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ABSTRACT. For a nowhere (locally) compact space we iterate Stone-
\v{C}ech compactification $\omega_{1}$ many times to get a compact space where two
or more disjoint dense subsets are $C^{*}$ -embedded. The corresponding
compact spaces we get for $\mathbb{Q}$ (the rationals), $\mathbb{P}$ (the irrationals) and $\mathbb{S}$

(the Sorgenfrey line) are not extremally disconnected, hence different
from their absolutes.

1. INTRODUCTION

This talk originates from van Douwen’s question in his paper “Remote
points” (see \S 19 of [4]) that:
What happens if we repeat taking remainders of Stone-\v{C}ech compactifica-
tions of the rationals

$\mathbb{Q}^{*}=\beta \mathbb{Q}\backslash \mathbb{Q}, \mathbb{Q}^{**}=\beta \mathbb{Q}^{*}\backslash \mathbb{Q}^{*}, \mathbb{Q}^{***}, \cdots$

He remarks that “it might be interesting to define $\mathbb{Q}^{(\alpha)\prime}s$ , for $\alpha\geq\omega$ , using
inverse limits at limit stages” and that “there must be a $\gamma$ for which the
natural map from $\mathbb{Q}^{(\gamma+2)}$ to $\mathbb{Q}^{(\gamma)}$ is a homeomorphism We will show in
this paper that the least such $\gamma$ is the first uncountable ordinal $\omega_{1}$ (which
we will denote by $\Omega$ for notational convenience).

Let $K$ be a compact space of countable $\pi$-weight, partitioned as a disjoint
union of two dense Lindel\"of subspaces $K=K^{-}\cup K^{+}$ . Then, in this paper,
iterating Stone-\v{C}ech compactification $\omega_{1}=\Omega$ many times, we will construct
a compact space $\Omega(K)=K_{\Omega}^{-}\cup K_{\Omega}^{+}$ satisfying the following conditions:
(1) $\Omega(K)$ admits a perfect irreducible map $g:\Omega(K)arrow K$ such that
$g(K_{\Omega}^{-})=K^{-},$ $g(K_{\Omega}^{+})=K^{+}.$

(2) Both of $K_{\Omega}^{-},$ $K_{\Omega}^{+}$ are $C^{*}$-embedded in $\Omega(K)$ .
Though, as is well known, the absolute (or the projective cover) of $K$ also
satisfies the corresponding conditions as above (1), (2), we can show, in
most cases we deal with, that our compact space $\Omega(K)$ is not extremally
disconnected, hence different from the absolute.
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Typical cases we are going to deal with are the following partitions.

Example 1. $K=[0$ , 1 $],$ $K^{-}=Q,$ $K^{+}=P$ where $Q=(0,1)\cap \mathbb{Q}$ and
$P=[0, 1]\backslash Q$ . Obviously, $Q$ is a homeomorphic copy of the rationals $\mathbb{Q}$ , and
$P$ is that of the irrationals $\mathbb{P}.$

Example 2. $K=$ the Alexandroff double arrow space $\mathbb{A}$ , i.e., the lexi-
cographically ordered space $\mathbb{A}=[0$ , 1$]$ $\cross\{0, 1\}\backslash \{(0,0)$ , $(1, 1)\}$ which is the
union of two dense sets $K^{-}=(0,1] \cross\{0\}, K^{+}=[0,1)$ $\cross\{1\}$ , each of which
is a copy of the Sorgenfrey line $\mathbb{S}.$

In this talk we show how to construct such an extension $\Omega(K)$ in general.
The proofs and the details of its properties will appear in the forthcoming
paper [6].

All spaces are assumed to be completely regular and Hausdorff, and maps
are always continuous, unless otherwise stated. “Partition” is synonymous
with “disjoint union.”

As a suitable class for our purpose we consider the following class $\mathcal{L}$ con-
sisting of Lindel\"of spaces $X$ such that

(i) $X$ is nowhere compact (or nowhere locally compact), i.e., $X$ has no com-
pact neighborhood, and
(ii) every compact subset of $X$ is included in some compact zero-set of $X.$

In terms of compactifications the condition (i) is equivalent to say that the
remainder $cX\backslash X$ of any/some compactification $cX$ of $X$ is dense in $cX,$

while the second one (ii) is equivalent to say that $cX\backslash X$ is Lindel\"of for
any/some compactification $cX$ . The subclass of $\mathcal{L}$ consisting only of first
countable spaces will be denoted by $\mathcal{L}(lst)$ .

