
ON EISENSTEIN SERIES IN THE KOHNEN PLUS SPACE FOR
HILBERT MODULAR FORMS

REN HE SU
DEPARTMENT OF MATHEMATICS

KYOTO UNIVERSITY

ABSTRACT. This short article introduces a generalization for the so-called Co-
hen Eisenstein series to the case of general Hilbert modular forms of half-integral
weight. We will recall the definition of the Cohen Eisenstein series and the
Kohnen plus space and give some very basic properties. Then we define the
Kohnen plus space for general Hilbert modular forms, which was initially given
by Hiraga and Ikeda, and also give some analogues of the results from Kohnen.
After that, we state the two main theorems of this article, where the first one
gives the generalized Cohen Eisenstein series and the second one gives a prop-
erty of the structure of generalized Kohnen plus space. Finally, we sketch how
we construct the Eisenstein series and how we prove the second theorem.

1. BACKGROUND

First we recall the definition of Cohen Eisenstein series.
For any half-integer $k \in\frac{1}{2}\mathbb{Z},$ $M_{k+1/2}(\Gamma, \chi)$ and $S_{k+1/2}(\Gamma, \chi)$ denote the space of

modular forms and cusp forms of weight $k$ and character $\chi$ for the congruence
subgroup $\Gamma$ of $SL_{2}(\mathbb{Z})$ . If $\chi=1$ , we may simply write $M_{k}(\Gamma)$ and $S_{k}(\Gamma)$ .

Theorem 1 (Cohen, 1975, [1]). Let $r\geq 2$ be an integer. There is a modular form
$\mathcal{H}_{r}\in M_{r+1/2}(\Gamma_{0}(4))$ of weight $r+1/2$ which is defined by

$\mathcal{H}_{r}(z)=\zeta(1-2r)$

$+$
$\sum_{N\geq 0,(-1)^{r}N\equiv 0,1(mod4)}(L(1-r, \chi_{D_{(-1)^{r}N}})\sum_{d|f_{(-1)^{r}N}}\mu(d)\chi_{D_{(-1)^{r}N}d}(d)ff^{-1}\sigma_{2r-1}(f/d))q^{N},$

where for any integer $n,$ $D_{n}$ is the discriminant of $\mathbb{Q}(\sqrt{n})/\mathbb{Q},$ $f_{n}$ is the positive
integer such that $n=f_{n}^{2}D_{n}$ , and, as usual, $q=\exp(2\pi iz)$ .

Cohen used his modular forms to give some applications. For example, he gave
the “‘ generalized class number relations”, which state that for integer $D\equiv 0$ or 1
(mod4) such that $(-1)^{r-1}D=|D|$ , we have

$\sum_{N\geq 0}(\sum_{s}H(r, \frac{4N-s^{2}}{|D|}))q^{N}\in M_{r+1}(\Gamma_{0}(D), \chi_{D})$ ,
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where $H(r, x)$ is the x-th Fourier coefficient of $H_{r}$ if $x\in \mathbb{Z}_{\geq 0}$ or $0$ otherwise.

Inspired by these modular forms, in 1980, Kohnen [3] defined the plus spaces
$M_{r+1/2}^{+}(\Gamma_{0}(4))$ and $S_{r+1/2}^{+}(\Gamma_{0}(4))$ , which are subspaces $ofM_{r+1/2}(\Gamma_{0}(4))$ and $S_{r+1/2}(\Gamma_{0}(4))$

characterized by the Fourier coeffcients of the modular forms in them.

Definition 1 (Kohnen, 1980, [3]). The Kohnen plus spaces are defined by

$M_{r+1/2}^{+}( \Gamma_{0}(4))=\{f\in M_{r+1/2}(\Gamma_{0}(4))f(z)=\sum_{(-1)^{r}N\equiv 0,1(mod4)}a(N)q^{N}\},$

$S_{r+1/2}^{+}(\Gamma_{0}(4))=M_{r+1/2}^{+}(\Gamma_{0}(4))\cap S_{r+1/2}(\Gamma_{0}(4))$ .

