ci
: : : m. l

C=C
A matrix obtained from an SCT group of TD,(k,u)

Hypothesis 2.3. Under Notation 2.2, we define a u x r matrix M = [D;,,]
(D;; C Q) over G of order k in the following manner.
DZJz{QEGlngeBJ}) ie[’ua jelﬂ

P; BjEBj
L/
Cy
s Diy Dy - Dy
C=0C M =
: C Dul Du2 Du'r‘
Cr
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Theorem 2.4. Under Hypothesis 2.3, we have
() Yier, 1Dsjl =k Vi€l and

(ii) delr el {)\(G —~1) otherwise.

We define SCT matrices.

Definition 2.5. Let G be a group of order k and M = [D;;] a u X r matrix over
Z[G}, where D;; C G for i € I,,j € I,. We say M is an SCT(u, k, \) matriz
over G if the following conditions are satisfied.

(1) 2ser, [Dij| =k Vjel,

) o AAMG-1)  ifi=¢,
~ DD D =Y
(ii) delr 3 {)\(G —1) otherwise.

Example 2.6. The following is an SCT(2,5,5) over Zs = (a).

1 1+a l1+4a+a® 14+a+a?+ad
a+a’+a+a* a®?+ad+at  a?+at at

We define an incidence structure corresponding to an SCT(u, k, ) matrix
over a group G in the following manner.

Definition 2.7. Let M = [D;;] be a u x r SCT(u, k, A) matrix over a group
G of order k. We define an incidence structure Dy = (P,B) in the following
manner.
P={1,2,--,u} xG, B={B;,|j€l., geG}
where Bj,g = (Bj)g and B; = (1, Dlj) U (2, DZj) J---u (u, Duj) (C P).

The converse of Theorem 2.4 is true, as shown below.

Theorem 2.8. Let M be an SCT(u, k, A) matriz over a group G = {g1, - ,gx}
of order k and Dy = (P,B) the incidence structure defined in Definition 2.7.
Then the following holds.
(i) Das is a TDy(k,u) with the point classes
Cr=1IL,x{g}, -, Cx = Ly X {gx},
(ii) G acts on Dy as an SCT(u,k, \) group under the action
(3, w)g = (t,wg) fori e {1,--- ,u} and w,g € G.

We now give a result on SCT(2, k, \) matrices with k = \

Proposition 2.9. Let G be an group of order X and let Dy, Dy, D3, Dy be
subsets of G satisfying
(*) D1D1Y + DD,V 4+ D3D3"Y + DD,V = A+ AG
Then the following is a SCT(2, )\, \) matriz over G, from which we obtain a
class transitive TDy(A,2) :
M — { D, D, Ds Dy
G—-D;y G-Dy; G-D3 G-Dy
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Using some difference sets we can give SCT(2, A\, \) matrices.

Proposition 2.10. Let G be a group of order v(:= 4m?) and D; a (v, ki, \;)
difference set (DS) of order n; (:= k; — ;) in G for i € {1,2,3,4}. If 4m? =
Y = Y. mny, then {Dy, -+, D4} satisfies the condition (x) and we obtain a
TD,(v,2) admitting G as a SCT(2, v, v) group.

For example, if we choose Di,---,Dy4 as (4m?2,2m? £ m,m? £ m) DSs
(Hadamard DSs), then the condition is satisfied.

Remark 2.11. For each odd integer n > 1, there exists a (4n*,2n* £n2,n? £
n?)-difference set (an Hadamard difference set of order n*) in an abelian group of
order 4n* (Haemer-Xiang[10]). From this we obtain an SCT(2, 4n%,4n?*) group
acting on a TDy,4(4n%,2) applying Proposition 2.10.

Example 2.12. By computer search we can verify that there exists an SCT(2, q, q)
matrix for ¢ € {3,5,9,11,13,17,19}. From this we have a TD,(q,2). We note
that this is unable to obtain from difference matrices applying Drake’s result.
For example, the following is a SCT(2,19,19) matrix over Z;g9 = (a).
D D D D

6 b 6T 6 b a Db |

Dy =1+a+a?+ab+a'?+ a4,

Diz=1+a+a?+ad+a*+a®+af+a°+a'?+a'?,

Dis=1+a+a?+a*+a®+a®+a'®+all +a!d +4a'% and

Diu=l4a+a+a*+a®+a” +a°+al +a2+a'+a'®+al.

We also have the following result on SCT(2, k, ) matrices with k = 2.

