On transversal designs and their automorphism groups

熊本大学·教育学部 平峰 豊 Yutaka Hiramine

Department of Mathematics, Faculty of Education, Kumamoto University, Kurokami, Kumamoto, Japan hiramine@kumamoto-u.ac.jp

In this talk we consider automorphism groups SCTs of transversal designs acting regularly on the set of point classes and determine the relations among SCTs, RDSs and λ -planar functions.

1 Transversal Designs and Difference Matrices

Definition 1.1. A transversal design $TD_{\lambda}(k, u)$ (u > 1) is an incidence structure $\mathcal{D} = (\mathbb{P}, \mathbb{B})$, where

- (i) \mathbb{P} is a set of uk points partitioned into k classes $\mathcal{C}_1, \dots, \mathcal{C}_k$ (called *point classes*), each of size u,
- (ii) \mathbb{B} is a collection of k-subsets of \mathbb{P} (called blocks),
- (iii) Any two distinct points in the same point class are incident with no blocks and any two points in distinct point classes are incident with exactly λ blocks.

By definition, $|\mathbb{P}| = uk$, $|\mathbb{B}| = u^2 \lambda$ and every block B_j of \mathbb{B} intersects in each point class \mathcal{C}_{ℓ} $(1 \leq \ell \leq k)$ in exactly one point.

Example 1.2. Set F = GF(q). Then the following is a $TD_1(q, q)$. $\mathbb{P} = F \times F$, $\mathbb{B} = \{y = ax + b \mid a, b \in F\}$, $\mathfrak{C} = \{\mathcal{C}_i := \{i\} \times F \mid i \in F\}$.

Transversal designs and their automorphism groups

Let $\mathcal{D} = (\mathbb{P}, \mathbb{B})$ be a $\mathrm{TD}_{\lambda}(k, u)$ with k point classes $\mathcal{C}_1, \dots, \mathcal{C}_k$ and let U be a subgroup of $\mathrm{Aut}(\mathcal{D})$ acting regularly on each \mathcal{C}_i . Choose $p_i \in \mathcal{C}_i (1 \leq i \leq k)$ and let $B_1 U, \dots B_{u\lambda} U$ be the U-orbits on \mathbb{B} . Then a $k \times u\lambda$ matrix

and let
$$B_1U, \cdots B_{u\lambda}U$$
 be the U -orbits on $\mathbb B$. Then a $k \times u\lambda$ matrix
$$\begin{bmatrix} d_{1,1} & \cdots & d_{1,u\lambda} \\ \vdots & & \vdots \\ d_{k,1} & \cdots & d_{k,u\lambda} \end{bmatrix}$$
 defined by $p_i d_{ij} \in B_j \ (d_{ij} \in U)$ has the following property.

$$d_{i,1}d_{\ell,1}^{-1} + \dots + d_{i,u\lambda}d_{\ell,u\lambda}^{-1} = \lambda U \ (\in \mathbb{Z}[U]), \ \forall i \neq \ell$$

Difference matrices

Definition 1.3. Let U be a group of order u and $k, \lambda \in \mathbb{N}$

A
$$k imes u\lambda$$
 matrix $\begin{bmatrix} d_{1,1} & \cdots & d_{1,u\lambda} \\ \vdots & & \vdots \\ d_{k,1} & \cdots & d_{k,u\lambda} \end{bmatrix}$ $(d_{ij} \in U)$ is called a (u,k,λ) -difference matrix over U (a (U,k,λ) -DM) if $d_{i,1}d_{\ell,1}^{-1} + \cdots + d_{i,u\lambda}d_{\ell,u\lambda}^{-1} = \lambda U \in \mathbb{Z}[U]$ $(\forall i \neq \ell)$

Example 1.4. The following is a (3,3,1)-DM over $(\mathbb{Z}_3,+)$.

$$M = \left[\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 2 & 1 \end{array} \right]$$

