KB ITTE TR e
%5 1934 & 2015 4 83-89

Automorphic pairs of distributions and its application to

explicit constructions of Maass forms
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(Department of Mathematics, Chiba Institute of Technology)

This report is based on joint work with Fumihiro Sato, Keita Tamura, Tadashi Miyazaki,
and Takahiko Ueno.

1 Automorphic pairs of distributions

Let A € C, ¢ = 0,1. We define the "automorphic factor” Jy.(z) on R* by Jy . (z) =
sgn(z)® - |z|72*. For fy € CP(R*), we put

1
ful@) = he@ho(-3) @0 (1)
Let a = {a(n)}nez,b = {b(n)}nrecz be sequences of complex numbers of polynomial growth,

and N > 1 is a natural number. Consider the mappings Ty, Teo : C§°(R*) — C defined by

oo

To(p) = Y, am)(F)m), Twlp) = Y bmFe) ()  (pe CP®Y)),

n=—oo n=—oo

where (Fp)(t) denotes the Fourier transform of ¢:

Fo) = [ e@)erda.
R
If Ty, T, satisfy the condition
TO(fO) = Too(foo) (2)

for all fo € C§°(R*), then the pair (Tp, Teo) is called an automorphic pair of level N with
automorphic factor Jy (z). The relation (2) can be written in a sum formula as

oo

3" a(n)(Ffo)(n Z b(n) (Ffo) (35 - 3)

n=-—oo

Associated Dirichlet series are defined as follows:

felars) =) 2, )=y A @
n=1 n=1
Ex(a;s) = (27)"°T(s)é+(a; s), E4(b;s) = (2m)"°T(s)éx(b; s).

Then we have
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Theorem (T. Suzuki [7]). The L-functions £+ (a;s) and £+(b; s) have analytic continuations
to meromorphic functions with a finite number of poles, and satisfy the following functional
equations:

E+(@;8) \ _ nv2-2x-s v (0 _ o) _ Et(b;2-22-35)
7(3)( =_(a;s) ) =N Zy2-2-9) ( = (b;2-2\—s) )’
where /12 /o1
VT2 g 0 (-1
7(5) = (e—-‘rrsx/-———l/2 e‘n‘s\/—_l/2 ) ’ r= (1 ( 0) ) . (5)

Example. Let ReA > 1/2, e =0, N = 1. We have

@A =1)-(Ff)0)+ 3 o1-ar(In])(Ffo)(n) = C@A-1)-(Ffoo)0) + 3 o1-2a(In]) (F foo) (),
n#0 n#0

where g,(n) = ) g djn @*. This equality is proved by using the Fourier expansion of the
distribution E) defined by

Z Im —2A fo ( ) (” Eisenstein distribution”) (6)
m,n7#0

2 Principal series representations of G = SLy(R).
We introduce the following function space:

V35 = {fo € C®(R) | feo(z), defined by (1), can be extended to an element of C*°(R)}.
The action of G = SLa(R) on V5, is defined by

dr —b
Irne(—cz +a)fo (_:v

) (f —cz+a#0)

+a

(m2,(9)fo)(z) = (7)

—cr+a
Tre(=de +b)feo (—-d:c Tb

) (f —dz+b+#0)

for g = (g b) € G = SLa(R) and fo € V5. To be precise, elements of V5", should be

d
regarded as sections of a line bundle over P1(R) = G/P. We set fo(00) := foo(0). It is known
that V$°. is one of the realizations of the (non-unitary) principal series representations of G.

We deﬁne a topology through seminorms on V5°, given by

Nfoo

dN
for> Sup TN 2 ()], for> Sélp (z)],

where K is any compact subset of R and N € Zx. We call a continuous linear mapping
T : V37, — C a distribution on V{7, and denote by 1 2% . the space of distributions. For g € G

and T € V, 7°, we define (7_x(g)T )(fo) = T(mre(g™1) fo).
For a subgroup T of SLy(Z) of finite index, we define

(V):?)F = {T EVN S | m_xe(y)T =T for all y € F} )



We call T an automorphic distribution after Miller and Schmid [4]. Now we take T €

2y 2)Fo(N) | where I'y(N) is the congruence subgroup of level N. Let v, = <(1) }), Yo =

( ]1/. ?) € I'g(N). The invariance of T under +; implies that T has a Fourier expansion as

o0

T(fo) = a(00) fo(o0) + ) a(n)(Ffo)(n),

n=—oo

and since N
(@) o)) = Jrclbz+ Do (55 ).

the invariance under 7, implies that

T(foo) = b(00) fou (00) + 3 b()(Ffeo) (57 -

n=—oo

Hence one can construct an automorphic pair of distributions of level N from T' € (Vy )Fo(N),

3 Poisson transforms

Note that G/P = P!(R) is the boundary of G/K = H = {z € C|Imz > 0}. Roughly
speaking, we construct automorphic forms on G/K for T' from T'-invariant distributions on
G/P.