The rationals $\mathbb{Q}$ , the irrationals $\mathbb{P}=\mathbb{R}\backslash \mathbb{Q}\approx\omega^{\omega}$ , the Sorgenfrey line $\mathbb{S}$ (i.e.,
the real line with the half-open interval topology) are the typical members
of $\mathcal{L}(lst)$ . That $\mathbb{S}$ belongs to $\mathcal{L}(lst)$ can be seen by regarding the double
arrow space $\mathbb{A}$ in Example 2 as a compactification of $\mathbb{S}$ . All of

$\mathbb{P}\cross \mathbb{Q}, \mathbb{S}\cross \mathbb{Q}, \mathbb{Q}\cross \mathbb{C}, \mathbb{S}\cross \mathbb{C}\mathbb{S}\cross \mathbb{P}$

belong to $\mathcal{L}$ . Note that $\mathbb{P}\cross \mathbb{C}$ is nothing but $\mathbb{P}$ because

$\mathbb{P}\cross \mathbb{C}\approx\omega^{\omega}\cross 2^{\omega}\approx(\omega\cross 2)^{\omega}\approx\omega^{\omega}\approx \mathbb{P}.$

For topological characterization of $\mathbb{P}\cross \mathbb{Q}$ and $\mathbb{Q}\cross \mathbb{C}$ see [7] and [8].

As a basic tool we use perfect irreducible maps, so we will list their properties
needed here. Let $g$ be a map from $X$ onto $Y$ . For a subset $U\subseteq X$ define
$g^{o}(U)\subseteq Y$ by

$y\in 9^{\circ}(U)$ if and only if $g^{-1}(y)\subseteq U,$

i.e., $g^{o}(U)=Y\backslash g(X\backslash U)\subseteq g(U)$ . Note an obvious, but useful, formula

$g^{o}(U\cap V)=g^{o}(U)\cap g^{o}(V)$
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for any sets $U,$ $V\subseteq X$ , which especially implies that $g^{o}(U)\cap g^{o}(V)=\emptyset$

whenever $U\cap V=\emptyset$ . An onto map $g$ is called irreducible if $g^{o}(U)\neq\emptyset$ for
every non-empty open set $U$ . A collection $\mathcal{B}$ of nonempty open sets of $X$ is
called a $\pi$-base for $X$ if every nonempty open set in $X$ contains some member
of $\mathcal{B}$ . The minimal cardinality of such a $\pi$-base is called the $\pi$-weight of $X.$

Observe that any dense subspace of $X$ has the same $\pi$-weight as $X$ , and that
any space of countable $\pi$-weight is separable. Consequently, any dense or
open subset of a space of countable $\pi$-weight is also of countable $\pi$-weight,
and hence separable. So, for example, all of $\mathbb{Q},$ $\beta \mathbb{Q},$ $\mathbb{Q}^{*}=\beta \mathbb{Q}\backslash \mathbb{Q}$ are of
countable $\pi$-weight, and hence separable. A closed map with compact fibers
are called perfect. We assume a perfect map is always onto.

Fact 1.1. (Properties of Closed Irreducible Maps)
Let $g:Xarrow Y$ be any closed irreducible map. Then
(1) $g^{o}(U)$ is non-empty and open whenever $U$ is. Moreover,

$c1_{Y9^{o}}(U)=c1_{Y}g(U)=9(c1_{X}U)$

for every open subset $U\subseteq X$ , i. e., $g$ carries a regular closed $\mathcal{S}etc1_{X}U$ to a
regular closed set $c1_{Y}g^{o}(U)$ .
(2) $g$ preserves $ccc$, i.e., $X$ is $ccc$ if and only if $Y$ is. Similarly, $g$ pre-
serves $den\mathcal{S}ity$ and $\pi$ -weight. In case 9 is perfect irreducible, it also preserves
nowhere $compactne\mathcal{S}S.$

Next lemma shows how we can produce perfect irreducible maps.

Lemma 1.2. Let $\phi$ : $Xarrow Y$ be a perfect map and let $\Phi$ : $bXarrow cY$

be its extension where $bX$ and $cY$ are some compactifications of $X$ and
$Y$ respectively. Then $\Phi$ maps the remainder of $X$ onto that of $Y$ , i. e.,
$\Phi(bX\backslash X)=cY\backslash Y$. Moreover,
(1) $\phi$ is perfect irreducible if and only if $\Phi$ is.
(2) If $\phi$ is perfect irreducible and $X$ (hence $Y$ also) is nowhere compact, then
the restriction of $\Phi$ to the remainders

$bX\backslash Xarrow cY\backslash Y$

is also perfect irreducible. $\square$

Perfect irreducible maps we encounter frequently in this paper are those
induced by some homeomorphisms, i.e., when the above $\phi$ is an identity
map.