Transversal designs obtained from difference matrices

Definition 1.5. Let $D = [d_{ij}]$ be a (u, k, λ) -difference matrix over a group U of order u. A transversal design $\mathrm{TD}_{\lambda}(k, u)$ $\mathcal{D}_{D}(\mathbb{P}, \mathbb{B})$ is obtained from D in the following way:

$$\begin{split} \mathbb{P} &= \{1, \cdots, k\} \times U \\ \mathbb{B} &= \{\{(1, d_{1,j}g), (2, d_{2,j}g), \cdots, (k, d_{k,j}g)\} \mid 1 \leq j \leq u\lambda, \ g \in U\} \\ \text{We note that } \{1\} \times U, \cdots, \{k\} \times U \text{ is the point classes of } (\mathbb{P}, \mathbb{B}). \end{split}$$

Example 1.6. The following is a $TD_1(3,3)$ obtained from M in Example 1.4. $\mathbb{P} = \{1,2,3\} \times \mathbb{Z}_3$,

$$\mathbb{B} = \left\{ \begin{cases} (1,0) \\ (2,0) \\ (3,0) \end{cases}, \begin{cases} (1,1) \\ (2,1) \\ (3,1) \end{cases}, \begin{cases} (1,2) \\ (2,2) \\ (3,2) \end{cases}, \begin{cases} (1,0) \\ (2,1) \\ (3,2) \end{cases}, \begin{cases} (1,1) \\ (2,2) \\ (3,0) \end{cases}, \begin{cases} (1,2) \\ (2,0) \\ (3,1) \end{cases}, \begin{cases} (1,0) \\ (2,2) \\ (3,1) \end{cases}, \begin{cases} (1,0) \\ (2,0) \\ (3,1) \end{cases}, \begin{cases} (1,0) \\ (2,0) \\ (3,2) \end{cases}, \begin{cases} (1,0) \\ (2,0) \\ (3,0) \end{cases} \right\}, \begin{cases} (1,0) \\ (2,0) \\ (3,0) \end{cases}$$

 \mathfrak{C} (the point classes) : $\{1\} \times \mathbb{Z}_3, \{2\} \times \mathbb{Z}_3, \{3\} \times \mathbb{Z}_3$.

Difference matrices and orthogonal arrays

Let $U = \{g_1, \dots, g_u\}$ be a group of order u. A $k \times u\lambda$ (U, k, λ) -DM $D = [d_{ij}]$ is said to be *normalized* if each entry in its first row and column is equal to the identity of U.

Remark 1.7. Let notations be as mentioned above. Assume $[d_{ij}]$ is normalized. Then $(Dg_1, Dg_2, \dots, Dg_u)$ is an $OA_{\lambda}(k, u)$ ([13]) with entries from U. Denote by $d_i = (d_{i1}, \dots, d_{iu\lambda})$ the i-th row of $[d_{ij}]$. If $\lambda = 1$, then the following is a set of k-1 mutually orthogonal Latin squares.

$$\left[egin{array}{c} d_2g_1 \ dots \ d_2g_u \end{array}
ight], \quad \left[egin{array}{c} d_3g_1 \ dots \ d_3g_u \end{array}
ight], \quad \cdots, \quad \left[egin{array}{c} d_kg_1 \ dots \ d_kg_u \end{array}
ight]$$

The following results on difference matrices are well known.

Result 1.8. (D. Jungnickel ([6])) If there exist a (u, k, λ) -DM then $k \leq u\lambda$.

The above result says that the $\mathrm{TD}_{\lambda}(k,u)$ obtained from a (u,k,λ) -DM must satisfy $k \leq u\lambda$. However, in general, the following holds.

Result 1.9. (Drake-Jungnickel [7]) If there exists a
$$TD_{\lambda}(k, u)$$
, then $(*)$ $k \leq (u^2\lambda - 1)/(u - 1)$.

Example 1.10. Examples are known satisfying the equality in (*) ([13] Proposition I.7.10). For example, there actually exist a $TD_2(7,2)$ and a $TD_3(11,2)$.

Given u > 0 and $\lambda > 0$, the number of rows k of a (u, k, λ) -DM over a group U of order u depends on the group of U.

Result 1.11. (D. A. Drake [3]) Let U be any group of even order u with a cyclic Sylow 2-subgroup. If M is a (u, k, λ) -DM over U with $2 \nmid \lambda$, then $k \leq 2$.

