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1 Introduction

From 1984, Huisken and many geometers studied the mean curvature flow for a hypersurface
or a submanifold (of higher codimension) in a Euclidean space as an evolution of the immersion.
The existenceness (and the uniqueness) of the mean curvature flow for an initial hypersurface (or
submanifold) f : M — R™ in short time is assured under the assumption of the compactness of
M or under the assumptions of the invariantness of f(M) by some Lie group action consisting of
isometries of R™ and the compactness of the f(M)/G.

The study of the mean curvature flow for a submanifold M in a (general) Riemannian manifold
M also has been done by many geometers. The evolutions of various geometric quantities (tensor
fields) along the mean curvature flow are obtained by calculating the evolutions of their components
with respect to local coordinates of M and M. In particular, in the case where M is an Euclidean
space, it is simpler to treat because we can use the fact that M is a linear space.

In order to define and study the mean curvature flow for an infinite dimensional submanifold
f: M <= V in a Hilbert space V, we must first define the mean curvature vector of f. The
mean curvature vector of f should be defined by using the traces of the shape operators of f
for unit normal vectors but how the trace should be defined is important problem. The geodesic’
closed ball with respect to the induced metric on the submanifold is not compact. Hence in order to
assure the existenceness (and the uniqueness) of the mean curvature flow for an initial submanifold
f: M < V in short time, we must impose the conditions of the invariantness of f (M) by some
infinite dimensional Lie group action consisting of isometries of V' and the compactness of the
f(M)/G. Also, since M is a Hilbert manifold, we cannot use a local coordinate. Hence we shall
calculate the evolutions of various geometric quantities by using technique in the theory of the
vector bundle.

Under the above background, we studied the regularized mean curvature flow for a G-invariant
regularizable hypersurface in a Hilbert space V equipped with an almost free Hilbert Lie group
isometric action G ~ V' whose orbits are minimal. See Sections 2 and 3 about the definitions of
the regularizable hypersurface and the regularized mean curvature flow. This study can be applied

to the study of the mean curvature flow in the orbit space V/G (which is a Riemannian orbifold).
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2 Regularizable submanifolds

In this section, we shall state the definition of a regularizable submanifolds in a (separable)
Hilbert space. Let V be a (separable) Hilbert space, M be a Hilbert manifold and f be an
immersion of M into V. Denote by T-M, A and exp® the normal bundle, the shape tensor
and the normal exponential map of f, respectively. If the following three conditions hold, then
f: M — V is called a proper Fredholm submanifold:

(i) codim f(M) < oo,
(ii) the restriction of exp® to the unit normal ball bundle of f is proper,
(iii) the differential of exp™ at each point of T+ M is a Fredholm operator.

Note that the shape operators A, (v € T+ M) of a proper Fredholm submanifold are compact
operators. This notion was introduced by C. L. Terng ([Te]) in 1989. In 2006, E. Heintze, X. Liu
and C. Olmos ([HLO]) defined the regularized trace Tr, A, of the shape operator A, as follows:

FI}TA'U: Z(ul +u’1,)

i=1
(uf <py < <0< <pg <pf : the spectrum of A,)

Assume that f : M — V is proper Fredholm. Furthermore, if there exist the regularized trace

of A, and the (usual) trace of A2 for any unit normal vector v of f, then f : M < V is called

a regularizable submanifold. This notion was introduced by E. Heintze, X. Liu and C. Olmos

((HLOJ). Let f : M — V be a regularizable submanifold. The regularized mean curvature vector

of f is defined as the normal vector field H of f satisfying

(H,v) =Tr, A, (Vv e T+M),

where (, )is the inner product of V. The norm of H is called the regularized mean curvature of f.
In particular, if H = 0, then f : M < V is said to be minimal. On the other hand, the regularized
Laplacian A, f of the vector-valued function f is defined by

(Arfrv) = Tee(Vdf)(, ), o) (Vo € THM),

where V is the Riemannian connection of the induced metric g on M by f and ((Vdf)(-,-),v)! is
the (1,1)-tensor field on M defined by g;(((Vdf)(-,-),v)*(X),Y) = ((Vdf)(X,Y),v) (X,Y € TM)
It is easy to show that A, f = H holds.

