行列の相対エントロピーと情報エントロピー Relative entropies and information ones for matrices

大阪教育大学・教養学科・情報科学 藤井 淳一 (Jun Ichi Fujii)
Departments of Arts and Sciences (Information Science)
Osaka Kyoiku University

Let $X=(x_j)$ and $Y=(y_j)$ be probability vectors, and $P_c=(p_{ij})$ be a probability matrix which is called now a *classical channel*. The standard bases $\{a_j\}$ and $\{b_i\}$ are considered as elementary events for X and Y; $x_j=p(a_j)$, $y_j=p(b_j)$ and $p_{ij}=p(b_i|a_j)$. Then the classical entropies are defined as:

compound entropy
$$H(X,Y) = -\sum_{i,j} p(a_j,b_i) \log p(a_j,b_i)$$
, conditional entropy $H(X|Y) = -\sum_{i,j} p(a_j,b_i) \log p(a_j|b_i)$, conditional entropy $H(Y|X) = -\sum_{i,j} p(a_j,b_i) \log p(b_i|a_j)$, and mutual entropy $I(X;Y) = \sum_{i,j} p(a_j,b_i) \log \frac{p(a_j,b_i)}{p(a_j)p(b_i)}$.

Then the relations between them are:

$$H(X,Y) = H(X) + H(Y|X) = H(Y) + H(X|Y) = I(X;Y) + H(X|Y) + H(Y|X),$$

 $H(X) = I(X;Y) + H(X|Y), \ H(Y) = I(X;Y) + H(Y|X).$

We try to extend these classical information entropies to matrix ones. They can be expressed by usual sets with the set operations as quantities:

$$A \mapsto H(X), \quad B \mapsto H(Y), \quad A \setminus B \mapsto H(X|Y), \quad B \setminus A \mapsto H(Y|X),$$

$$A \cup B \mapsto H(X,Y), \quad A \cap B \mapsto I(A;B).$$

For this, the key quantity is the *relative entropy* which is initiated as the *Kullback-Leibler one*:

$$s(p|q) = \sum_{ij} p_i \log \frac{p_i}{q_j}$$

for probability vectors p and q.

Let $\eta(x) = -x \log x$ ($\eta(0) = 0$) be the entropy function. Then the von Neumann entropy $s(A) = \text{Tr}\eta(A)$ and Nakamura-Umegaki discussed 'an operator entropy' $H(A) = \eta(A)$ [11]. The *Umegaki entropy*, which is expressed by

$$s_U(A|B) = \sum \operatorname{Tr} A(\log A - \log B)$$

for positive-definite matrices A and B, is an extension of s(p|q). Here A and B are often assumed to be *density matrices*, that is, they are positive-semidefinite and TrA = TrB = 1 which are quantum versions for X and Y. The *quantum channel* is a trace-preserving completely positive map Φ .

Based on the Umegaki entropy, Ohya [12] introduced the mutual information for quantum channel and discussed the capacity for the channel: For density operator $A = \sum_k t_k E_k$ with the spectral decomposition for that of identity $E = \{E_k\}$. For compound matrices

$$A_E = \sum_n t_n E_n \otimes \Phi(E_n)$$
 and $A_0 = A \otimes \Phi(A)$,

the Ohya mutual entropy is defined as

$$I(A; \Phi) = \sup_{E} s_U(A_E|A_0),$$

which is a nice extension of the classical mutual entropy $I(X; P_c(X))$ for a channel matrix P_c . Also Petz [13] defined a quantum conditional entropy

$$h(\rho_{AB}|B) = s(\rho_{AB}) - s(B)$$

and it is related to the Umegaki entropy:

$$h(\rho_{AB}|B) = \log \dim H_A - s_U(\rho_{AB}|\tau_A \otimes \rho_B)$$

where τ_A is a tracial state and ρ_{AB} is a composite matrix as we see later. But unfortunately $h(\rho_{AB}|B)$ is not always positive.

Recall the sesquilinear version for the Uhlmann relative entropy s_{UL} (cf. [15]) which is an extension of the Umegaki one: Let α and β be positive sesquilinear forms and $\gamma(t) = QF_t(\alpha, \beta)$ be their interpolation. Then

$$s_{UL}(\alpha|\beta)(x) = -\liminf_{t\to 0} \frac{QF_t(\alpha,\beta) - \alpha}{t}(x,x).$$

Considering the derivatives A and B for α and β , we have, when they commute,

$$-\liminf_{t \to 0} \text{Tr} \frac{A^{1-t}B^t - A}{t} = -\text{Tr} \lim_{t \to 0} \frac{A^{1-t}B^t - A}{t} = \text{Tr} A(\log A - \log B).$$