For example, it is well known that no (2, 2n, n)-DM (i. e. Hadamard matrix) exists for any odd integer n > 1. In general, if $2 \nmid \lambda$, there exists no $(2, k, \lambda)$ -DM for $k \geq 3$.

In what follows we use a notation $I_m = \{1, 2, \dots, m\}$ for positive integer m.

2 SCT groups

Definition 2.1. Let $\mathcal{D}(\mathbb{P}, \mathbb{B})$ be a transversal design $\mathrm{TD}_{\lambda}(k, u)$ with the set of point classes $\mathfrak{C} = \{\mathcal{C}_i \mid i \in I_k\}$, where $|\mathbb{P}| = uk$, $|\mathbb{B}| = u^2\lambda$ and $|\mathcal{C}_i| = u, i \in I_k$. Let G be an automorphism group of \mathcal{D} . We say G is class-transitive if G is transitive on \mathfrak{C} . If G is a class-transitive group of order k and acts semi-regularly on \mathbb{B} , we say G is an $SCT(u, k, \lambda)$ group. We note that G is semiregular on \mathbb{P} .

In the rest of this article we use the following notations.

Notation 2.2. Let $\mathcal{D}(\mathbb{P}, \mathbb{B})$ be a transversal design $\mathrm{TD}_{\lambda}(k, u)$, where $|\mathbb{P}| = uk$ and $|\mathbb{B}| = u^2 \lambda$ with the set of point classes $\{\mathcal{C}_1, \dots, \mathcal{C}_k\}$. We fix a point class $\mathcal{C}(\in \{\mathcal{C}_1, \dots, \mathcal{C}_k\})$ of $\mathcal{D}(\mathbb{P}, \mathbb{B})$. Assume a group G (\leq Aut(\mathcal{D})) is an $\mathrm{SCT}(u, k, \lambda)$ group of \mathcal{D} . Let $\mathbb{P}_1, \mathbb{P}_2, \dots, \mathbb{P}_u$ be the G-orbits on \mathbb{P} ($|\mathbb{P}|/|G| = u$) and set $\{p_i\} = \mathbb{P}_i \cap \mathcal{C}$ for each $i \in I_u$. Moreover, let $\mathbb{B}_1, \mathbb{B}_2, \dots, \mathbb{B}_r$ be the G-orbits on \mathbb{B} , where $r = |\mathbb{B}|/|G|$, and choose blocks $B_1 \in \mathbb{B}_1$, $B_2 \in \mathbb{B}_2, \dots$ and $B_r \in \mathbb{B}_r$.

A matrix obtained from an SCT group of $TD_{\lambda}(k, u)$

Hypothesis 2.3. Under Notation 2.2, we define a $u \times r$ matrix $M = [D_{ij}]$ $(D_{ij} \subset G)$ over G of order k in the following manner.

$$D_{ij} = \{g \in G \mid p_i^g \in B_j\}, \quad i \in I_u, \quad j \in I_r,$$

$$P_i \qquad B_j \in \mathbb{B}_j$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$C = C_\ell \qquad p_i \qquad M = \begin{bmatrix} D_{11} & D_{12} & \cdots & D_{1r} \\ \vdots & \cdots & \cdots & \vdots \\ D_{u1} & D_{u2} & \cdots & D_{ur} \end{bmatrix}$$

Theorem 2.4. Under Hypothesis 2.3, we have

(i)
$$\sum_{i \in I_u} |D_{ij}| = k \quad \forall j \in I_r \text{ and }$$

(ii)
$$\sum_{j \in I_r} D_{ij} D_{\ell j}^{(-1)} = \begin{cases} u\lambda + \lambda(G-1) & \text{if } i = \ell, \\ \lambda(G-1) & \text{otherwise.} \end{cases}$$

We define SCT matrices.

Definition 2.5. Let G be a group of order k and $M = [D_{ij}]$ a $u \times r$ matrix over $\mathbb{Z}[G]$, where $D_{ij} \subset G$ for $i \in I_u, j \in I_r$. We say M is an $SCT(u, k, \lambda)$ matrix over G if the following conditions are satisfied.