Ezample 2.1. Let G be a compact semi-simple Lie group equipped with a bi-invariant metric and
M(C G) be an embedded submanifold in G. The parallel transport map ¢ : H°([0,1],8) — G for
G is definde by

(u)

= gu(1) (u€ H°([0,1],9))
(guEH‘([OI]G)St “gu(0) =€

= e, (Rg,(9))7 ! (9u(t)) = u(t) (Vt€[0,1])"),
where H°([0,1],g) is the (separable) Hilbert space of all H-paths in the Lie algebra g of G and

H'([0,1],G) is the Hilbert Lie group of all H'-paths in G. Then it is shown that M := ¢~} (M) is
a regularizable submanifold in H([0, 1], g) (see [HLO]). The relation between the focal structures
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of M and M is as in Figure 1. In the case where M is curvature-adapted (i.e., R(v)(T, M) C
T.M, [Ay, R(v)] = 0 (Vz € M, Vv € T, M)), we shall state the relation between the spectrums of
the shape operators of M and M , where R is the curvature tensor of G and R(v) is the normal
Jacobi operator for v (i.e., R(v) := R(-,v)v). Take a unit normal vector v of M at x € M. Let vk
be the horizontal lift of v to u € ¢~!(z). Denote by A and A the shape operators of M and M ,
respectively. Set D{' := Ker(A, —\id) () € Spec 4,) and Df = Ker(R(v)—pid) (u € Spec R(v)).
Then Spec A, \ {0} is described as '

Spec A,z \ {0}
= {A|X € Spec A, s.t. D{ N DE # {0}}

H : A R )
U arctan(u/N) T jn ‘ (A, ) € Spec A, x Spec R(v) s.t. Dy ND; #{0}, je Z}

U J%: p € Spec R(v) s.t. DENT,"M # {0}, j € Z\{O}}

From this description, it follows that the regularized trace of Avvg exists. Also, it follows that the
regularized mean curvature vector of M is the horizontal lift of the mean curvature vector of M.

P1 P2 v (non-closed geodesic)

X € “the nullity space of focal points p; (z € N)”
X (ie N) € “the nullity space of a focal point p;
(X: (i € N) are linearly independent.)

Figure 1.

3 Regularized mean curvature flow

In this section, we shall state the definition of a regularized mean curvature flow in a (separable)
Hilbert space. Let V' and M be as in the previous section. Let f; (0 <t < T) be a C*°-family of
regularizable immersions of M into V. Denote by H, the regularized mean curvature vector of f;.
Define amap-F : M x [0,T) = V by F(z,t) = fi(z) ((z,t) € M x[0,T)). Wecall fy's (0<t<T)

the regularized mean curvature flow if the following evolution equation holds:

oF
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where A] f; is the regularized Laplacian of f; (i.e., A} fy = H;). In general, the existenceness and
the uniqueness (in short time) of solutions of this evolution equation satisfying any initial condition
has not been shown yet. For we cannot apply the Hamilton’s result ([Ha]) to this evolution equation
because it is regarded as the evolution equation for sections of the infinite dimensional vector bundle
M x V over M. However we can show the existenceness and the uniqueness (in short time) of
solutions of this evolution equation in the following special case. We consider the case where V
equips an almost free and isometric Hilbert Lie group action G ~ V' with minimal regulariazable
fibres and where f : M < V is a G-invariant embedded hypersurface in V' such that f(M)/G is
compact. Then it is shown that the rgularized mean curvature flow for f uniquely exists in short

time.

s

I'd

| o
4‘ V/G

\
(¢ f)(M)

Figure 2.

Example 3.1. Let G be a compact semi-simple Lie group equipped with a bi-invariant metric
and K be a closed subgroup of G. Also, let g and ¢ be the Lie algebras of G and K, respectively.
Assume that (g, t) admits a reductive decomposition g = €+ p. Also, let I’ be a discrete subgroup
of G. We define a Hilbert Lie group P(G,I' x K) by

P(G,T x K) := {g € H([0,1),G) | (9(0),9(1)) € T x K}.

This group P(G,T x K) acts on H°([0,1],g) as the action of a Gauge action on the space of the
connections, where H([0,1],G) is the Hilbert Lie group of all H!-paths in G. This action is
an almost free and isometric action whose orbits are minimal regularizable submanifolds and the
orbits space H°([0,1],9)/P(G,T x K) is equal to I'\G/K.



