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Let X = (z;) and Y = (y;) be probability vectors, and P. = (p;;) be a probability
matrix which is called now a classical channel. The standard bases {a;} and {b;} are
considered as elementary events for X and Y; x; = p(a;), y; = p(b;) and p;; = p(bi|a;).
Then the classical entropies are defined as:

compound entropy H(X,Y) = — Z p(a;, b;) log p(a;, b;),
conditional entropy H(X|Y) = — Zp(aj, b;) log p(a;|b;),
conditional entropy H(Y|X) = Z p(a;, b;) log p(bsla;), and

p(a,, bi)

mutual entropy I(X;Y) = Zp (a;,b;) log (_a)PT(b—)'
5)P(b;

Then the relations between them are:
HX,)Y)=HX)+HY|X)=HY)+HX|Y)=I1(X,Y)+ HX|Y) + H(Y|X),
HX)=I(X;Y)+ HX|Y), HY)=I(X;Y)+ HY|X).

We try to extend these classical information entropies to matrix ones. They can be
expressed by usual sets with the set operations as quantities:

A— H(X), Bm H(Y), A\Bw— H(X|Y), B\A~ H(Y|X),
AUBw— H(X,Y), ANBw I(A;B).

For this, the key quantity is the relative entropy which is initiated as the Kullback-

Leibler one: : o
s(plg) =) _pilog =
ij %

for probability vectors p and q.
Let n(z) = —zlogz (n(0) = 0) be the entropy function. Then the von Neu-
mann entropy s(A) = Trn(A) and Nakamura-Umegaki discussed ‘an operator entropy’
H(A) =n(A) [11]. The Umegaki entropy, which is expressed by

su(A|B) =) TrA(log A - log B)



for positive-definite matrices A and B, is an extension of s(p|q). Here A and B are
often assumed to be density matrices, that is, they are positive-semidefinite and TrA4 =
TrB = 1 which are quantum versions for X and Y. The quantum channel is a trace-
preserving completely positive map @.

Based on the Umegaki entropy, Ohya [12] introduced the mutual information for
quantum channel and discussed the capacity for the channel: For density operator
A = Y, tEy with the spectral decomposition for that of identity E = {E,}. For
compound matrices

Ap =) t.E,®®(E,) and A=A® d(A),

the Ohya mutual entropy is defined as
I(A4;2) = sup s (A Ao),

which is a nice extension of the classical mutual entropy I(X; P.(X)) for a channel
matrix P,. Also Petz [13] defined a quantum conditional entropy

hpas|B) = s(pag) — s(B)
and it is related to the Umegaki entropy:
h(pag|B) = logdim Hs — sy(paB|Ta ® pB)

where 74 is a tracial state and psp is a composite matrix as we see later. But unfor-
tunately h(pag|B) is not always positive.

Recall the sesquilinear version for the Uhlmann relative entropy sy, (cf. [15]) which
is an extension of the Umegaki one: Let o and 3 be positive sesquilinear forms and
7(t) = QF;(a, 8) be their interpolation. Then

.. Fia,p) —a
sureld)(a) = ~ limint LUBA 22 4
Considering the derivatives A and B for o and 3, we have, when they commute,
1-tpt _ 1-tpt _
- lirtn ionf ’I‘ré—l_j___é = —Tr%in% -A———E;———é = TrA(log A — log B).

It suggests that the relative entropy can be defined as the initial tangent vector for
some good path. Though a matrix version of the Umegaki entropy might be Az (log A—
log B)A% , it might be not suitable from the geometrical viewpoint. In fact, the geodesic
of one of the Hiai-Petz geometries ([9]) is M;(A, B) = exp((1 — t)log A + tlog B) and
hence its initial tangent vector is expressed by

A B) () o tr(tog B - log AU ) U”
t=0 logm(d,-, dj)

Su(AlB) = —

157



158

where U is a unitary with diag (d;) = U*AU and fWV is the divided difference fl!(z,y)
= ﬁ%ﬂ, see [7, 8] . We think it is a matrix version of the Umegaki entropy. In
fact, Tr&y(A|B) = TrA(log B — log A) = —sy(A|B). Since the quantum conditional
entropy is not positive though it is a numerical quantity and &y (A|B) is somewhat
an awkward tool, here we do not use &y (A|B) while we fully use the above idea, in
particuler, Ohya’s construction.

In [5], we defined another relative entropy for positive operators based on the Kubo-
Ando theory of operator means: Let A#;B be a weighted geometric operator mean in

the sense of Kubo-Ando [10];
1 1 1 t 1
A#t.B = A} (A73BATH) b

if A is invertible and A#¢B = limy_.oo(A + 2)#;B if not. We introduced in [5, 4] the
relative operator entropy S(A|B) as a derivative for a differentiable path of geometric

operator means A#,B if the following limit exists as a bounded operator;

lim ————A#tB — A.

t—0

Afterwards, Corach, Porta and Recht (2] shows that the path A#,B is the geodesic of
their geometry of the positive operators and the realtive operator entropy is its initial
tangent vector where the affine connection can be expressed by

e Lo
Vib=8—2 (6 +8r7).
for differential curves v and 4, see also (3, 7).

If B is invertible, then S(A|B) = Bip (B‘%AB"%) Bz. In addition, if A is invert-
ible, then S(A|B) = Az log (A—%BA—%) Az, —TrS(A|B) is the Belavkin-Staszewski
relative entropy. So it is always exists for invertible operators, or positive-definite
matrices. Basic properties are as follows:

Lemma 1. The relative operator entropy has the following properties if it exists:

(1) If B < B/, then S(A|B) < S(A|B’).

(2) T*S(A|B)T < S(T*AT|T*BT) (the equality holds for invertible T).