(i)
$$\sum_{i \in I_n} |D_{ij}| = k \quad \forall j \in I_r$$

(ii)
$$\sum_{j \in I_r} D_{ij} D_{\ell j}^{(-1)} = \begin{cases} u\lambda + \lambda (G-1) & \text{if } i = \ell, \\ \lambda (G-1) & \text{otherwise.} \end{cases}$$

Example 2.6. The following is an SCT(2, 5, 5) over $\mathbb{Z}_5 = \langle a \rangle$.

$$\begin{bmatrix} 1 & 1+a & 1+a+a^3 & 1+a+a^2+a^3 \\ a+a^2+a^3+a^4 & a^2+a^3+a^4 & a^2+a^4 & a^4 \end{bmatrix}$$

We define an incidence structure corresponding to an $SCT(u, k, \lambda)$ matrix over a group G in the following manner.

Definition 2.7. Let $M = [D_{ij}]$ be a $u \times r$ SCT (u, k, λ) matrix over a group G of order k. We define an incidence structure $\mathcal{D}_M = (\mathbb{P}, \mathbb{B})$ in the following manner.

$$\mathbb{P} = \{1, 2, \cdots, u\} \times G, \quad \mathbb{B} = \{B_{j,g} \mid j \in I_r, \ g \in G\}$$
 where $B_{j,g} = (B_j)g$ and $B_j = (1, D_{1j}) \cup (2, D_{2j}) \cup \cdots \cup (u, D_{uj}) \ (\subset \mathbb{P}).$

The converse of Theorem 2.4 is true, as shown below.

Theorem 2.8. Let M be an $SCT(u, k, \lambda)$ matrix over a group $G = \{g_1, \dots, g_k\}$ of order k and $\mathcal{D}_M = (\mathbb{P}, \mathbb{B})$ the incidence structure defined in Definition 2.7. Then the following holds.

- (i) \mathcal{D}_M is a $TD_{\lambda}(k, u)$ with the point classes $C_1 = I_u \times \{g_1\}, \dots, C_k = I_u \times \{g_k\},$
- (ii) G acts on \mathcal{D}_M as an $SCT(u, k, \lambda)$ group under the action (i, w)g = (i, wg) for $i \in \{1, \dots, u\}$ and $w, g \in G$.

We now give a result on $SCT(2, k, \lambda)$ matrices with $k = \lambda$

Proposition 2.9. Let G be an group of order λ and let D_1, D_2, D_3, D_4 be subsets of G satisfying

(*)
$$D_1D_1^{(-1)} + D_2D_2^{(-1)} + D_3D_3^{(-1)} + D_4D_4^{(-1)} = \lambda + \lambda G$$

Then the following is a $SCT(2, \lambda, \lambda)$ matrix over G, from which we obtain a class transitive $TD_{\lambda}(\lambda, 2)$:

$$M = \begin{bmatrix} D_1 & D_2 & D_3 & D_4 \\ G - D_1 & G - D_2 & G - D_3 & G - D_4 \end{bmatrix}$$

Using some difference sets we can give $SCT(2, \lambda, \lambda)$ matrices.

Proposition 2.10. Let G be a group of order $v(:=4m^2)$ and D_i a (v, k_i, λ_i) difference set (DS) of order n_i $(:=k_i-\lambda_i)$ in G for $i \in \{1,2,3,4\}$. If $4m^2 = \sum \lambda_i = \sum n_i$, then $\{D_1, \dots, D_4\}$ satisfies the condition (*) and we obtain a $TD_v(v,2)$ admitting G as a SCT(2,v,v) group.

For example, if we choose D_1, \dots, D_4 as $(4m^2, 2m^2 \pm m, m^2 \pm m)$ DSs (Hadamard DSs), then the condition is satisfied.

Remark 2.11. For each odd integer n > 1, there exists a $(4n^4, 2n^4 \pm n^2, n^4 \pm n^2)$ -difference set (an Hadamard difference set of order n^4) in an abelian group of order $4n^4$ (Haemer-Xiang[10]). From this we obtain an SCT $(2, 4n^4, 4n^4)$ group acting on a TD_{4n⁴} $(4n^4, 2)$ applying Proposition 2.10.