4 The mean curvature flow for suborbifolds

In this section, we shall define the notion of the mean curvaure flow for a suborbifold in a
Riemannian orbifold. First we recall the notions of a Riemannian orbifold and a suborbifold
following to [AK,GKP,Sh,Th]. Let M be a paracompact Hausdorff space and (U, ¢, U /T) a triple
satisfying the following conditions:

(1) U is an open set of M,

(i) U is an open set of R™ and T is a finite subgroup of the C*-diffeomorphism
group Diff*(T) of U, '

(iii) ¢ is a homeomorphism of U onto /T.

Such a triple (U, ¢, ﬁ/F) is called an n-dimensional orbifold chart. Let O := {(Uy, ¢y, (7/1’)\) | A€
A} be a family of n-dimensional orbifold charts of M satisfying the following conditions:

(O1) {Ux| A € A} is an open covering of M,

(O2) For any A, u € A with Uy N U, # 0 and any z € Uy N U,, there exists
an n-dimensional orbifold chart (W, 1, W/F’ ) such that C*-embeddings
o W — U, and Pu W < 17“ satisfying ¢;1 o7, opx =9 omp and
¢;1 ofr, 0 py = ¥~ o 7pr, where 7ry, Tr, and 7ps are the orbit maps of

Iy, 'y and IV, respectively.

Such a family O is called an n-dimensional C*-orbifold atlas of M and the pair (M, ©) is called
an n-dimensional C*-orbifold. Let (Uy, ¢x, ﬁA/FA) be an n-dimen-

sional orbifold chart around x € M. Then the group (I'y)z := {b € T |b(Z) = 7} is unique for
z up to the conjugation, where Z is a point of Uy with (5! o 7, )(Z) = z. Denote by (T'y), the
conjugate class of this group (T'»)z, This conjugate class is called the local group at z. If the local
group at z is not trivial, then z is called a singular point of (M, O). Denote by Sing(M,O) (or
Sing(M)) the set of all singular points of (M, ©). This set Sing(M, O) is called the singular set of
(M,0).

Let (M,0Oy) and (N,Op) be orbifolds, and f a map from M to N. If, for each z € M
and each pair of an orbifold chart (Uy, ¢y, [7)\/1’ x) of (M,Oys) around z and an orbifold chart
(V,L,zp,“f/”/r;‘) of (N, On) around f(z) (f(Ux) C V,), there exists a C*-map };\,u Uy — Vu with
fo ¢;1 ofp, = df;l ) 71'1'*: o f,\,u, then f is called a C*-orbimap (or simply a C*-map). Also ﬁ,”
is called a local lift of f with respect to (Uy, ¢, (7,\/F,\) and (Vy, ¥y, V“/I‘;). Furthermore, if each
local lift }?)‘,“ is an immersion, then f is called a C*-orbismmersion (or simply a C*-immersion)
and (M, Oyy) is called a C*-(immersed) suborbifold in (N, O, g). Similarly, if each local lift ﬁ\,u
is a submersion, then f is called a C*-orbisubmersion.

Now we shall define the notion of the mean curvature flow for a C*-suborbifold in a C°°-
Riemannian orbifold. Let f; (0 <t < T) be a C*°-family of C*-orbiimmersions of a C'*-orbifold
(M, Oxr) into a C*-Riemannian orbifold (N, Oy, g). Assume that, for each (zq,ty) € M x [0,T)
and each pair of an orbifold chart (Uj, ¢>)\,_(7,\ /T'2) of (M, Opr) around zp and an orbifold chart
(Viss 64, Vu/TL,) of (N,On) around f;,(zo) such that fo(Us) C V, for any t € [to,t0 + &) (¢ : a
sufficiently small positive number), there exists local lifts (ﬁ) Ap Uy — 17# of fi (t € [to,to +€))

79



80

such that they give the mean curvature flow in (‘7,‘, 9.), where g, is the local lift of g to \7“. Then
we call f; (0 <t <T) the mean curvature flow in (N, Oy, g).

Theorem 4.1([K3]). For any C°°-orbiimmersion f of a compact C*-orbifold into a C*-
Riemannian orbifold, the mean curvature flow starting from f exists uniquely in short time.