So the modular form $H_{r}$ given by Cohen is in $M_{r+1/2}^{+}(\Gamma_{0}(4))$ but not in $S_{r+1/2}^{+}(\Gamma_{0}(4))$ .
Some properties of the plus space are also showed by Kohnen.

Theorem 2 (Kohnen, 1980,[3]). The following statements hold.

(1) Let $U_{4}$ and $W_{4}$ be operators on $S_{r+1}(\Gamma_{0}(4))$ such that $(U_{4}f)(z)= \frac{1}{4}\sum_{i=0}^{3}f(\frac{z+i}{4})$

and $(W_{4}f)(z)=(-2 \sqrt{-1}z)^{-4-1/2}f(- \frac{1}{4z})$ . Then $S_{r+1/2}^{+}(\Gamma_{0}(4))$ is the eigenspace

of $W_{4}U_{4}$ with respect to eigenvalue $(-1)^{r(r+1)/2}2^{r}.$

(2) $S_{r+1/2}^{+}(\Gamma_{0}(4))$ has a basis consisting of Hecke eigenforms over $\mathbb{C}.$

(3) $dim_{\mathbb{C}}S_{r+1/2}^{+}(\Gamma_{0}(4))=dim_{\mathbb{C}}S_{2r}(SL_{2}(\mathbb{Z}))$ .

Now we introduce the generalization of Kohnen plus space for general Hilbert
modular forms of half-integral weight. Let $F$ be a totally real number field of
degree $n$ over $\mathbb{Q}$ and $0$ and $\mathfrak{d}$ be its ring of integers and different over $\mathbb{Q}$ . We
denote $\iota_{1},$ $\iota_{n}$ the $n$ embeddings of $F$ to $\mathbb{R}.$

Definition 2. For any $\xi\in F$, we say $\xi=\square$ (mod4) if there is $x\in \mathfrak{o}$ such that
$\xi-x^{2}\in 4\mathfrak{o}.$

We define the congruence subgroup $\Gamma$ by

$\Gamma=\Gamma[\mathfrak{d}^{-1}, 4\mathfrak{d}]=\{(\begin{array}{ll}a bc d\end{array})\in SL_{2}(F)a, d\in \mathfrak{o}, b\in \mathfrak{d}^{-1}, c\in 4\mathfrak{d}\}.$

Let $\kappa$ be an integer. Denote $M_{\kappa+1/2}(\Gamma)$ and $S_{\kappa+1/2}(\Gamma)$ the spaces of Hilbert mod-
ular forms and cusp forms of the parallel weight $\kappa+1/2$ for $\Gamma$ . We only consider
the case of parallel weight. For any $\xi\in F$ and $z=$ $(z_{1}, z_{2}, z_{n})\in \mathfrak{h}^{n}$ , let
$q^{\xi}= \exp(2\pi i\sum_{i=1}^{n}\iota_{i}(\xi)z_{i})$ for simplicity. Now the generalized Kohnen plus space
for Hilbert modular forms are defined as follow.
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Definition 3 (Hiraga and Ikeda, 2013, [2]). The generalized Kohnen plus spaces
are defined by

$M_{\kappa+1/2}^{+}( \Gamma)=\{f\in M_{\kappa+1/2}(\Gamma)f(z)=\sum_{(-1)^{\kappa}\xi\equiv\square (mod 4)}a(\xi)q^{\xi}\},$

$S_{\kappa+1/2}^{+}(\Gamma)=M_{\kappa+1/2}^{+}(\Gamma)\cap S_{\kappa+1/2}(\Gamma_{)}.$

So it is easy to see that the definition from Hiraga and Ikeda coincides with
which given by Kohnen for the case $F=\mathbb{Q}$ and $\kappa\geq 2$ . Hiraga and Ikeda also gave
proper analogues of Kohnen’s results for generalized Kohnen plus spaces.

Theorem 3 (Hiraga and Ikeda, 2013, [2]). For $\kappa\geq 2$ , the following $\mathcal{S}$latements

hold.