Example 2.12. By computer search we can verify that there exists an SCT(2, q, q) matrix for $q \in \{3, 5, 9, 11, 13, 17, 19\}$. From this we have a $TD_q(q, 2)$. We note that this is unable to obtain from difference matrices applying Drake's result. For example, the following is a SCT(2, 19, 19) matrix over $\mathbb{Z}_{19} = \langle a \rangle$.

$$\begin{bmatrix} D_{11} & D_{12} & D_{13} & D_{14} \\ G - D_{11} & G - D_{12} & G - D_{13} & G - D_{14} \end{bmatrix}, \text{ where }$$

$$D_{11} = 1 + a + a^2 + a^6 + a^{13} + a^{14},$$

$$D_{12} = 1 + a + a^2 + a^3 + a^4 + a^5 + a^6 + a^9 + a^{10} + a^{13},$$

$$D_{13} = 1 + a + a^2 + a^4 + a^5 + a^8 + a^{10} + a^{11} + a^{13} + a^{15}, \text{ and }$$

$$D_{14} = 1 + a + a^2 + a^4 + a^5 + a^7 + a^9 + a^{11} + a^{12} + a^{14} + a^{15} + a^{17}.$$

We also have the following result on $SCT(2, k, \lambda)$ matrices with $k = 2\lambda$.

Proposition 2.13. Let G be a group of order $4m^2$. If subsets A and B of G satisfies (*) $AA^{(-1)} + BB^{(-1)} = 4m^2 + 2m^2(G-1)$, then $\begin{bmatrix} A & B \\ G-A & G-B \end{bmatrix}$ is an $SCT(2, 4m^2, 2m^2)$ matrix over G.

Example 2.14. (i) Let G be a group of order $4m^2$ and let C and D be any $(4m^2, 2m^2 - m, m^2 - m)$ and $(4m^2, 2m^2 + m, m^2 + m)$ difference sets of G, respectively. Then we can verify that $CC^{(-1)} + DD^{(-1)} = 4m^2 + 2m^2(G-1)$ and so by Proposition above we obtain an $SCT(2, 4m^2, 2m^2)$ matrix $\begin{bmatrix} C & D \\ G-C & G-D \end{bmatrix}$ over G. From this we have a $TD_{2m^2}(4m^2, 2)$ admitting G as an $SCT(2, 4m^2, 2m^2)$ automorphism group of order $4m^2$.

(ii) There are exactly 14 groups of order 16. Nine of them have (16,6,2)-difference sets and so have SCT(2,16,8) matrices by Proposition 2.13. On the other hand, five groups \mathbb{Z}_{16} , $\mathbb{Z}_2 \times \mathbb{Z}_8$, $\mathbb{Z}_4 \times \mathbb{Z}_4$, $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_4$ and D_{16} have no difference sets. However, we can verify that each of these contains subsets A and B satisfying the condition (*) of Proposition 2.13. Hence there exists an SCT(2,16,8) matrix over any group of order 16.

3 Spreads, SCT matrices and λ -planar functions

Definition 3.1. Let G be a group of order n^2 . A set of subgroups $\{H_1, \dots, H_{n+1}\}$ of G is called a **spread** of G if

- (1) $|H_1| = \cdots |H_{n+1}| = n$ and
- (2) $G = H_i H_i$ $(1 \le \forall i \ne \forall j \le n+1)$.

Remark 3.2. $G^* = H_1^* \cup H_2^* \cup \cdots \cup H_{n+1}^*$ is a disjoint union.

By Theorems 4.4.9 and 4.9.14 of [15] we can show the following. A shorter proof was communicated to the author by N. Chigira [14].

Lemma 3.3. Let G be a group of order n^2 . If there exists a spread in G, Then G is an elementary abelian p-group for a prime p.

Example 3.4. Set G = (V(2,q),+). Then the set of 1-dimensional GF(q)-subspaces H_1, \dots, H_{q+1} of V(2,q) is a spread of G.