Proof. Let f be a C*-orbiimmersion of an n-dimensional compact C*-orbifold (M, Oy,) into an
(n + r)-dimensional C*°-Riemmannian orbifold (N, Oy, g). Fix 2o € M. Take an orbifold chart
(Ux, 6, U5/Tx) of (M,0y) around zo and an orbifold chart (Vy, 4, V,/T,) of (N,Ox) around
f(xzo) such that f(Uy) C V, and that U, is relative compact. Also, let fA,u LUy o 17“ be a
local lift of f and g, a local lift of g (to 17#) Since U, is relative compact, there exists the mean
curvature flow (ﬁ\’ﬂ)t Uy o (Vﬂ,_'q‘p) (0 <t < T) starting from )":\7” Uy = (Vmﬁu). Since ]”:\,#
is projetable to f|y, and g, is I'},-invariant, (f,l:\»ﬂ)i (0 <t < T) also are projectable to maps of
Uy into V,,. Denote by (fx.):’s these maps of Uy into V,,. It is clear that (fy ) (0 <t < T)
is the mean curvature flow starting from f|y,. Hence, it follows from the arbitrariness of o and
the compactness of M that the mean curvature flow starting from f exists uniquely in short time.

g.e.d.

fl 4.1.

\__—/
M
Figure 3.
R2
. 7
v = \ s : ﬁ
(a local lift of f) (a local lift of H)

N(=R?/T")

Figure 4.
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Figure 7.

81



82

-~

f(®) f:(R) (¢>0)
dlc il g‘oe;’byglv
{_/_j s gy \
1 I
" flir) 1) (> 0)

Figure 8.

5 Evolution equations

Let G ~ V be an isometric almost free action with minimal regularizable orbit of a Hilbert Lie
group G on a Hilbert space V equipped with an inner product {, ). The orbit space V/G is a
(finite dimensional) C*-orbifold. Let ¢ : V — V/G be the orbit map and set N := V/G. Give
N the Riemannian orbimetric such that ¢ is a Riemannian orbisubmersion. Let f : M — V be
a G-invariant submanifold such that (¢ o f)(M) is compact. For this immersion f, we can take
an orbiimmesion f of a compact orbifold M into N and an orbisubmersion ¢y : M — M with
dof=Ffodpuy. Let Tt (0 <t < T) be the mean curvature flow for f. The existenceness and the
uniqueness of this flow in short time is assured by Theorem 4.1. Define a map F : M x [0,T) = N
by F(z,t) := f,(z) ((z,t) € M x [0,T)). Denote by H the regularized mean curvature vector
of f and H the mean curvature vector of f. Since ¢ has minimal regularizable fibres, H is the
horizontal lift of H. Take ¢ € M and u € ¢}/ (). Define a curve ¢, : [0,T) = N by c(t) := f,(x)
and let (c;z)L : [0,T) — V be the horizontal lift of ¢, for f(u). Define an immersion f; : M < V by
fi(w) = (cz)E(t) (we M) and amap F: M x [0,T) = V by F(u,t) = f,(u) ((v,t) € M x [0,T)).

Proposition 5.1([K3]). The flow f; (0 <t < T) is the regularized mean curvature flow for f.

Proof. Denote by H; the mean curvature vector of f, and H; the regularized mean curvature
vector of f;. Take any (u,t) € M x [0,T). Set z := ¢ar(u). It is clear that ¢o f, = f, o par. Hence,
since each fibre of ¢ is regularizable and minimal, (H;), coincides with one of the horizontal lifts

of (Hy)z to fi(u). On the other hand, from the definition of F, we have aa—f(u, t) = ((cz)E)'(2),

— F
which is one of the horizontal lifts of (H:); to f;(u). These facts together with %—t(u, 0)=H,

implies that aa—f(u, t) = (H;)y. Thus it follows from the arbitrariness of (u,t) that f; (0 <t < T)

is the regularized mean curvature flow for f. This completes the proof. q.ed.

Assume that the codimension of f is equal to one. Denote by H (resp. 17) the horizontal (resp.