For an open set $U$ of $X$ we can define its maximal open extension to $\beta X$

by
$Ex(U)=\beta X\backslash c1_{\beta X}(X\backslash U)$ .

We denote the boundary of a subset $W$ in $Y$ by $Bd_{Y}W$ so that $Bd_{Y}W=$

$c1_{Y}W\backslash W$ if $W$ is open in $Y$ . Van Douwen [4] proved the following quite
useful formula:

(1-0) $Bd_{\beta X}Ex(U)=c1_{\beta X}Bd_{X}(U)$ for every open set $U$ in $X.$
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A space with a clopen base is called $0$-dimensional and most spaces we
deal with in this paper are $0$-dimensional. As is well known (cf. 16.16 in
[5]), for a Linde\"of space $X$ the $0$-dimensionality of $X$ is equivalent with that
of $\beta X$ ; in other words, the collection of $Ex(U)$ ’s where $U$ ranges over all
clopen sets in $X$ forms a clopen base for $\beta X.$

2. CONSTRUCTION OF DUAL EXTENSIONS

We use inverse systems only of the form

$\{X_{\xi}, g_{\alpha,\beta}, \xi\}$

where $\xi$ is an ordinal, and $g_{\alpha,\beta}$ : $X_{\beta}arrow X_{\alpha}(\alpha<\beta<\xi)$ are bonding
maps, and denote its inverse limit as $X_{\xi}= \lim_{arrow}\{X_{\alpha}, g_{\alpha,\beta}, \xi\}$ . Projections

are denoted by $\pi_{\alpha}$ : $X_{\xi}arrow X_{\alpha}$ , or $\pi_{\alpha}=\pi_{\alpha}^{\xi}=g_{\alpha,\xi}$ . We assume all inverse
systems in this paper are continuous, i.e.,

$X_{\eta}= \lim_{arrow}\{X_{\alpha}, g_{\alpha,\beta}, \eta\}$

for each limit $\eta<\xi$ . Recall that, if we take a base $\mathcal{B}_{\alpha}$ for each $X_{\alpha}$ , the
collection $\bigcup_{\alpha<\xi}\pi_{\alpha}^{-1}(\mathcal{B}_{\alpha})$ forms a base for $X_{\xi}.$

The next lemma is well known for a system of compact spaces (cf. \S 11 in
[1]); what we need here is for a system of Lindel\"of spaces.

Lemma 2.1. (Factorization Lemma) Suppose $cof(\xi)>\omega$ , and $X_{\xi}=$

$\lim_{arrow}\{X_{\alpha}, 9\alpha,\beta, \xi\}$ is Lindelof. Then every map $f:X_{\xi}arrow \mathbb{R}$ can be factorized
as $f=\hat{f}\circ\pi_{\alpha}$ for some $\alpha<\xi$ and some map $\hat{f}:X_{\alpha}arrow \mathbb{R}.$

Proof. Let $\mathcal{B}$ be a countable open base of $\mathbb{R}$ , and $f$ : $X_{\xi}arrow \mathbb{R}$ . Take any
$U\in \mathcal{B}$ . Then, since $f^{-1}(U)$ is a cozero-set of $X_{\xi}$ , it can be expressed that
$f^{-1}(U)=\pi_{\alpha(U)}^{-1}(W)$ for some cozero-set $W$ of $X_{\alpha(U)}$ with $\alpha(U)<\xi$ . Put
$\alpha=\sup\{\alpha(U) : U\in \mathcal{B}\}<\xi$ . Then this $\alpha$ has the property that for every
$U\in \mathcal{B}$ there exists an open set $W$ of $X_{\alpha}$ such that $f^{-1}(U)=\pi_{\alpha}^{-1}(W)$ .
Therefore Lemma 2.1 follows from the next lemma. $\square$

Lemma 2.2 (Yong [9]). Let $\pi$ : $Xarrow Y,$ $f:Xarrow Z$ and suppose $\pi$ is onto.
Then $f$ is factorized as $f=\hat{f}\circ\pi$ for some map $\hat{f}:Yarrow Z$ if and only if
the space $Z$ has an open base $\mathcal{B}$ with the property that:
For every $U\in \mathcal{B}$ the open set $f^{-1}(U)$ takes the fonn $f^{-1}(U)=\pi^{-1}(W)$

for some open set $W\subseteq Y.$ $\square$
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Now let $K=X^{(0)}\cup X^{(1)}$ be a compact space with a partition into nowhere
compact spaces $X^{(0)},$ $X^{(1)}$ . Since both of $X^{(0)},$ $X^{(1)}$ are dense in $K$ , we
can see $K$ as a compactification of either of $X^{(0)}$ or $X^{(1)}$ . Put $X_{0}=K,$