It suggests that the relative entropy can be defined as the initial tangent vector for some good path. Though a matrix version of the Umegaki entropy might be $A^{\frac{1}{2}}(\log A - \log B)A^{\frac{1}{2}}$, it might be not suitable from the geometrical viewpoint. In fact, the geodesic of one of the Hiai-Petz geometries ([9]) is $M_t(A, B) = \exp((1-t)\log A + t\log B)$ and hence its initial tangent vector is expressed by

$$\mathfrak{S}_{U}(A|B) \equiv \frac{dM_{t}(A,B)}{dt}\Big|_{t=0} = U\left(\left(\frac{1}{\log^{[1]}(d_{i},d_{j})}\right) \circ \ U^{*}(\log B - \log A)U\right)U^{*}$$

where U is a unitary with diag $(d_i) = U^*AU$ and $f^{[1]}$ is the divided difference $f^{[1]}(x,y) = \frac{f(x) - f(y)}{x - y}$, see [7, 8]. We think it is a matrix version of the Umegaki entropy. In fact, $\text{Tr}\mathfrak{S}_U(A|B) = \text{Tr}A(\log B - \log A) = -s_U(A|B)$. Since the quantum conditional entropy is not positive though it is a numerical quantity and $\mathfrak{S}_U(A|B)$ is somewhat an awkward tool, here we do not use $\mathfrak{S}_U(A|B)$ while we fully use the above idea, in particuler, Ohya's construction.

In [5], we defined another relative entropy for positive operators based on the Kubo-Ando theory of operator means: Let $A\#_t B$ be a weighted geometric operator mean in the sense of Kubo-Ando [10];

$$A\#_t B = A^{\frac{1}{2}} \left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}} \right)^t A^{\frac{1}{2}}$$

if A is invertible and $A\#_t B = \lim_{n\to\infty} (A + \frac{1}{n}) \#_t B$ if not. We introduced in [5, 4] the relative operator entropy S(A|B) as a derivative for a differentiable path of geometric operator means $A\#_t B$ if the following limit exists as a bounded operator;

$$\lim_{t\to 0}\frac{A\#_t B-A}{t}.$$

Afterwards, Corach, Porta and Recht [2] shows that the path $A\#_t B$ is the geodesic of their geometry of the positive operators and the realtive operator entropy is its initial tangent vector where the affine connection can be expressed by

$$\nabla_{\dot{\gamma}}\dot{\delta} = \ddot{\delta} - \frac{1}{2} \left(\dot{\gamma} \gamma^{-1} \dot{\delta} + \dot{\delta} \gamma^{-1} \dot{\gamma} \right).$$

for differential curves γ and δ , see also [3, 7].

If B is invertible, then $S(A|B) = B^{\frac{1}{2}} \eta \left(B^{-\frac{1}{2}} A B^{-\frac{1}{2}}\right) B^{\frac{1}{2}}$. In addition, if A is invertible, then $S(A|B) = A^{\frac{1}{2}} \log \left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}}\right) A^{\frac{1}{2}}$. -Tr S(A|B) is the Belavkin-Staszewski relative entropy. So it is always exists for invertible operators, or positive-definite matrices. Basic properties are as follows:

Lemma 1. The relative operator entropy has the following properties if it exists:

- (1) If B < B', then S(A|B) < S(A|B').
- (2) $T^*S(A|B)T < S(T^*AT|T^*BT)$ (the equality holds for invertible T).
- (3) $S(A_1|B_1) + S(A_2|B_2) \le S(A_1 + A_2|B_1 + B_2)$.
- $(3') \ (1-t)S(A_1|B_1) + tS(A_2|B_2) \le S((1-t)A_1 + tA_2|(1-t)B_1 + tB_2) \text{ for all } t \in [0,1].$
- (4) $S(\bigoplus_k A_k | \bigoplus_k B_k) = \bigoplus_k S(A_k | B_k)$.
- (5) S(A|B) < B A.
- (6) $S(A|\alpha B) = (\log \alpha)A + S(A|B)$ for $\alpha > 0$.

Based on this relative matrix entropy, we discuss basic matrix entropies in the information theory.

Assume that $A \in \mathcal{M}_n^+$, the $n \times n$ positive-definite matrices and $B \in \mathcal{M}_m^+$, the $m \times m$ ones. Let $\{E_k\}$ be the (fixed) decomposition of the identity, that is, each E_k be a projection and $\sum_k E_k = I_n$. A set $\{E_k\}$ is considered as that of elementary probability events. Let $A = \sum_k t_k E_k$ be a spectral decomposition of an invertible density matrix, that is, A is positive-definite and $\operatorname{tr} A = 1$. Then, we can observe that the probability $p(E_k)$ is given by $\operatorname{Tr}(t_k E_k) = t_k \operatorname{Tr}(E_k)$.