vertical) distribution of ¢. Denote by prj; (resp. pry;) the orthogonal projection of TV onto H
(resp. V). For simplicity, for X € TV, we denote pry(X) (resp. pry(X)) by Xz (resp. X3).
Define a distribution H; on M by fi.((Ht)u) = fex(TuM) N Hy, () (u € M) and a distribution V;
on M by fu((Vi)u) = Vj, (u € M). Note that V; is independent of the choice of t € [0, T).
Denote by g;, ht, A, H; and &; the induced metric, the second fundamental form, the shape tensor
and the regularized mean curvature vector and the unit normal vector field of f;, respectively. The
group G acts on M through f;. Since ¢ : V — V/G is a G-orbibundle and H is a connection
of the orbibundle, it follows from Proposition 5.1 that this action G ~ M is independent of the
choice of t € [0,T). It is clear that quantities g;, hs, A; and Ht are G-invariant. Also, let V? be the
Riemannian connection of g;. Let 73, be the projection of M x [0,T) onto M. For a vector bundle
E over M, denote by n3rE the induced bundle of E by 7. Also denote by I'(E) the space of all
sections of E. Define a section g of ﬂj‘M(T(0=2)M) by g(u,t) = (gt)u ((u,t) € M x [0,T)), where
T2 M is the (0, 2)-tensor bundle of M. Similarly, we define a section h of 7%, (T(%2) M), a section
A of 73, (THV M), sections H and € of the induced bundle F*TV of TV by F. We regard H and
¢ as V-valued functions over M x [0, T) under the identification of Tp(, ) V’s ((u,t) € M x [0,T))
and V. Define a subbundle H (resp. V) of n3,TM by Hys) = (Hi)u (resp. Viut) == (Vi)u)-
Denote by pry, (resp. pry,) the orthogonal projection of 7}, (T M) onto A (resp. V). For simplicity,
for X € n},(TM), we denote pry, (X) (resp. pry,(X)) by X (resp. Xy). The bundle n},(TM)

‘ 0B
is regarded as a subbundle of T(M x [0,T)). For a section B of 7},(T(™*) M), we define B by

0B dB(uy 1) . . . o o .
v =— where the right-hand side of this relation is the derivative of the vector-
(u.t)

valued function ¢t — By, 4 (€ Tl(LT’S)M). Also, we define a section By, of w%,(T("$) M) by

By = (pry ® - ®pry) oBo (pry ® - ®pry).
(r—times) (s—times)
The restriction of By, to H x -+ x H (s-times) is regarded as a section of the (r, s)-tensor bundle
H(":%) of H. This restriction also is denoted by the same symbol By. For a tangent vector field X
on M (or an open set U of M), we define a section X of 7}, TM (or 3, TM|y) by X(u’t) = Xu
((u,t) € M x [0,T)). Denote by V the Riemannian connection of V. Define a connection V of

71, TM by
¢ d¥u )
(VXY)(t) = VXY—(t) and VBQ{Y = —d't—

for X € Tiut)(M x {t}) and Y € I'(73,T M), where d}:;:’t) is the derivative of the vector-valued
function ¢t — Y(y 4 (€ TuM). Define a connection V¥ of H by VEY := (VxY)y for X €
T(M x [0,T)) and Y € I'(H). Similarly, define a connection VY of V by V¥V := (VxY)y for
X eT(Mx[0,T)) and Y € (V). Now we shall derive the evolution equations for some geometric

quantities. First we derive the following evolution equation for gy.

Lemma 5.2([K3]). The sections (gu):’s of m},(T*®) M) satisfy the following evolution equation:

Ogn _
5 2||H||hyy,

where HHH = +/(H, H).
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Proof. Take X,Y € I'(TM). We have

39% 0 d 0, = _
gt =3 —gn(X,Y) = aat (X, V) = EE(F*XHaF*YH>
= X'HF Y'HF + X—HF, Y (Y'HF)

+

- oF o] oF 8 -
(5 ()- [ ] (un () o 35
= (Xu(IHIIE), PuF) + (X, V(| HIIE))
= —||H||g(AX3, Yu) = ||H||g(Xn, AYn) = =2||H||hn(X,Y),
where we use [ XHJ €V and [ g , ] € V. Thus we obtain the desired evolution equation.

5?’
q.e.d.

Next we derive the following evolution equation for £.

Lemma 5.3([K3]). The unit normal vector fields &, s satisfy the following evolution equation:
o€
ot

where grad,(||H||) is the element of m}3,(TM) such that d||H||(X) = g(grad,||H||,X) for any

X e my (TM).

= —F.(grad | H|)),

Proof. Since (€,£) = 1, we have (at,§> = (. Hence %5 is tangent to f;(M). Take any (ug,tp) €
M % [0,T). Let {e;}32; be an orthonormal base of T, M with respect to g(y,.t,)- By the Fourier

expanding -g% lt=t, , we have

9¢ o ) i
<b—t) (uo.to) - Z <(E) (uo.to) ,fto'(ei|t=t0)> fto‘(ei|t=to)

== (borto)s aftét(éi) >ft0*(él'i o) == <€(u0=to)7 %(éiF) >fto*(éi't=io)
t=tg t=tg

= Z ug to) ( ) > fto*(ezlt to Z(g(uo,to)a (éiH)’t=tn>ft0*(éiit=to)

:_Z(é‘i“H“)|t=tofto*(el|t =ty) = Zg(uo to) (8radg 1 H(ug to)ll; Eilt=to) frox (Eile=to)
= _fto*(gradg(uovto)HH(uo,to)”) (F (gra'dg“HH))(uo,to)»

where we use = 0. Here we note that Y (-); means klim Yies, (Dias Sei={i | ()il > £}
—0oC

L
at7 1
(k € N). This completes the proof. g.ed.