Now we define the Poisson transform after Lewis and Zagier (3], Unterberger [9]. For
z€H, A€ C, | € Z, we define the Poisson kernel f ;(t,z) by

A -1 by

y z—1 Yy
t = : = )
f)\,l( ’z) lz__tIZ)\ (Iz—tl) [z—tIZ)‘~l(z"t)l

When we fix z € H (resp. t € P(R)) and regard £y (t, 2) as a function of ¢ (resp. z), we write

Fau,z(t) (vesp. faui(2)).

Lemma. (1) fy,;. is an element of V%), where (1) = 0(l = 0 (mod 2)),= 1(l = 1
(mod 2)).

(2) For g € SLa(R), we have (mx.u)(9)frnz) (t) = (fA,l,tllg) (2), where |l is the slash
operator defined by

(Flo)e) = (255 )_lF (£22) e

lcz + d| cz+d

(8) Aifaie(z) = M1 = X)fau1(2), where Ay is the Laplace-Beltrami operator defined by

0? 02 0
2 .
Ar=-y (5; * w) T ilgy

Definition. For T € V; > and | € Z with e(l) = ¢, we define the Poisson transform P ; by

Pra(T)(2) = T(fa1,z)-
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Definition. Let ' be a subgroup of SL3(Z) of finite index, and x a character of I'. A
function F : H — C is said to be a Maass form for T of weight | € Z with eigenvalue A € C
and character x if the following conditions are satisfied:

(1) (Fliv)(2) = x(v) - F(z) for z € H and y € T.
(2) A)F=A1-MNF
(3) F is slowly increasing at every cusp of I'.

We denote by M, (T, A; x) the space of the Maass forms.
Theorem. The Poisson transform P»; defines a map from (V5 X to My(T, A; x~ 1), where

V&)X = {T € V32 | 71-2e(NT = x(N)T for all v €T}.
Example. Let ! € 2Z and Re A > 1/2. We define the ”genuine” Eisenstein distribution by
o 1 - n
EX(fo) = 5 Yoo Im™ (;n-) :
(m,n)#(0,0)

Here, for m = 0, we put |m|=2*fo(Z) := fo(oo) - |n|~2*. This distribution differs from E)
defined in (6) by the constant terms. The Poisson transform P);(Ef) is nothing but the
so-called real analytic Eisenstein series

El(’\> Z) = % Z 4

22 1. i
(I 0.0) |mz + n| (mz+n)

A

4 A converse theorem for automorphic distributions

Let N be a positive integer, A a complex number with Re(A) > 1/2 and 2 — 2)\ € Z<o. Let
e = 0,1. Further, let x be a Dirichlet character of modN such that x(—1) = (-1)¢. For
complex sequences a = {a(n)}nez\ (0}, b = {b(n)}nez\{0} of polynomial growth, we define the
Dirichlet series £1(a;s), £+ (b;s) and the completed zeta functions =4 (a; s), E+(b; s) by (4).

Let r be an odd prime with (N, r) = 1. We take an arbitrary Dirichlet character 1 of modr
and define the twisted zeta functions &4 (a,¥;s), 21 (a,; s),€4(b,¥; s), Ex(b,v¥; s) by

xla,pis) = 3 LENWED 5, gy ) = (2m)"T(es(a,039)
n=1
x(b,ys) = 3 YERTER) 2. (b, 15 5) = (2m) °T(s)éw (b, 1 9),

where 7,(n) is the Gauss sum defined by

ro(n) = 3 pm)emV I

(m,r)=1
mod r

These twisted zeta functions were first considered by Razar [6]. We assume

[A1] £4(a;s),£4(b;s) converges absolutely for Res > 1 and have analytic continuations to
meromorphic functions of s to C.



[A2] (1) Ei(a;s),Ex(b;s) satisfy the functional equation

o) (e ) —wrmemae-n-g (2G50 )

where v(s) and X are defined by (5).
(2) E1(a,; s),E+(b, ¥; s) satisfy the functional equation

)

[A3] ¢x(a;s),€x(b;s),éx(a, 1, s),£64(b, 9, s) have poles only at s = 1,2 — 2 of order at most
1, and the residues satisfy the following relations:

Res £ (a,;8) = x(r) - 9(=N) 772" - 75(0) - Res . (as 5),
,Res &i(a,958) = x(r) - $(=N) - 77 - 75(0) - Res &s(ass),
Res (X(T) - p(—=N) - 1?24 (b, ¥; 8)) = 7y(0) Res £+ (b; ),

_Res (x(1)-B(=N) - Peu(b,is)) = 75(0) Res 4(b;s).

[A4] &i(a;s),Ex(a,v;8),Ex(b; 8),E4(b,9; ) have finite order in lacunary vertical strips, i.e.,
For any ay < az(a1, as € R), there exists some 79, K, p > 0 such that

€x(a;a+V=I7)|, [€c(a, ;o +V=1T)| < K - €l
e (bya+V=17)], [€£(b, %50+ V=17)| < K - €l"!

for any a € [a;, 2] and 7 with |7] > 7.