Let Φ be a quantum channel from \mathcal{M}_n to \mathcal{M}_m . Then $F_k = \Phi(E_k)$ is considered as an elementary event, but it is no longer a projection. So we take a fixed set of positive-semidefinite matrices $\{F_\ell\}$ with $\sum_{\ell} F_\ell = I_m$, which is also called a POVM (positive operator-valued measure), and consider a density matrix $B = \sum_{\ell} s_\ell F_\ell$. Assume $s_\ell > 0$. Then note that B is invertible since $B \geq \sum_{\ell} \min_j \{s_j\} F_\ell = \min_j \{s_j\} I_m$.

In this situation, we define a composite matrix W_{AB} for A and B by

$$W_{AB} = \sum_{k,\ell} w_{k\ell} E_k \otimes F_\ell \quad \text{where } w_{k\ell} \ge 0, \ \sum_k w_{k\ell} \text{tr} E_k = s_\ell, \ \sum_\ell w_{k\ell} \text{tr} F_\ell = t_k.$$

A typical example for composite matrices is $\sum_{k,\ell} t_k s_\ell E_k \otimes F_\ell$. In this case, A and B are called *independent*.

If all E_k and F_ℓ are of rank 1, then every (entrywise-)positive matrix $\{w_{k\ell}\}$ with $\sum_{k,\ell} w_{k\ell} = 1$ may induce the composite matrix as in the following example:

Example 1. Let
$$E_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$
, $E_2 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$, $(w_{k\ell}) = \frac{1}{12} \begin{pmatrix} 6 & 1 \\ 2 & 3 \end{pmatrix}$ and

$$A = \frac{1}{12} \begin{pmatrix} 7 & 0 \\ 0 & 5 \end{pmatrix}, \quad B = \frac{8}{12} F_1 + \frac{4}{12} F_2 = \frac{2}{3} F_1 + \frac{1}{3} F_2.$$

Then,

$$W_{AB} = \begin{pmatrix} \frac{6}{12}F_1 + \frac{1}{12}F_2 & O \\ O & \frac{2}{12}F_1 + \frac{3}{12}F_2 \end{pmatrix}.$$

The composite matrix entropy is defined by $H(W_{AB}) = \eta(W_{AB})$, the mutual matrix entropy by I(A; B), and the conditional entropies $H(W_{AB}|A)$, $H(W_{AB}|B)$ by

$$I(A;B) = -S(W_{AB}|A \otimes B), \ H(W_{AB}|A) = S(W_{AB}|A \otimes I), \ H(W_{AB}|B) = S(W_{AB}|I \otimes B).$$

Immediately we have $H(W_{AB}) \ge 0$ and $H(W_{AB}|B) \ge 0$, while I(A;B) is not always positive. But its trace is positive.

Then, by Lemma 1 (4), we express these entropies:

Lemma 2. Matrix entropies have the following decompositions:

(1)
$$H(W_{AB}) = \sum_{k} E_{k} \otimes \eta \left(\sum_{\ell} w_{k\ell} F_{\ell} \right).$$

(2)
$$I(A;B) = -\sum_{k} E_{k} \otimes S\left(\sum_{\ell} w_{k\ell} F_{\ell} | t_{k} B\right).$$

(3)
$$H(W_{AB}|A) = \sum_{k} E_{k} \otimes S\left(\sum_{\ell} w_{k\ell} F_{\ell} | t_{k} I\right) = \sum_{k} t_{k} E_{k} \otimes \eta\left(\sum_{\ell} \frac{w_{k\ell}}{t_{k}} F_{\ell}\right)$$

(4)
$$H(W_{AB}|B) = \sum_{k} E_{k} \otimes S(\sum_{\ell} w_{k\ell} F_{\ell}|B).$$

Thus, the latter case where ($\{F_{\ell}\}$ is PVM (projection-valued measure) shows the entropy values in the classical (commutative) case.

In the context for the composite elementary events $\{E_k \otimes F_\ell\}$, the entropy $\eta(A)$, $\eta(B)$ should be extended to

$$H_F(A) = -\sum_{k,\ell} \log(t_k) w_{k\ell} E_k \otimes F_\ell$$
, and $H_E(B) = -\sum_{k,\ell} \log(s_\ell) w_{k\ell} E_k \otimes F_\ell$.