Let S; (0 <t < T) be a C®-family of a (r, s)-tensor fields on M and S a section of 7}, (T(™*) M)
defined by S, ¢) := (St)». We define a section Ay S of w4, (T M) by

(D S) () : ZV&V S,

where V is the connection of 73, (T("*) M) (or 7}, (T"**+1V M)) induced from V and {e;,--- ,e,} is
an orthonormal base of #, ) with respect to (g3)(..)- Also, we define a section Ay Sy of H(9)
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by
(BrSi)(u,y = ZV’“V“SH,

where V* is the connection of H("*) (or H(**1)) induced from V* and {ei,- - ,e,} is as above.
Let A? be the section of T*V ® T*V ® TV defined by

ALY = (Vx,Y)p + (Vx.Y5)z (XY €TV).
Also, let 7% be the section of T*V  T*V ® TV defined by
TRY = (Vx,Yp)5 + (Vx,¥3); (X,Y € TV).
Also, let A; be the section of T*M ® T*M ® TM defined by
(A)xY == (Vi Y )v, + (Vi YW)u, (X,Y € TM).

Also let A be the section of 7}, (T*M ® T*M ® TM) defined in terms of A,’s (¢ € [0,T)). Also,
let 7; be the section of T*M ® T*M ® TM defined by

(T)xY = (Vi, YW)n, + (Vi, Y )v, (X,Y € TM).

Also let 7 be the section of 7} (T*M ® T*M ® TM) defined in terms of 7;’s (t € [0,T)). Clearly

we have
F.(AxY) = A} F.Y
for X,Y € H and
F(TwX)=TRE whX
for X € H and W € V. Let E be a vector bundle over M. For a section S of 7%, (T®"M ® E),

WedeﬁneTr;HS(...’Z,... ,].c’...)by

n
. j k j k
(TxS, S(- ,i’... ,.,...))(u:t):ES(W)(.,T,gi,... €5 )

((u,t) € M x[0,T)), where {e1,--- ,€en} is an orthonormal base of H,, ¢) with respect to (g ),
S(--- ,2, e ,k,~ ) means that e is entried into the j-th component and the k-th component of
S and Sgy (- ,ejz, cee k, -) means that e; is entried into the j-th component and the k-th

component of S, 4).

Then we have the following relation.

Lemma 5.4([K3]). Let S be a section of n},(T(®? M) which is symmetric with respect to g.

Then we have

(AuS)u(X,Y) = (A} Sy)(X,Y)
—2Tr5, ((VeS)(Aa X, Y)) — 2Tx}, ((VaS)(ALY, X))
~TrS S(Au(AeX),Y) - T¥S, S(Au(AY), X)
S((VeA)eX,Y) — Try, S((V.A)Y, X)
—2Tr), S(AX, AY)
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for X,Y € H, where V is the connection of m%,(T*¥ M) induced from V.

Proof. Take any (ug,ty) € M x [0,T). Let {e1, - ,en} be an orthonormal base of H . ¢, with
respect to (g7 )(uo,to)- Take any X,Y € Hyy1,). Let X be a section of H on a neighborhood of
(up, o) with )ﬁf(u()?to) = X and (V”X)(uo_,to) = 0. Similarly we define Y and €. Let W = X,Y or
e;. Then, it follows from (VzW)(uO’to) =0, (Ve,W)(uo,to) = A.,W and the skew-symmetricness
of Al x that

n

(DuS)n(X,Y) =D (Ve Ve, S)(X,Y)

i=1

Z (VAVESH)(X,Y) 2i<(vei5)(Aeix,Y)+(veiS)<AeiY,X>>

=1

- Z Ao (A, X),Y) + S(Ae,(Ae,Y), X)) =2 S(Ae X, A.Y)
- Z (Ve,A)e. X, Y) + 8((Ve, A)e, Y, X)) .
The right-hand side of this relation is equal to the right-hand side of the relation in the statement.
This completes the proof. q.e.d.
Also we have the following Simons-type identity.
Lemma 5.5([K3]). We have
Lyh = Vd||H|| + || H||(A%)y — (Tx (A%)n)h,

where (A%)y is the element of I'(n}, TP M) defined by (A?)y(X,Y) := g(A’X)Y) (X,Y €
73, TM).