We can construct $SCT(p^m, q^2, q^2/p^m)$ matrices using a spread of an elementary abelian p-group of order q^2 .

Proposition 3.5. Let q be a power of a prime p and $G \simeq E_{q^2}$. For a spread $S = \{H_1, \dots, H_{q+1}\}$ of G, set $r = q/p^m$ $(1 < p^m \le q)$ and $A_i = H_{ir+1}^* + H_{ir+2}^* + \dots + H_{(i+1)r}^*$ $(0 \le i \le p^m - 2)$, $A_{p^m-1} = H_{(p^m-1)r+1}^* + H_{(p^m-1)r+2}^* + \dots + H_{p^m \cdot r}^* + H_{p^m \cdot r+1}^* + 1$.

Let $[n_{ij}]$ be any Latin square of order p^m with entries from $\{0, 1, \dots, p^m - 1\}$. Then the following is a $SCT(p^m, q^2, q^2/p^m)$ matrix, which gives a $TD_{q^2/p^m}(q^2, p^m)$.

$$\begin{bmatrix} A_{n_{1,1}} & A_{n_{1,2}} & \cdots & A_{n_{1,p^m}} \\ A_{n_{2,1}} & A_{n_{2,2}} & \cdots & A_{n_{2,p^m}} \\ \vdots & \vdots & \vdots & \vdots \\ A_{n_{p^m,1}} & \cdots & A_{n_{p^m,p^m-1}} & A_{n_{p^m,p^m}} \end{bmatrix}$$

Definition 3.6. Let \mathcal{G} be a group of order $u^2\lambda$ and $U(\triangleleft \mathcal{G})$ its normal subgroup of order u. A $u\lambda$ -subset D of \mathcal{G} is called a $(u\lambda, u, u\lambda, \lambda)$ -relative difference set (RDS) relative to U if $DD^{(-1)} = u\lambda + \lambda(\mathcal{G} - U)$. The subgroup U is called a **forbidden subgroup**. We note that from U we obtain a $(u, u\lambda, \lambda)$ -difference matrix over U.

Remark 3.7. Denote by $\pi(n)$ the set of primes dividing an integer n > 1. In the known examples \mathcal{G} satisfies $\pi(|\mathcal{G}|) \in \{\{p\}, \{3,7\}, \{2,p\}\}$ for a prime p ([1],[4],[5],[8],[12]) and U is a p-group. Moreover, in most cases U is abelian.

We shall consider a relation between RDSs and $SCT(u, u\lambda, \lambda)$ matrices by generalizing the notion of planar functions.

Theorem 3.8. Let G be a group of order $u\lambda$ and U a group of order u. Let D_y $(y \in U)$ be subsets of G. If a $u \times u$ matrix $D = [D_{yz^{-1}}]_{y,z\in U}$ over $\mathbb{Z}[G]$ whose rows and columns are indexed by the elements of U is a $SCT(u,u\lambda,\lambda)$ matrix, then the following holds.

- (i) $G = \sum_{y \in U} D_y$ (the disjoint union of u subsets D_y).
- (ii) A function $f: G \longrightarrow U$ defined by $f(D_y) = y$ $(y \in U)$ satisfies the following:

$$(\star) \quad \#\{x \in G \mid f(ax)f(x)^{-1} = b\} = \lambda \quad (\forall a \in G \setminus \{1\}, \ \forall b \in U)$$

Definition 3.9. Let G and U be groups. We call a function $f: G \longrightarrow U$ a λ -planar function if f satisfies (\star) .

- Remark 3.10. (i) A 1-planar function is just a planar function in the usual sense (A. Pott [11]).
 - (ii) We can show $|G| = |U|\lambda$ by counting the number of pairs $(x, f(tx)f(x)^{-1})$ with $x \in G$ in two ways.