+(a,¥;s) ) = X() - BO=N) - 72 (Nr2)2-2A=s

—(a, ;)
Z24(b,1;2 —2X —s)
B (2= =) (Et(b,$;2—2)\—s)) '

{11 1]

Theorem. We assume that [A1]-[A4] hold for every (not necessarily primitive) Dirichlet
character i of modr. We put

o 2A-2 =T
= —_ —_— 2 (2_2A) . - (2 2A)
a(0) ( N ) re-2» {e 30, G (bis) + 5,65 )} ’

N
a(oo) = 5 (Repée (bis) + Resé-(b:9))

b(0)=(—1)5(27r)2’\_21’(2—2)\){ B (2-23) Res £4(a;s)+e” = (2-2)) Res ¢ (a; s)}

s=2— s=2—

b(oo) =

—1)¢
( 2) (1}§§€+(a; s) +Res¢_(a; 8)),

and define the linear functionals Ty, Teo 0N Ve by

o0

To(y) = a(c0)p(o0) + Z a(n)(Fep)(n),
Tool() = boo)p(o0) + 3 b(m)(Fe) (%)

n=—oo
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for ¢ € V{5, Then, To(fo) = Too(foo) and To is an automorphic distribution for To(N) with

character x.

Corollary. The Poisson transform (Px;To)(2) is a Maass form for To(N) of weight I, with
eigenvalue \ and character x=1. Moreover, (Px,To)(z) has the following Fourier expansion:

(2m)2-2T(2A - 1) ;_,

(PxiTo)(2) = a(o0)y> + a(0) - (_1)% A+ 4Hr(a-14) Y
2 2

+(-1ir* Y [n*la(n)

W‘.&%@E, A-1 (471"77"?/)

n oo T (2 + et

2

TINT

Remark. (1) “It is an open question whether or not Weil’s argument applies to Maass forms. A
key point for Weil is that radially symmetric holomorphic functions are necessarily constant;

this is not true in the non-holomorphic case.” (quoted from Gelbart and Miller [2]).

(2) Recently, Diamantis and Goldfeld [1] proved the converse theorem for double Dirichlet series
associated with metaplectic Eisenstein series. Their twists of L-functions involve the Gauss sum
Ty(n), not the value ¥(n) of the character . Moreover, it is necessary to include non-primitive

Dirichlet characters. We have followed Diamantis-Goldfeld’s method.

(3) Diamantis-Goldfeld’s result is a converse theorem for vector-valued Dirichlet series, where the
dimension of the vector (=the number of Dirichlet series) is equal to the number of cusps of
To(N). On the contrary, our argument is rather irrelevant to the discrete subgroup in question.

5 Application to zeta functions associated with quadratic forms

We recall the zeta functions studied by Peter [5], Ueno [8]. Put V = C™*2 and let Q(z) be a

non-degenerate integral quadratic form on V of the form

Q(.’L‘) = ZoTm+1 + Z Qi;TiTj,

1<t,j<m

where a;; = aj; € %Z (i # j) and a;; € Z. The matrix of Q is given by

0 0 1/2
0 A 0
1/2 0 0

with A = (a;;). We consider the maximal subgroup of SO(Q) of the form

a —2a'uAh —aAlu] a€Cx
P= 0 h u h € SO(A)
0 0 a1 ueCm

Then the triplet (P x GL;(C), V) is a prehomogeneous vector space.
Let D = det(2A). For positive integers I, n, we put

r(l,n) =4{veZ™/(1Z)" | Av] =n (mod 1)},

r*(l,n) = §{v* € Z™/2AAZ™ |4 - |D|A"[v*]=n (mod |D|l)}.
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and define the Dirichlet series Z(n,w), Z*(n,w) (n € Z) by

Z(n,w) = Zr(l, n)l~Y, Z*(n,w) = Zr*(l, n)l~v
=1 =1

The prehomogeneous zeta functions associated with (P x GL1(C), V) coincide with

Clw,s) =3 Zlen,w)n™*,  Ciw,s) = [DI* Y. Z*(mm,win™ (e, = ).
n=1 n=1

By using the theory of prehomogeneous vector spaces, Ueno proved that (.(w, s) and ¢;(w, s)
have analytic continuations to meromorphic functions on C2? and satisfy functional equations.

Theorem. Assume that m is even and let D = det(2A). Then, under a suitable adjustment
(w=2\—1+1%, etc.), { and (; satisfy the assumption of our converse theorem, and we
can construct Maass forms for To(|D|) or To(4|D|) with explicit Fourier coefficients defined
by Z(n,w) and Z*(n,w).

Remark. When m is odd, it is expected that (. and (; correspond to Maass forms of half-
integral weight. To include the Maass forms of general weight in our framework, we need to
consider the principal series representation of the universal covering group G of G = SLy(R).
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