Proof. Take X,Y,Z,W € n},(TM). Since the ambient space V is flat, it follows from the Ricci’s

identity, the Gauss equation and the Codazzi equation that

(VxVyh)(Z,W) — (VzVwh)(X,Y) = (VxVzh)(Y,W) — (VzVxh)(Y,W)
= h(X,Y)W(AZ, W) — h(Z,Y)h(AX, W) + h(X, W)h(AZ,Y) — h(Z, W)h(AX,Y).

By using this relation, we obtain the desired relation. q.e.d.
Note. In the sequel, we omit the notation F, for simplicity.
Define a section R of 7}, (H (%) by

R(X,Y) 1= TrS, h(Au(AX),Y) + TrS, h(Ad(AY), X)
FTYS, h(Ved)s X, Y) + TxS, h((VeA)aY, X)
+2TxS, (Voh) (A X, Y) + 2T¥3, (Voh)(ALY, X)
+2TYS, h(AX, AY) (X,Y € H).

From Lemmas 5.3, 5.4 and 5.5, we derive the following evolution equation for (hy)¢)s.



Theorem 5.6([K3]). The sections (hy);’s of w4 (T2 M) satisfies the following evolution equa-

tion:

Ot (X,¥) = (M) (X,Y) = 2 HI(An)s(X, Y) — 20| HI[ (AL (X, Y)
T (4%)% = (A9 ) hu(X,Y) = R(X,Y)
for X,Y € H.

Proof. Take X,Y € H(, ). Easily we have
(5.1) AX = ApX + AZX and (A7) X = (A)*X — (AD)*X,
where we use ,

(Fe), = (e + ), = (Few), = v

XH} € V, we have

for W € T'(V) because of [W,£] € T'(V). Also, since {%,

(5.2) [ 2 XH] — 2 H|| A2 Xy

From Lemma 5.3, (5.1) and (5.2), we have

Q’%(X Y) = ( (X,Y)):%<€aXH(YHF)>
3

<8t XH(YHF)>+ &5 (X3 (Y3 F)))
— (G 211), T 7o) + (6. (¥ (51) )
HE X ([, Tl F) 4 {6, 12, Kol (FF))

- (gradguHH gxyu) + X (Y| HI|) — [|H||(€, Vx Fu(A(Yn))
<£7VXF ([6 g ])> <§7 (£ X] F Y’H>

(VLY — [, )+ HIHCX, AZY) + 2 HIACAEX,Y)
— (VAIHIN(X, Y) = | Hllgn((43)*X, Y) = 3||Hllg((AL)?X, Y)

From this relation and the Simons-type identity in Lemma 5.5, we have

oh
(5.3) S = Ngch — 21 HI|((4%)%); — 20 HII((AD)?),
+Tr ((42)% = ((AD)) .
Substituting the relation in Lemma 5.4 into (5.3), we obtain the desired relation. q.e.d.

For R, we can show the following fact.
Lemma 5.7([K3]). For X € H, we have

R(X, X) = 4Tr}, (ALX, A2 (A X)) + ATx}, (AZX, A% (Ane))
+3Tr),, (Ve A?)e X, ALX) + 2T5), (Ve A?)o X, ALX)
+Tx0, (A2X, (VxA%)¢e)
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and hence Try, R(e,e) = 0.
By using Theorem 5.6 and Lemma 5.7, we can show the following evolution equation for ||H||’s.

Corollary 5.8(|K3]). The norms ||H,||’s of H, satisfy the following evolution equation:

|1 H]|

5 = Dl H|| + || H|[Tx(Ay)* - 3|1 || Tx((A§)*)-

Remark 5.1. From the evolution equations obtained in this section, the evolution equations for the
corresponding geometric quantities of f,(: M < V/G) are derived, respectively. In the case where
the G-action is free and hence V/G is a (complete) Riemannian manifold, the above derived evo-
lution equations coincide with the evolution equations for the corresponding geometric quantities
along the mean curvature flow in a complete Riemannian manifold which were given by Huisken
[Hu2]. That is, the discussion in this section give a new proof of the evolution equations in [Hu2] in
the case where the ambient complete Riemannian manifold occurs as V/G. In the proof of [Hu2],
one need to take local coordinates of the ambient space to derive the evolution equations. On
the other hand, in our proof, one need not take local coordinates of the ambient space V and can
identify the tangent space of the ambient space V at each point with V. These are an advantage

of our proof.