$X_{1}=\beta X^{(1)},$ $X^{(2)}=\beta X^{(1)}\backslash X^{(1)}$ , and let

$\Phi_{0}:X_{1}=\beta X^{(1)}=X^{(1)}\cup X^{(2)}arrow X_{0}=X^{(0)}\cup X^{(1)}$

be the Stone extension of the identity map $id:X^{(1)}arrow X^{(1)}$ . Denote by

$\phi_{0}:X^{(2)}arrow X^{(0)}$

the restriction of $\Phi_{0}$ . Next, putting $X_{2}=\beta X^{(2)},$ $X^{(3)}=\beta X^{(2)}\backslash X^{(2)}$ , let

$\Phi_{1}$ : $X_{2}=\beta X^{(2)}=X^{(2)}\cup X^{(3)}arrow X_{1}=\beta X^{(1)}=X^{(1)}\cup X^{(2)}$

be the Stone extension of the identity map $id:X^{(2)}arrow X^{(2)}$ . Denote by

$\phi_{1}:X^{(3)}arrow X^{(1)}$

the restriction of $\Phi_{1}$ . Repeating these procedures of Stone-\v{C}ech compactifi-
cations infinitely many times, we get mappings $\Phi_{n},$ $\phi_{n}(n\in\omega)$ such that

$\Phi_{n}:X_{n+1}=X^{(n+1)}\cup X^{(n+2)}arrow X_{n}=X^{(n)}\cup X^{(n+1)},$

where $X_{m}=\beta X^{(m)},$ $X^{(m+1)}=\beta X^{(m)}\backslash X^{(m)}$ for $m\geq 1,$

is the Stone extension of the identity map $id:X^{(n+1)}arrow X^{(n+1)}$ , and

$\phi_{n}:X^{(n+2)}arrow X^{(n)}$

is the restriction of $\Phi_{n}$ . Then all of $\Phi_{n},$ $\phi_{n}(n\in\omega)$ are perfect irreducible.
We can consider the system $\{X_{n}, \Phi_{n}\}_{n\in\omega}$ and its induced ones
$\{X^{(2m)}, \phi_{2m+1}\}_{m\in\omega},$ $\{X^{(2m+1)}, \phi_{2m+2}\}_{m\in\omega}$ as inverse sequences, and take
their limits

$X_{\omega}= \lim_{arrow}\{X_{n}, \Phi_{n}\}_{n\in\omega},$

$X_{\overline{\omega}}= \lim_{arrow}\{X^{(2m)}, \phi_{2m+1}\}_{m\in\omega},$ $X_{\omega}^{+}= \lim_{arrow}\{X^{(2m+1)}, \phi_{2m+2}\}_{m\in\omega}.$

Then it is easy to see that the projections $\pi_{n}^{\omega}$ : $X_{\omega}arrow X_{n}$ are perfect
irreducible, and so, $X_{\overline{\omega}},$ $X_{\omega}^{+}$ are nowhere compact and $X_{\omega}=X_{\overline{\omega}}\cup X_{\omega}^{+}$ can be
seen as a compactification of $X_{\overline{\omega}}$ . Therefore, just replacing the starting $X_{0}=$

$X^{(0)}\cup X^{(1)}$ by $X_{\omega}=X_{\omega}^{-}\cup X_{\omega}^{+}$ , we can repeat the Stone-\v{C}ech extensions as
before to get $\{X_{\omega+n}, \Phi_{\omega+n}\}_{n\in\omega}$ and $X_{\omega+\omega}= \lim_{arrow}\{X_{\omega+n}, \Phi_{\omega+n}\}_{n\in\omega}$ . Let us

do these extensions up to $\Omega=\omega_{1}$ . (For notational simplicity we use $\Omega$ for
the first uncountable ordinal $\omega_{1}.$ ) Then we finally get a continuous inverse
system of length $\Omega$

(2-0) $X_{\Omega}= \lim_{arrow}\{X_{\alpha}, \Phi_{\alpha,\beta}, \Omega\}$

with the following properties:
(1) Each $X_{\alpha}(\alpha\leq\Omega)$ is partitioned as $X_{\alpha}=X_{\overline{\alpha}}UX_{\alpha}^{+}$ into two disjoint
dense subsets, and
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$X_{\alpha}^{+}=X_{\alpha+1}^{+}$ for even $\alpha$ , while $X_{\overline{\alpha}}=X_{\alpha+1}^{-}$ for odd $\alpha.$