(1) $M_{\kappa+1/2}^{+}(\Gamma)$ is the fixed subspace of some idempotent operator $E^{K}$ on $M_{\kappa+1/2}^{+}(\Gamma)$ .

If $F=\mathbb{Q},$ $E^{K}=(\alpha_{1}-\alpha_{2})^{-1}(W_{4}U_{4}-\alpha_{2})$ where $\alpha=(-1)^{\kappa(\kappa+1)/2}2^{\kappa}$ and
$\alpha_{2}=-2^{-1}\alpha_{1}$ . This also holds for $\kappa=1.$

(2) $S_{\kappa+1/2}^{+}(\Gamma)$ has a basis consisting of Hecke eigenforms over $\mathbb{C}.$

(3) $dim_{\mathbb{C}}S_{\kappa+1/2}^{+}(\Gamma)=dim_{\mathbb{C}}\mathcal{A}_{2\kappa}^{CUSP}(PGL_{2}(F)\backslash PGL(\mathbb{A}_{F})/\mathcal{K}_{0})$ where $\mathbb{A}_{F}$ is the

adele ring of $F,$ $\mathcal{K}_{0}=\prod_{v<\infty}PGL_{2}(\mathfrak{o}_{v})$ and $\mathcal{A}_{2}^{CUSP}$ is the space of cuspidal
automorphic forms come from $S_{2\kappa}(SL_{2}(\mathfrak{o}))$ , the space of cuspidal Hilbert
modular forms of weight $2\kappa.$

So as mentioned before, the main result of this article is to give some Hilbert
modular form in the generalized Kohnen plus space which are corresponding to
the one given by Cohen. In fact, there are $h$ such modular forms where $h$ is the
class number of $F.$

2. MAIN THEOREMS

Throughout this section, we use the same notations as given in the last section.
We denote $Cl_{F}$ and $h$ the ideal class group and class number of $F$. For any $\xi\in F,$

let $\mathfrak{D}_{\xi}$ and $\chi_{\xi}$ be the relative discriminant and quadratic character of $F(\sqrt{\xi})/F$

and $\mathfrak{F}_{\xi}$ be the integral ideal such that $\mathfrak{F}_{\xi}^{2}\mathfrak{D}_{\xi}=(\xi)$ , the principal ideal generated
by $\xi.$

Main Theorem 1. We set $\kappa\geq 1$ and $\kappa\neq 1$ if $F=\mathbb{Q}$ . Let $\chi’$ be a Hecke character
on $Cl_{F}$ . Define the function $G_{\chi’}$ on $\mathfrak{h}^{n}$ by

$G_{\kappa,x’}(z)=L_{F}(1-2 \kappa,\overline{\chi^{\prime 2}})+\sum_{\xi\succ 0}\chi’(\mathfrak{D}_{(-1)^{\kappa}\xi})L_{F}(1-\kappa,\overline{\chi(-1)^{\kappa}\xi\chi’})c((-1)^{\kappa}\xi)q^{\xi}(-1)^{\kappa}\xi\equiv\square (mod 4)$

where for any $\xi\in F,$

$c( \xi)=\sum_{a|\mathfrak{F}_{\xi}}\mu(\mathfrak{a})\chi_{\xi}(\alpha)\chi’(\alpha)N_{F/\mathbb{Q}}(\alpha)^{\kappa-1}\sigma_{2\kappa-1,\chi^{\prime 2}}(\mathfrak{F}_{\xi}\alpha^{-1})$
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and $\xi\succ 0$ means $\xi$ is totally $po\mathcal{S}itive$ . Here in the summation a runs over all
integral $ideal_{\mathcal{S}}$ dividing $\mathfrak{F}_{\xi},$

$\mu$ is the $M$ bius function for ideals and

$\sigma_{k,\chi}(J)=\sum_{b|0}N_{F/\mathbb{Q}}(b)^{k}\chi(b)$

for integer $k$ , ideal character $\chi$ and integral ideal J. Then $G_{\kappa,\chi’}\in M_{\kappa+1/2}^{+}(\Gamma)$ .
Moreover, $G_{\chi’}$ is a Hecke eigenform.