Proposition 2.13. Let G be a group of order 4m?. If subsets A and B of G
satisfies (x) AACY + BB = 4m? 4+ 2m2(G — 1), then [ G‘fA GL_?B ] is
an SCT(2,4m?,2m?) matriz over G.

Example 2.14. (i) Let G be a group of order 4m? and let C and D be any
(4m?,2m? —m, m? —m) and (4m?, 2m?+m, m?+m) difference sets of G, respec-
tively. Then we can verify that CC(—Y + DD(1) = 4m?42m?(G —1) and so by

Proposition above we obtain an SCT(2,4m?, 2m?) matrix [ Co 2o

G. From this we have a TDg,,2(4m?,2) admitting G as an SCT(2,4m?,2m?)
automorphism group of order 4m?.

(ii) There are exactly 14 groups of order 16. Nine of them have (16,6,2)-
difference sets and so have SCT(2, 16, 8) matrices by Proposition 2.13. On the
other hand, five groups Zig, Zg X Zg, Zs X L4, Ly X Zz x Z4 and D16 have no
difference sets. However, we can verify that each of these contains subsets A
and B satisfying the condition () of Proposition 2.13. Hence there exists an
SCT(2, 16, 8) matrix over any group of order 16.

} over



3 Spreads, SCT matrices and M-planar functions

Definition 3.1. Let G be a group of order n®. A set of subgroups {Hy, -+ , Hp41}
of G is called a spread of G if

(1) |[Hi| = -+ |Hpta| = and

(2)G=H;H; (1<Vi#Vj<n+1).

Remark 3.2. G*=H;"UH;*"U---UH,,," is a disjoint union.

By Theorems 4.4.9 and 4.9.14 of [15] we can show the following. A shorter
proof was communicated to the author by N. Chigira [14].

Lemma 3.3. Let G be a group of order n2. If there exists a spread in G, Then
G is an elementary abelian p-group for a prime p.

Example 3.4. Set G = (V(2,9),+). Then the set of 1-dimensional GF(q)-
subspaces Hi,--- ,H,+1 of V(2,q) is a spread of G.

We can construct SCT(p™, g%, ¢2/p™) matrices using a spread of an elemen-
tary abelian p-group of order ¢2.

Proposition 3.5. Let q be a power of a prime p and G ~ Ep. For a spread
S = {Hi, - ,Hgp1} of G, set 7 = q/p™ (1 < p™ < q) and A, = H}. ., +
Hipot -+ Hipyy, 0<0<p™—2), Apmy=Hlpm 1y, + Hipm_1),00+
+H;mr+H;mr+1+1. '

Let [ny;] be any Latin square of order p™ with entries from {0,1,--- ,p™—1}.

Then the following is a SCT(p™, ¢*, ¢* /p™) matriz, which gives a TD, /pm (@2, p™).

An1,1 Am,z o Am,pm
A"z,l Anz,z e ng pm
A"pm,I T A"pm,pm—l A"pm,pm

Definition 3.6. Let G be a group of order u?)\ and U (<G) its normal subgroup
of order u. A ul-subset D of G is called a (u), u, u\, \)-relative difference set
(RDS) relative to U if DD(-1) = u)\ + A(G — U). The subgroup U is called a
forbidden subgroup. We note that from U we obtain a (u,u), ))-difference
matrix over U.

Remark 3.7. Denote by 7(n) the set of primes dividing an integer n > 1.
In the known examples G satisfies 7(|G|) € {{p},{3,7},{2,p}} for a prime p
([1],(4],5),[8],[12]) and U is a p-group. Moreover, in most cases U is abelian.

We shall consider a relation between RDSs and SCT(u, u\, ) matrices by
generalizing the notion of planar functions.
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Theorem 3.8. Let G be a group of order u\ and U a group of order u. Let
D, (y € U) be subsets of G. If a u x u matric D = [Dy,-1]y .cu over Z[G]
whose rows and columns are indezed by the elements of U is a SCT(u,uM, )
matriz, then the following holds.

(i) G=),cu Dy (the disjoint union of u subsets Dy).

(ii) A function f : G — U defined by f(D,) =y (y € U) satisfies the
following :
(*x) #{z e G| flax)f(z)"t =b} =X (Vae G\ {1}, VoeU)

Definition 3.9. Let G and U be groups. We call a function f : G — U a
A-planar function if f satisfies ().

Remark 3.10. (i) A 1-planar function is just a planar function in the usual
sense (A. Pott [11]).

(i) We can show |G| = |U|\ by counting the number of pairs (z, f(tz)f(z)™?!)
with x € GG in two ways.