(An ordinal of the form $\gamma+2m$ where $\gamma$ is a limit ordinal and $m\in\omega$ is
called “even,” while an ordinal not even is “odd. Note that limit ordinals
are even.)
(2) For any $\alpha<\beta<\Omega$ the bonding map $\Phi_{\alpha,\beta}$ is such that

$\Phi_{\alpha,\beta}$ : $X_{\beta}=X_{\beta}^{-}\cup X_{\beta}^{+}arrow X_{\alpha}=X_{\overline{\alpha}}\cup X_{\alpha}^{+}$

$\Phi_{\alpha,\beta}(X_{\beta}^{-})=X_{\alpha}^{-}, \Phi_{\alpha,\beta}(X_{\beta}^{+})=X_{\alpha}^{+}.$

Moreover, $\Phi_{\alpha,\alpha+1}$ is the Stone extension of the following identity map:
$id:X_{\alpha+1}^{+}=X_{\alpha}^{+}$ for even $\alpha$ , and $id:X_{\alpha+1}^{-}=X_{\overline{\alpha}}$ for odd $\alpha.$

So, to be compatible with our beginning notation, we need to set

$X_{2m}^{+}=X_{2m+1}^{+}=X^{(2m+1)},$ $X_{2m+1}^{-}=X_{2m+2}^{-}=X^{(2m+2)},$ $\Phi_{\alpha,\alpha+1}=\Phi_{\alpha}$

for $m\in\omega$ and $\alpha<\omega+\omega$ . In particular, $X_{0}=X^{(0)}\cup X^{(1)}=X_{0}^{-}\cup X_{0}^{+}$ , and

we call any one of spaces $X_{0},$ $X_{0}^{-},$ $X_{0}^{+}$ the starting space.

$\Phi_{0} \Phi_{1}$
$X_{0}$ $\Leftarrow$ $X_{1}=\beta X^{(1)}\Leftarrow$ $X_{2}=\beta X^{(2)}$ . .. $X_{\omega}$

FIG. 1. The first $\omega$ steps

Naturally this inverse system $\{X_{\alpha}, \Phi_{\alpha,\beta}, \Omega\}$ has two subsystems

$\{X_{\alpha}^{-}, \Phi_{\alpha,\beta}^{-}, \Omega\}, \{X_{\alpha}^{+}, \Phi_{\alpha,\beta}^{+}, \Omega\}$

with limits $X_{\Omega}^{-},$
$X_{\Omega}^{+}$ respectively, where

$\Phi_{\alpha,\beta}^{-}:X_{\beta}^{-}arrow X_{\alpha}^{-}, \Phi_{\alpha,\beta}^{+}:X_{\beta}^{+}arrow X_{\alpha}^{+}$

are restrictions of $\Phi_{\alpha,\beta}$ . The corresponding projections will be denoted by

$\pi_{\alpha}$ : $X_{\Omega}arrow X_{\alpha},$ $\pi_{\alpha}^{-}:X_{\Omega}^{-}arrow X_{\alpha}^{-},$ $\pi_{\alpha}^{+}:X_{\Omega}^{+}arrow X_{\alpha}^{+}.$

All maps $\Phi_{\alpha,\beta},$ $\Phi_{\alpha,\beta}^{-},$
$\Phi_{\alpha,\beta}^{+},$

$\pi_{\alpha},$ $\pi_{\overline{\alpha}},$
$\pi_{\alpha}^{+}$ are perfect irreducible. Consequently,

if one of the beginning spaces $X_{0}^{-},$ $X_{0}^{+}$ belongs to the class $\mathcal{L}$ , so do all of
$X_{\alpha}^{-},$ $X_{\alpha}^{+}(\alpha\leq\Omega)$ . Note also that if one of $X_{0}^{-},$ $X_{0}^{+},$ $X_{0}$ has a countable

76



$\pi$-base, all of $X_{\overline{\alpha}},$ $X_{\alpha}^{+},$ $X_{\alpha}(\alpha\leq\Omega)$ have countable $\pi$-bases.