(3) S(Ai1|B;) + S(A2|Bz) < S(A1 + A2|B: + By).

(3) (1—t)S(A1|B1)+tS(Az|By) < S((1—t)A;+tAz|(1 —t)B1+tBs) forallt € [0,1].
(4) S (D Al Dy, Br) = Dy S(Ax|Bk)- |

(5) S(A|B) < B - A.

(6) S(AlaB) = (loga)A + S(A|B) for a > 0.



Based on this relative matrix entropy, we discuss basic matrix entropies in the infor-
mation theory.

Assume that A € M, the n x n positive-definite matrices and B € M the m xm
ones. Let {Ei} be the (fixed) decomposition of the identity, that is, each Ej be a
projection and ), Ey = I,,. A set {E}} is considered as that of elementary probability
events. Let A = ), t,xE) be a spectral decomposition of of an invertible density matrix,
that is, A is positive-definite and trA = 1. Then, we can observe that the probability
p(Ey) is given by Tr(t,Er) = tp Tr(Ex).

Let ® be a quantum channel from M, to M,,. Then F;, = ®(E}) is considered as
an elementary event, but it is no longer a projection. So we take a fixed set of positive-
semidefinite matrices {F;} with ) , Fy = I, which is also called a POVM (positive
operator-valued measure), and consider a density matrix B =), s,F;. Assume s, > 0.
Then note that B is invertible since B > )", min;{s;}Fy = min;{s;} /.

In this situation, we define a composite matrix Wyp for A and B by

Wap = Z’wkgEk & Fy; where wyy g 0, Z’wketrEk = Sy, ZwkﬂtrFe = tg.
k.0 k ¢

A typical example for composite matrices is Zk,e teseEr ® Fy. In this case, A and B
are called independent.

If all E; and F; are of rank 1, then every (entrywise-)positive matrix {wge} with
> ke Wke = 1 may induce the composite matrix as in the following example:

Example 1. Let E; = (O O)’ E, = (O 1), (wke) 12 (2 3) and

1
A= (7 0), B=2F+2F=2F+F

12\0 5 12 12 3 3
Then,
1
EF1 + —F, O
Was = | 12 12 ) 3
O EFl + 1_2F2

The composite matriz entropy is defined by H(Wag) = n(Wag), the mutual matriz
entropy by I(A; B), and the conditional entropies H(Wag|A), H(Wap|B) by

I(A; B) = —S(Wap|A®B), H(Wagp|A) = S(Wap|ARI), H(Wag|B) = S(W4p|I®B).

Immediately we have H(W4p) > 0 and H(Wag|B) > 0, while I(A; B) is not always
positive. But its trace is positive.
Then, by Lemma 1 (4), we express these entropies:

Lemma 2. Matriz entropies have the following decompositions:
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(1) HWap) = 3", B ® n (D, wkeFe).

(2) I(A4;B) = = 34 Ex ® S (3_, wieFelti B).

(3) H(WaplA) = 34 Ex ® S (3o, wreFeltel) = 3yt B @ (Ze yzi“‘Fe)
(4) HWap|B) = 3, Ex ® S (3_, wkeFe| B).

Thus, the latter case where ({F} is PVM (projection-valued measure) shows the
entropy values in the classical (commutative) case.

In the context for the composite elementary events {Ej ® F,}, the entropy n(A),
n(B) should be extended to

HF(A Zlog(th wkgEk ® Fy, and HE( ) = — Zlog(Sg)wkgEk ® F,.
k.t k£

In fact, we obtain by taking the partial trace
Tro(Hr(A)) = ZTI‘ (weeF?) log(tx) By = Ztk log(tx) B = Zn(tk)Ek =n(A)

and similarly Tr;(Hg(B)) = n(B). Then we have the following relations similar to the
classical cases:

Theorem 3. The following equalities hold:

() H(Was|B) +1(4; B) = Hr(4),  (2)Hp(A) + H(Was|A) = H(Was).
Example 2. If {F;} is a PVM, then
YA B) = ( > log (1 )F10 5 log (§) P 1og(§)F10 s g (9 F)
Hi(4) = - (_ g i) o5 (2) 7+ &g (2 Fe) e
H(Wap) = (n(%) F‘S"(%) " (%) Flin(%) F2)

The following example shows that the matrix entropies include the classical ones as
diagonal matrices:

Example 3. For the case F;, = Ej, we have Wyp = 15 and



Then we obtain

( 18 14
1 3 7
I(A|B) = ~%S 6 ’ 10

\ 9 5
(1810g%§

_ 1 3log 3

36 6log <
\ Qlogg

Unlike the classical case, another equalities for the conditional matrix entropies do
not always hold. But if F; are projections, they hold:

Proposition. If {F;} is a PVM, then the equalities
H(WABIA) + I(A, B) = HE(B) and HE(B) + H(WABB) = H(WAB)
hold.

The following example shows the above inequalities do not hold for POVMs:

1 (6 1 1 (70
Example 4. Let (wkl):ﬁ(g 3>’ Azﬁ(o 5)’

11 -1 1{1 1 1 3 3 1
P = - = — == —_- —_ = — — .
1 5 (-1 1 ) R P2 5 (1 1) y F1 4P1 + 4P2 and F2 4P1 + 4P2

Then we have

< lo P+ L log 3 P
HE(B) — ( g 1 g 2

log -f'Pl + lOg 2 P2>

2 log 2P, + alog® P2
H A) = d
(Wasl4) ( log 3 Pl log 2p, an

I(A;B)=_( §log 57 P + 5 log 2P S 1og 2P, 4 8 g 8 P)
og 5311 + gz lo 2

Thus the desired equality does not hold.
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