Proof of Theorem 3.8

As D is an SCT $(u, u\lambda, \lambda)$ matrix over G, we have $\sum_{z \in U} D_{a_1 z^{-1}} D_{a_2 z^{-1}}^{(-1)} = \sum_{z \in U} D_{a_1 a_2^{-1} (a_2 z^{-1})} D_{a_2 z^{-1}}^{(-1)}$. Hence,

(*)
$$\sum_{y \in U} D_{by} D_y^{(-1)} = \begin{cases} u\lambda + \lambda (G-1) & \text{if } b = 1, \\ \lambda (G-1) & \text{otherwise.} \end{cases}$$

Then, by (\star) , we have $\sum_{y \in G} |D_y| = u\lambda$ and $D_y \cap D_z = \phi$ $(y \neq z)$ by putting b = 1 and $b \neq 1$, respectively. Thus we have (i).

Let $a \in G \setminus \{1\}$ and $b \in G$ and consider the equation $f(ax)f(x)^{-1} = b$. Set y = f(x). Then f(ax) = by. Hence,

$$f(x) = y, \ f(ax) = by \iff x \in D_y, \ ax \in D_{by}.$$

By (\star) , there exist exactly λ distinct elements $(t_i, x_i) \in D_{by_i} \times D_{y_i}$ such that $a = t_i x_i^{-1}$ for $i \in \{1, \dots, \lambda\}$. As $t_i = ax_i$, $f(t_i) = by_i$ and $f(x_i) = y_i$, we have $f(ax_i)f(x_i)^{-1} = b$ and so (ii) holds. \square

We now show that relations among λ -planar functions, SCTs, and RDSs.

Theorem 3.11. Let G be a group of order $u\lambda$ and U a group of order u. If $f: G \longrightarrow U$ is a λ -planar function, then the following holds.

- (i) A $u \times u$ matrix $D = [D_{y,z}]$ defined by $D_{y,z} = f^{-1}(yz^{-1})$ $(y,z \in U)$ is an $SCT(u,u\lambda,\lambda)$ matrix.
- (ii) A subset $D = \{(x, f(x)) \mid x \in G\}$ of $\mathcal{G} := G \times U$ is a $(u\lambda, u, u\lambda, \lambda)$ relative difference set in a group \mathcal{G} relative to U.

Proof. (i) Fix
$$a_1, a_2 \in U$$
 and let $y \in U$. Then, for any $t \in G$, $t \in D_{a_1, y} D_{a_2, y}^{(-1)} \iff t = x_1 x_2^{-1}, \exists x_1 \in D_{a_1, y}, \exists x_2 \in D_{a_2, y} \iff x_1 = t x_2, f(t x_2) = a_1 y^{-1}, f(x_2) = a_2 y^{-1}, \exists x_2 \in D_{a_2, y} \iff t = x_1 x_2^{-1}, f(t x_2) f(x_2)^{-1} = a_1 a_2^{-1}, \exists x_2 \in D_{a_2, y}.$ Thus,
$$\sum_{y \in U} D_{a_1, y} D_{a_2, y}^{(-1)} = \begin{cases} |G| + \lambda (G - 1) & \text{if } a_1 = a_2, \\ \lambda (G - 1) & \text{otherwise.} \end{cases}$$
(ii) $(t, b) \in (x_1, f(x_1))(x_2, f(x_2))^{-1}, \exists x_1, x_2 \in G \iff t = x_1 x_2^{-1}, f(x_1) f(x_2)^{-1} = b, \exists x_1, x_2 \in G \iff f(t x_2) f(x_2)^{-1} = b, x_1 = t x_2, \exists x_2 \in G.$

Two Groups G, U corresponding to a λ -planar function f

Assume there exists a λ -planar function from G to U. Many examples are known where |G| is not a power of a prime ([1],[4],[5],[8],[12]). These satisfy $\pi(|G|) \in \{\{3,7\},\{2,p\}\}$.

However, every known example of U is a p-group for a prime p and in the most cases U is abelian. What is the possible group theoretic structure of G or U? When $\lambda = 1$, the following result is known.

Result 3.12. (Blokhuis-Jungnickel-Schmidt [9]) Let G and H be abelian groups of order n. If there exists a 1-planar function from G to H, then $n = p^e$ for a prime p and the p-rank of $G \times H$ is at least e + 1.

We now construct a λ -planar function with λ a prime power.