6 Horizontally strongly convexity preservability theorem

Let G ~ V be an isometric almost free action with minimal regularizable orbit of a Hilbert Lie
group G on a Hilbert space V equipped with an inner product (, ) and ¢ : V — V/G the orbit
map. Denote by ¥ the Riemannian connection of V. Set n := dim V/G — 1. Let M(C V) be a
G-invariant hypersurface in V' such that ¢(M) is compact. Let f be an inclusion map of M into
V and f; (0 £t < T) the regularized mean curvature flow for f. We use the notations in Section
5. In the sequel, we omit the notation f;, for simplicity. Set

L= max _ (A%, (Vx,4%)x,Xa), Xs)l,
(X1, ,Xs5)EHE
where H, := {X € H| ||X|| = 1}. Assume that L < co. Note that L < oo in the case where V/G
is compact. Then we obtain the following horizontally strongly convexity preservability theorem by
using the evolution equations in Section 5 and the maximum principle for C°°-family of G-invariant
symmetric (0,2)-tensor fields on M (see [K3]).

Theorem 6.1([K3]). If M satisfies ||Hol||?(h#)(,0) > 2n*L(g#)(.,0), then T < oo holds and
N He|P(ha) .ty > 2n2L(gn)(..¢) holds for all t € [0,T).

7 Strongly convex preservability theorem in the orbit space

Let V, G and ¢ be as in the previous section. Set N := V/G and n := dim V/G—1. Denote by gn
and Ry the Riemannian orbimetric and the curvature orbitensor of N. Also, V¥ the Riemannian



89

connection of gn|n\Sing(n)- Since the Riemannian manifold (N \ Sing(N), gn|n\sing(n)) is locally
homogeneous, the norm ||[VNRy|| of VN Ry (with respect to gn) is constant over N \ Sing(N).
Set Ly := ||[V¥ Ry||. Assume that Ly < oo. Let M be a compact suborbifold of codimension one
in N immersed by f and 715 (telo, T)) the mean curvature flow for 7. Denote by G:, ht, Ay and H,
be the induced orbimetric, the second fundamental orbiform, the shape orbitensor and the mean
curvature orbifunction of f;, respectively, and £, the unit normal vector field of 7t|M\Sing(T/1')-

From Theorem 6.1, we obtain the following strongly convexity preservability theorem for compact
suborbifolds in V.

Theorem 7.1([K3]). If f satisfies ||Ho||*ho > n2LnG,, then T < oo holds and |[H:||*h: >
n?Lng, holds for all t € [0,T).

Proof. Set M := {(z,u) € MxV | f(z) = ¢(u)} and define f : M = V by f(z,u) = u ((z,u) € M).
It is clear that f is an immersion. Denote by Hj the regularized mean curvature vector of f. Define
acurve c; : [0,T) = N by c.(t) := f,(z) (t € [0,T)) and let (cz)L be the horizontal lift of ¢, for
u, where u € ¢~!(f(z)). Define an immersion f;, : M <« V by fi(z,u) := (co)L(t) ((z,u) € M).
Then f; (t € [0,T)) is the regularized mean curvature flow for f (see the proof of Proposition 5.1).
Denote by g;, hi, A* and H; the induced metric, the second fundamental form, the shape tensor and
the mean curvature vector of f;, respectively. By the assumption, f, satisfies ||Hol||?ho > n®LnGyp.
Also, we can show Ly = 2L by long calculation, where L is as in the prevoius section. From these
facts, we can show that f, satisfies ||Hp|)?(hx)o > 2n2L(gn)o. Hence, it follows from Theorem 6.1
that f;, (¢t € [0,T)) satisfies || Hy||>(hy): > 2n?L(g3):. Furthermore, it follows from this fact that
7, (t € [0,T)) satisfies ||H,||?%, > nLng,. qed.

Remark 7.1. In the case where the G-action is free and hence N is a (complete) Riemannian
manifold, Theorem 6.1 implies the strongly convexity preservability theorem by G. Huisken (see
[Hu2, Theorem 4.2]).
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