Proof of Theorem 3.8
As D is an SCT(u, uA, A) matrix over G, we have ), ., DalrlDazz—l(_l) —
-1
Yo seU Dala;1(a22_1)Da2z_1( ). Hence,

) A+AG-1)  ifb=1
Dy D,V = { ¥ ’
(%) y%(:j by ™~y { MG -1) otherwise.

Then, by (%), we have ZyEG |Dy| = uX and Dy N D, = ¢ (y # z) by putting
b=1 and b # 1, respectively. Thus we have (i).

Let a € G\ {1} and b € G and consider the equation f(az)f(z)~! =b. Set
y = f(z). Then f(azx) = by. Hence, ‘

f(z) =y, flaz) =by < z € Dy, ax € Dy, .

By (), there exist exactly A distinct elements (t;,z;) € Dy, x Dy, such that
a=txz; 1 forie{1,---,\}. Ast; = ax;, f(t;) = by; and f(z;) = yi, we have
f(az;)f(z;)~! = b and so (ii) holds. O

We now show that relations among A-planar functions, SCTs, and RDSs.

Theorem 3.11. Let G be a group of order u) and U a group of order u. If
f : G — U is a A-planar function, then the following holds.

(i) A uxu matriz D = [D, ] defined by D, , = f ~Y(yz~1) (y,z € U) is an
SCT(u,uX, \) matriz.

(ii) A subset D = {(z, f(z)) |z € G} of G := G x U is a (uM, u, ul, \) relative
difference set in a group G relative to U.



Proof. (i) Fix a;,a2 € U and let y € U. Then, for any t € G,
t 6 Dalnya2’y(_l) @ t - (El.’,ﬂg_l, 3$1 E Dal’y, 3Z2 E Da2’y
< 11 = try, f(tra) = ajy~, flz2) = agy™t, 3z; € Dq, 4
=t = $1.’£2_1, f(t(llz)f(xg)‘l = alag“l, dzq € Daz,y- Thus,

G|+ MG -1) if a; = aq
Dy, yDay ™ = 4 ,
2yev Dar,yDas,y {)\(G —1) otherwise.

(i) (t,b) € (Svl,f(xl))(wz, f(@2))™h, Fm1,22 € G
= t=mz7t, f(z1)f(xz2) L =0, Iz, 22 €G
<~ f(tiEQ)f(.’Eg)_l =b, x1 =txy, dzo € G. O

Two Groups G,U corresponding to a A-planar function f

Assume there exists a A-planar function from G to U. Many examples are
known where |G| is not a power of a prime ([1],[4],[5],[8],[12]).
These satisfy 7(|G|) € {{3,7},{2,p} }
However, every known example of U is a p-group for a prime p and in the most
cases U is abelian. What is the possible group theoretic structure of G or U ?

When X = 1, the following result is known.

Result 3.12. (Blokhuis-Jungnickel-Schmidt [9]) Let G and H be abelian
groups of order n. If there exists a 1-planar function from G to H, then n = p®
for a prime p and the p-rank of G x H is at least e + 1.

We now construct a A-planar function with A a prime power.

Theorem 3.13. Let p be a prime and U any group of order p™. Let G be
an elementary abelian p-group of order p®™ with n > m. Then there exists a
p?"~™-planar function from G to U.

Proof . Let G,q,p™, H;(i € I441) be as in Proposition 3.5 and consider an
SCT(p™,p*",p*~™) with ¢ = p®. Let U be any group of order p” (< ¢) and
Uyeu Ty a partition of the spread {Hy, - ,Hg41} such that |T1] = 7+ 1 and
|Ty| =r (y € U*), where r = ¢/p™. Let D, be the set of non-identity elements
of Ty for y € U* and D; the set of elements of T7. Then a matrix L = [z, 4,]
defined by zy, y, = y1y2~! (¥1,¥2 € U) is a Latin square of order p™ with entries
from U. Hence, by Proposition 3.5, [Dy,,-1]y, y.cv is an SCT(p™, p°", p?"~™)
matrix, which gives a p?*~™-planar function from G to U by Theorem 3.8. O

By Theorems 3.13 and 3.11, we have the following.
Theorem 3.14. Any p-group can be a forbidden subgroup of an RDS.

As a corollary we have the following, which gives another proof of de Launey’s
result on DMs (Corollary 2.8 of [2]).

Corollary 3.15. There ezists a (p™,p?", p?"~™)-difference matriz over any
group of oder p™ whenever n > m.
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