Theorem 3.13. Let p be a prime and U any group of order p^m . Let G be an elementary abelian p-group of order p^{2n} with $n \ge m$. Then there exists a p^{2n-m} -planar function from G to U.

Proof. Let $G, q, p^m, H_i (i \in I_{q+1})$ be as in Proposition 3.5 and consider an $SCT(p^m, p^{2n}, p^{2n-m})$ with $q = p^n$. Let U be any group of order $p^m (\leq q)$ and $\bigcup_{y \in U} T_y$ a partition of the spread $\{H_1, \cdots, H_{q+1}\}$ such that $|T_1| = r+1$ and $|T_y| = r \ (y \in U^*)$, where $r = q/p^m$. Let D_y be the set of non-identity elements of T_y for $y \in U^*$ and D_1 the set of elements of T_1 . Then a matrix $L = [z_{y_1,y_2}]$ defined by $z_{y_1,y_2} = y_1 y_2^{-1} \ (y_1,y_2 \in U)$ is a Latin square of order p^m with entries from U. Hence, by Proposition 3.5, $[D_{y_1y_2^{-1}}]_{y_1,y_2\in U}$ is an $SCT(p^m, p^{2n}, p^{2n-m})$ matrix, which gives a p^{2n-m} -planar function from G to U by Theorem 3.8. \square

By Theorems 3.13 and 3.11, we have the following.

Theorem 3.14. Any p-group can be a forbidden subgroup of an RDS.

As a corollary we have the following, which gives another proof of de Launey's result on DMs (Corollary 2.8 of [2]).

Corollary 3.15. There exists a (p^m, p^{2n}, p^{2n-m}) -difference matrix over any group of oder p^m whenever $n \ge m$.

References

- [1] J.A. Davis, J. Jedwab, M. Mowbray, New Families of Semi-Regular Relative difference Sets, DCC 13 (1998), 131-146.
- [2] W. de Launey, Square GBRDs over non-abelian groups, ARS Combinatoria 27 (1989), 40-49
- [3] D.A. Drake, Partial λ -geometries and generalized Hadamard matrices over groups, Canad. J. Math. 31 (1979), 617-727.
- [4] T. Feng and Q. Xiang, Semi-regular relative difference sets with large forbidden subgroups JCTA 115 (2008), 1456-1473.
- [5] T. Feng, Relative (pn, p, pn, n)-Difference sets With gcd(p, n) = 1, Journal of Algebraic Combinatorics 29 (2009), 91-106.
- [6] D. Jungnickel, On Difference Matrices, Resolvable Transversal Designs and Generalized Hadamard Matrices, Math. Z. 167 (1979), 49-60.
- [7] D.A. Drake and D. Jungnickel, Klingenberg structures and partial designs II. Regularity and uniformity. Pacific J. Math. 77, 389-415 (1978)
- [8] K.H. Leung, S. Ling, S. L. Ma, Constructions of semi-regular relative difference sets, Finite Fields and Their Applications 7 (2001), 397-414
- [9] A. Blokhuis, D. Jungnickel and B. Schmidt, Proof of the prime power conjecture for projective planes of order n with abelian collineation groups of order n^2 , Proc. Amer. Math. Soc.130 (2002), 1473-1476
- [10] W.H. Haemers and Q. Xiang, Strongly regular graphs with parameters $(4m^4, 2m^4 + m^2, m^4 + m^2, m^4 + m^2)$ exist for all m > 1.
- [11] A. Pott, "Finite Geometry and Character Theory", Lecture Notes in Mathematics, vol. 1601, Springer, 1995.
- [12] K. Akiyama, M. Ogawa and C. Suetake, On STD₆[18, 3]'s and STD₇[21, 3]'s admitting a semiregular automorphism group of order 9. Electron. J. Combin. 16 (2009), Research Paper 148, 21 pp
- [13] T. Beth, D. Jungnickel, H. Lenz, "Design Theory", Lecture Notes in Mathematics, vol. 1601, Cambridge Univ. Press, 2nd ed., 1999.
- [14] N. Chigira, Private communication.
- [15] D. R. Hughes and F. C. Piper, "Projective Planes" (1973), Springer-Verlag, Berlin-Heidelberg-New York.