The factorization lemma implies

Theorem 2.3. (Dually $C^{*}$-embedded Extension)

Assume $X_{0}^{-}\in \mathcal{L}$ , i. e., $X_{0}^{+}\in \mathcal{L}$ . Then $X_{\Omega}^{-},$
$X_{\Omega}^{+}\in \mathcal{L}$ , and both of them

are $C^{*}$ -embedded in $X_{\Omega}$ , i. e., symbolically,

$\beta(X_{\Omega}^{-})=\beta(X_{\Omega}^{+})=X_{\Omega}.$

Proof. By symmetry it suffices to show that $X_{\Omega}^{-}= \lim_{arrow}\{X_{\alpha}^{-}, \Phi_{\alpha,\beta}^{-}, \Omega\}$

is $C^{*}$-embedded in $X_{\Omega}$ . Let $f$ : $X_{\Omega}^{-}arrow[0$ , 1 $]$ be any continuous function

on $X_{\Omega}^{-}$ . Then, by the factorization lemma, we can find some $\alpha<\Omega$ and

a continuous function $\hat{f}$ on $X_{\overline{\alpha}}$ such that $f=\hat{f}0\pi_{\alpha}^{-}$ . Once such an $\alpha$ is
chosen, any $\beta>\alpha$ plays the same role as $\alpha$ . Therefore we can assume that
$\alpha$ is odd. Then our construction assures that $X_{\overline{\alpha}}$ is $C^{*}$-embedded in $X_{\alpha},$

so that the bounded function $\hat{f}$ can be extended to $h$ : $X_{\alpha}arrow[O$ , 1 $]$ . The
function $ho\pi_{\alpha}$ : $X_{\Omega}arrow[O$ , 1 $]$ is the desired extension of $f.$

$\square$

We call the space $X_{\Omega}$ in Theorem 2.3

the dual Stone-\v{C}ech $\Omega$ -extension of the partition $\mathcal{P}$ : $X_{0}=X_{0}^{-}\cup X_{0}^{+}.$

In general let $Y=Y^{-}\cup Y^{+}$ be a partition of a space $Y$ into two dense sub-
sets. Then we call $Y=Y^{-}\cup Y^{+}$ as a dually $C^{*}$ -embedded partition of $Y,$

if both of $Y^{-},$ $y+areC^{*}$-embedded in $Y$ . With this terminology Theorem
2.3 can be rephrased that
$X_{\Omega}=X_{\Omega}^{-}\cup X_{\Omega}^{+}$ is a dually $C^{*}$-embedded partition if $X_{0}^{-}\in \mathcal{L}.$

We can show that the space $X_{\Omega}$ of (2-0) depends only on the partition
$\mathcal{P}$ , so that in particular we get the same space $X_{\Omega}=\Omega(X_{0})$ if we exchange

the role of $X_{0}^{-}$ and $X_{0}^{+}$ in the above construction. For the proof of this fact
see the forthcoming paper [6]. So, let us denote $X_{\Omega}$ by $\Omega(\mathcal{P})$ , or simply by
$\Omega(X_{0})$ when the partition $\mathcal{P}$ is clear.

Now suppose a nowhere compact space $X\in \mathcal{L}$ is given. Then, regarding
$X=X_{0}^{-}$ , we get the subspace $X_{\Omega}^{-}$ of $X_{\Omega}$ which is uniquely determined by

the given space $X$ . Let us denote this $X_{\Omega}^{-}$ by $\Omega(X)$ . Then Theorem 2.3
implies

$\Omega(\beta X)=\beta(\Omega(X))$

for $X\in \mathcal{L}$ . For example, we have

$\Omega([0,1])=\Omega(\beta \mathbb{Q})=\beta(\Omega(\mathbb{Q}))=\Omega(\beta \mathbb{P})=\beta(\Omega(\mathbb{P}))$

for the partition of $[0$ , 1 $]$ in Example 1, and

$\Omega(\mathbb{A})=\Omega(\beta \mathbb{S})=\beta(\Omega(\mathbb{S}))$

for the partition of $\mathbb{A}$ in Example 2. We can show that $\Omega(\mathbb{A})$ is not homeo-
morphic with $\Omega([0,1 by$ proving that $\Omega(\mathbb{A})$ contains no dense set of first

category which is $C^{*}$-embedded (see [6]).
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Note that our construction becomes trivial if the given partition $X_{0}=$

$X_{0}^{-}\cup X_{0}^{+}$ itself is dually $C^{*}$-embedded. Fortunately we can prove that is
not the case if $X_{0}^{-}\in \mathcal{L}(lst)$ , i.e.,

Theorem 2.4. ([6]) Assume $X^{(0)}=X_{0}^{-}\in \mathcal{L}(lst)$ . Then no bonding map

$\Phi_{\alpha,\beta}:X_{\beta}arrow X_{\alpha}(\alpha<\beta<\Omega)$

is one to one.