So there are $h$ such modular forms. We call them Eisenstein series in the
generalized Kohnen plus space for Hilbert modular forms. It is easily to see that
$G_{\kappa,1}$ is the Cohen Eisenstein series if $F=\mathbb{Q}$ . In fact, we can get Eisenstein series
of weight $\frac{3}{2}$ if $F\neq \mathbb{Q}$ while if $F=\mathbb{Q}$ there is a non-holomorphic function which
transforms like a modular form of weight $\frac{3}{2}$ under $SL_{2}(\mathbb{Z})$ . The next main theorem
is a corollary of the first main theorem.

Main Theorem 2. The space $M_{\kappa+1/2}^{+}$ is spanned by the cusp forms and the $h$

Eisenstein series given above. That is,

$M_{\kappa+1/2}^{+}(\Gamma)=S_{\kappa+1/2}^{+}(\Gamma)\oplus\oplus_{i=1}^{h}\mathbb{C}\cdot G_{\kappa,\chi_{i}’}$

where $\chi_{1}’,$ $\chi_{2}’,$ $\chi_{h}’$ are the $h$ distinct characters on $Cl_{F}.$

Combining the second main theorem with the results given by Hiraga and Ikeda,
we get that $M_{\kappa+1/2}^{+}(\Gamma)$ contains a basis consisting of Hecke modular forms.

3. SKETCH OF THE PROOFS

We give a brief on how the generalized Cohen Eisenstein series are constructed.
Denote the metaplectic double covering of $SL_{2}$ by $\overline{SL_{2}}$ . The multiplication of
the double covering is with respect to Kubota’s 2-cocycle. Then for any subset
$S\subset SL_{2}$ , denote $\tilde{S}$ the inverse image of $S$ in $\overline{SL_{2}}$ . Let $\mathcal{A}_{\kappa+1/2}$ be the space of
automorphic forms come from $M_{\kappa+1/2}(\Gamma)$ . Then the idempotent $E^{K}$ mentioned
above can be considered as an operator on $\mathcal{A}_{\kappa+1/2}$ and decomposes as $E^{K}=$

$\prod_{v\leq\infty}E_{v}^{K}$ . Let $v$ be a finite place of $F$. If $\mathfrak{s}_{v}$ is a complex number, let $\tilde{I}(\mathfrak{s}_{v})$ be the

space of genuine function $f$ on $SL_{2}(F_{v})$ induced by the map

$(\begin{array}{ll}a b0 a^{-1}\end{array})arrow\frac{\alpha_{v}(1)}{\alpha_{v}(a)}|a|_{v}^{s_{v}+1},$

where $\alpha(\star)$ is the Weil constant. Then $E_{v}^{K}$ is an idempotent operator on $SL_{2}(F_{v})$ .
It is shown in [2] that the fixed subspace of $E_{v}^{K}$ is a subspace of one dimension
spanned by some function $f_{K,v}^{+}$ . Now take a Hecke character $\chi’$ on $Cl_{F}$ . Then
$\chi_{v}’(x)=|x|^{s_{v}}$ for any $x\in F_{v}^{\cross}$ and some $s_{v}\in \mathbb{C}.$
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Now if $\kappa\geq 2$ , define the function $f_{\chi’}$ on $S\overline{L_{2}(\mathbb{A}}_{F}$ ) by

$f_{\chi’}= \prod_{v<\infty}f_{K,v}^{+}\prod_{v|\infty}\tilde{j}(\star_{v}, \sqrt{-1})^{-2\kappa-1}$

where $f_{K,v}^{+}\in\tilde{I}(\kappa-1/2+s_{v})$ and $\tilde{j}$ is the unique factor of automorphy on $S\overline{L_{2}(\mathbb{R}}$) $\cross \mathfrak{h}$

such that $\tilde{j}^{2}$ is the usual factor of automorphy on $SL_{2}(\mathbb{R})\cross \mathfrak{h}$ . One can show that
$f_{\chi’}$ is invariant under the left transformation of upper triangular matrix. Denote
$B$ the subgroup of $SL_{2}(F)$ consisting of all upper triangular matrices. Then we
define