3. COMMON BOUNDARY POINTS

Let $S$ be a dense subset of $T$. A point $p\in T\backslash S$ is called remote from $S,$

or a remote point $w.r.t.$ $(S,T)$ , if $p\not\in c1_{T}F$ for every nowhere dense closed
subset $F$ of $S$ . In case $T=\beta S$ we simply call such a point $p$ as a remote
point of S. Van Douwen [3, 4], and independently Chae and Smith [2], have
shown that:

Fact 3.1. Every non-pseudocompact $\mathcal{S}pace$ of countable $\pi$ -weight has $2^{c}$

many remote points.

A space $T$ is said to be extremally disconnected at a point $p\in T$ (see [4])
if $p\not\in c1_{T}U_{1}\cap c1_{T}U_{2}$ for every pair of disjoint open sets $U_{1},$ $U_{2}$ in $T$. We
call such a point $p$ an extremally disconnected point of $T$ , or simply, an $e.d.$

point of $T$ . Obviously a space $T$ is extremally disconnected if every point of
$T$ is an e.d. point. If $S$ is dense in $T$ , we always have $c1_{T}U=c1_{T}(U\cap S)$ for
every open set $U$ of $T$ . So, an equivalent definition of an e.d. point is given
using only open subsets of any dense subset $S\subseteq T$ :

$p\in T$ is an e.d. point if and only if $p\not\in c1_{T}V_{1}\cap c1_{T}V_{2}$ for every pair of
disjoint open sets $V_{1},$ $V_{2}$ in $S.$

Note that this definition does not depend on the choice of the dense subset
$S$ , while it is clear that the notion of remote points depends on the choice
of the dense subset $S$ . Note also that in case $T,$ $S$ are ccc (e.g., of countable
$\pi$-weight), we can choose the above $U_{1},$ $U_{2}$ as cozero-sets of $T$ , and $V_{1},$ $V_{2}$ as
cozero-sets of $S$ . The next fact proved by van Douwen [4] tells that
“remote” implies $e.d$ .”’ implies $C^{*}$-embedded.”’

Fact 3.2. (1) If $p\in\beta X\backslash X$ is remote from $X$, then $p$ is an $e.d$. point of $\beta X.$

(2) Let $X$ be dense in $Y$ , and $p\in Y\backslash X$ . If $p$ is an $e.d$. point of $Y$ , then
$X$ is $C^{*}$ -embedded in $X\cup\{p\}(\subseteq Y)$ .

The proof of the above (1) uses the formula (1-0) in \S 1.
Let us call a non-e.d. point of $T$ as $a$ “common boundary point”’ of $T,$

that is, $p\in T$ is a common boundary point of $T$ if $p\in c1_{T}U_{1}\cap c1_{T}U_{2}$ for
some pair of disjoint open sets $U_{1},$ $U_{2}$ in $T$. Similarly, a closed subset $A\subseteq T$
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is called a common boundary set in $T$ if $A\subseteq c1_{T}U_{1}\cap c1_{T}U_{2}$ for some pair
of disjoint open sets $U_{1},$ $U_{2}$ in $T$. Let us abbreviate “common boundary” to
“co-boundary.” (Such $p,$

$A$ are called 2-point” or 2-set”’ in [4]. We prefer
geometric terminology.) Let $Ed(T)$ denote the set of all e.d. points of $T,$

and put Cob $(T)=T\backslash Ed(T)$ which is the set of all co-boundary points of $T.$

Theorem 3.3. ([6]) Assume $X_{0}^{-},$ $X_{0}^{+}\in \mathcal{L}$ and that the starting space $X_{0}=$

$X_{0}^{-}\cup X_{0}^{+}$ contains a compact $co$-boundary set $F_{0}$ such that $F_{0}^{-}=F_{0}\cap$

$X_{0}^{-},$ $F_{0}^{+}=F_{0}\cap X_{0}^{+}$ are nowhere compact and $F_{0}\subseteq$ cl $U_{0}\cap c1V_{0}$ in $X_{0}$

for some disjoint open sets $U_{0},$ $V_{0}$ in $X_{0}$ . Then we can find a compact co-
boundary set $F_{\Omega}$ in $X_{\Omega}=\Omega(X_{0})$ such that

$\pi_{0}(F_{\Omega})=F_{0}$ and $F_{\Omega}\subseteq c1_{X_{\Omega}}(U_{\Omega})\cap c1_{X_{\Omega}}(V_{\Omega})$

for disjoint open sets $U_{\Omega}=\pi_{0}^{-1}(U_{0})$ , $V_{\Omega}=\pi_{0}^{-1}(V_{0})$ in $X_{\Omega}=\Omega(X_{0})$ . Hence,

for each $x\in F_{0}$ we get

$\pi_{0}^{-1}(x)\cap$ Cob $(X_{\Omega})\neq\emptyset.$

Consequently, Cob $(X_{\Omega})=X_{\Omega}\backslash Ed(X_{\Omega})$ is not empty, i. e., $X_{\Omega}=\Omega(X_{0})$ is
not extremally disconnected.