$\mathbb{E}_{\kappa,\chi’}(g)=\sum_{\gamma\in B\backslash SL_{2}(F)}f_{\chi’}(\gamma g)\in \mathcal{A}_{\kappa+1/2}$

for $g\in S\overline{L_{2}(A}_{F})$ . Here $SL_{2}(F)$ is considered as a subgroup of $S\overline{L_{2}(\mathbb{A}}_{F}$ ). Take the
corresponding Hilbert modular form $E_{\kappa,\chi’}$ of $\mathbb{E}_{\kappa,\chi’}$ . After calculating the Fourier
coefficients of $E_{\kappa,\chi’}$ and some normalizing, we get $G_{\kappa,\chi’}.$

Now let $\kappa=1$ and $F\neq \mathbb{Q}$ . For the convergent issue, we define

$f_{\chi’,\epsilon}= \prod_{v<\infty}f_{K,v}^{+}\prod_{v|\infty}(\tilde{j}(\star_{v}, \sqrt{-1})^{-3}|\tilde{j}(\star_{v}, \sqrt{-1})|^{-2\epsilon})$

where $f_{K,v}^{+}\in\tilde{I}(1/2+s_{v}+\epsilon)$ and

$\mathbb{E}_{\kappa,\chi’,\epsilon}(g)=\sum_{\gamma\in B\backslash SL_{2}(F)}f_{\chi_{)}’\epsilon}(\gamma g)$
.

For any $g\in S\overline{L_{2}(\mathbb{A}}_{F}$ ), this series converges for $\Re(\epsilon)$ large and has a analytic
continuation to $\epsilon=0$ . Taking $\mathbb{E}_{\kappa,\chi’,0}$ and repeating the same process as above, we
get $G_{1,\chi’}.$

Note that if $\kappa=1$ and $F=\mathbb{Q}$ , in the calculation of Fourier coefficients we will
get non-vanishing non-holomorphic terms. So finally it turns out that we get a
function which transforms like a modular form of weight 3/2 but not regular.

For the sketch of proof of the second main theorem, we give three easy lemmas
which are used in the proof. From the three lemmas, the theorem immediately
follows.

Lemma 1. Let

$P=\{(\begin{array}{ll}a b0 a^{-1}\end{array})\in SL_{2}(\mathbb{A}_{F})a\in F^{\cross}, b\in \mathbb{A}_{F}\}$

and

$= \prod_{v<\infty}\Gamma[(4\mathfrak{d}_{0})^{-1}, 4\mathfrak{d}_{\mathfrak{v}}].$
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Then the order of the space of double cosets

$\tilde{P}\backslash SL_{2}(\mathbb{A}_{F})/\Xi\prod_{v|\infty}SL_{2}(F_{v})$

is $h$ , the class number of $F.$

We take a system of representatives $\mathfrak{m}_{1},$ $\mathfrak{m}_{2},$ $\mathfrak{m}_{h}$ for the double cosets.

Lemma 2. Let $a_{\chi}^{0}$, be the constant of the Fourier expansion for $\mathbb{E}_{\kappa,\chi’}$ , then we
have

$\det(a_{x_{i}’)}^{0}(\mathfrak{m})_{1\leq i,j\leq h})\neq 0.$

Note that the nature of the matrix above is in fact the table of characters on
$Cl_{F}.$

Lemma 3. For any automorphic form $\Phi\in \mathcal{A}_{\kappa+1/2}$ which is invariant under $E^{K},$

the the constant term of the Fourier expansion for $\Phi$ is determined by its values
on $\mathfrak{m}_{1},$ $\mathfrak{m}_{2},$ $\mathfrak{m}_{h}.$
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