Next easy lemma tells when the hypothesis of Theorem 3.3 is satisfied.

Lemma 3.4. Suppose $Y\in \mathcal{L}(lst)$ , and that $Y$ contains a nowhere dense
closed $sub_{\mathcal{S}}etF\in \mathcal{L}(1st)$ . Then we can find disjoint open subsets $U,$ $V$ such
that $F\subseteq c1U\cap$ cl $V$ in Y. $\square$

bom this lemma it is easy to see that the typical examples $\mathbb{Q},$ $\mathbb{P},$ $\mathbb{S}\in$

$\mathcal{L}(lst)$ satisfy the hypothesis of Theorem 3.3. Let us illustrate a specific
simple partition of $\mathbb{Q}$ , as in Lemma 3.4, into the form $U\cup F\cup V$ where
$F=$ cl $U\cap c1V$, using the standard Cantor set. Consider the standard
middle-thirds Cantor set

$\mathbb{C}=[0, 1]\backslash \bigcup_{n\in\omega}(a_{n}, b_{n})$

where $(a_{n}, b_{n})(n\in\omega)$ are disjoint open intervals in $(0,1)$ with end points
$a_{n},$ $b_{n}\in \mathbb{Q}$ . Choose $c_{n}\in(a_{n}, b_{n})\cap \mathbb{P}$ for each $n\in\omega$ and put

$U=Q \cap\bigcup_{n\in\omega}(a_{n}, c_{n}) , V=Q\cap\bigcup_{n\in\omega}(c_{n},b_{n}) , F=Q\cap \mathbb{C}.$

Then $Q$ is partitioned as $Q=U\cup F\cup V$, and $F=c1_{Q}U\backslash U=c1_{Q}V\backslash V\approx Q$

is nowhere dense closed in $Q.$

We can conclude from Theorem 3.3 and Lemma 3.4 that neither $\Omega([0,1])$

nor $\Omega(\mathbb{A})$ is extremally disconnected.
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4. GENERALIZATION TO MULTIPLE EXTENSIONS

Now let us consider more general partitions. Suppose a compact space $K$

has a partition $\mathcal{P}$ such that

(4-0) $\mathcal{P}$ :
$K=( \bigcup_{i\in A}L^{i})\cup S$

where $A\subseteq\omega,$ $2\leq|A|\leq\omega$ , and each $L^{i}(i\in A)$ is dense in $K$ . We put no
particular condition on $S=K \backslash \bigcup_{i\in A}L^{i}$ ; for example, $S$ need not be dense,
or it may happen $S=\emptyset$ . The case of \S 2 is

$L^{0}=X^{-}, L^{1}=X^{+}, A=\{0, 1 \}, S=\emptyset.$

Using inverse limits similar to \S 2, we can construct

(4-1)
$\Omega(\mathcal{P})=(\bigcup_{i\in A}L_{\Omega}^{i})\cup S_{\Omega},$

where $L_{\Omega}^{i}=\pi^{-1}(L^{i})$ , $S_{\Omega}=\pi^{-1}(S)$ , and $\pi$ : $\Omega(\mathcal{P})arrow K$ is a perfect irre-
ducible projection, with the following property similar to Theorem 2.3.

Theorem 4.1. ([6]) $Suppo\mathcal{S}e$ a partition $\mathcal{P}$ of (4-0) is such that each dense
subset $L^{i}(i\in A)$ is Lindeof. Then the corresponding Linde\"of $den\mathcal{S}e$ subset
$L_{\Omega}^{i}$ in (4-1) is $C^{*}$ -embedded in $\Omega(\mathcal{P})$ , i. e., $\Omega(\mathcal{P})=\beta(L_{\Omega}^{i})$ for each $i\in A.$

In view of this theorem we can call $\Omega(\mathcal{P})$

the multiple Stone-\v{C}ech $\Omega$ -extension w.r.t. the dense sets $L^{i}(i\in A)$ of the
partition $\mathcal{P}.$

We may think of various partitions $\mathcal{P}$ , and accordingly various multiple
extensions. See [6] for further details.

5. CONCLUSION

As is well known, for every space $X$ there exists an extremely disconnected
space $E(X)$ called the “absolute,” with a perfect irreducible map onto $X.$

Our space $\Omega(X)$ lies in between $X$ and $E(X)$ , and will serve as a useful
device to mediate $X$ and $E(X)$ .
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