In fact, we obtain by taking the partial trace

$$\operatorname{Tr}_2(H_F(A)) = -\sum_k \operatorname{Tr}(w_{k\ell}F_\ell)\log(t_k)E_k = -\sum_k t_k\log(t_k)E_k = \sum_k \eta(t_k)E_k = \eta(A)$$

and similarly $\text{Tr}_1(H_E(B)) = \eta(B)$. Then we have the following relations similar to the classical cases:

Theorem 3. The following equalities hold:

$$(1) H(W_{AB}|B) + I(A;B) = H_F(A), \qquad (2) H_F(A) + H(W_{AB}|A) = H(W_{AB}).$$

Example 2. If $\{F_{\ell}\}$ is a PVM, then

$$I(A;B) = -\begin{pmatrix} \frac{6}{12} \log \left(\frac{7}{9}\right) F_1 + \frac{1}{12} \log \left(\frac{7}{3}\right) F_2 & O \\ O & \frac{2}{12} \log \left(\frac{5}{3}\right) F_1 + \frac{3}{12} \log \left(\frac{5}{9}\right) F_2 \end{pmatrix},$$

$$H(W_{AB}|B) = \begin{pmatrix} \frac{6}{12} \log \left(\frac{8}{6}\right) F_1 + \frac{1}{12} \log \left(4\right) F_2 & O \\ O & \frac{2}{12} \log \left(\frac{8}{2}\right) F_1 + \frac{3}{12} \log \left(\frac{4}{3}\right) F_2 \end{pmatrix},$$

$$H_F(A) = -\begin{pmatrix} \frac{6}{12} \log \left(\frac{7}{12}\right) F_1 + \frac{1}{12} \log \left(\frac{7}{12}\right) F_2 & O \\ O & \frac{2}{12} \log \left(\frac{5}{12}\right) F_1 + \frac{3}{12} \log \left(\frac{5}{12}\right) F_2 \end{pmatrix} \text{ and }$$

$$H(W_{AB}) = \begin{pmatrix} \eta \left(\frac{6}{12}\right) F_1 + \eta \left(\frac{1}{12}\right) F_2 & O \\ O & \eta \left(\frac{2}{12}\right) F_1 + \eta \left(\frac{3}{12}\right) F_2 \end{pmatrix}.$$

The following example shows that the matrix entropies include the classical ones as diagonal matrices:

Example 3. For the case
$$F_k=E_k$$
, we have $W_{AB}=\frac{1}{12}\begin{pmatrix}6&&&\\&1&&\\&&2&\\&&&3\end{pmatrix}$ and
$$A\otimes B=\frac{1}{12}\begin{pmatrix}7&0\\0&5\end{pmatrix}\otimes\frac{1}{3}\begin{pmatrix}2&0\\0&1\end{pmatrix}.$$

Then we obtain

$$I(A|B) = -\frac{1}{36}S \begin{pmatrix} 18 & & \\ & 3 & \\ & & 6 \\ & & 9 \end{pmatrix} \begin{vmatrix} 14 & & \\ & 7 & \\ & & 10 \\ & & & 5 \end{pmatrix}$$
$$= \frac{1}{36} \begin{pmatrix} 18\log\frac{18}{14} & & \\ & & 3\log\frac{3}{7} & \\ & & & 6\log\frac{6}{10} \\ & & & 9\log\frac{9}{5} \end{pmatrix}.$$

Unlike the classical case, another equalities for the conditional matrix entropies do not always hold. But if F_{ℓ} are projections, they hold:

Proposition. If $\{F_{\ell}\}$ is a PVM, then the equalities

$$H(W_{AB}|A) + I(A;B) = H_E(B)$$
 and $H_E(B) + H(W_{AB}B) = H(W_{AB}B)$

hold.

The following example shows the above inequalities do not hold for POVMs:

Example 4. Let
$$(w_{k\ell}) = \frac{1}{12} \begin{pmatrix} 6 & 1 \\ 2 & 3 \end{pmatrix}$$
, $A = \frac{1}{12} \begin{pmatrix} 7 & 0 \\ 0 & 5 \end{pmatrix}$,
$$P_1 = \frac{1}{2} \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$$
, $P_2 = \frac{1}{2} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$, $F_1 = \frac{1}{4}P_1 + \frac{3}{4}P_2$ and $F_2 = \frac{3}{4}P_1 + \frac{1}{4}P_2$.

Then we have

$$\begin{split} H_E(B) &= \begin{pmatrix} \frac{1}{16}\log\frac{3^3}{2^2}P_1 + \frac{1}{48}\log\frac{3^{19}}{2^{18}}P_2 \\ & \frac{1}{48}\log\frac{3^{11}}{2^2}P_1 + \frac{1}{16}\log\frac{3^3}{2^2}P_2 \end{pmatrix}, \\ H(W_{AB}|A) &= \begin{pmatrix} \frac{9}{48}\log\frac{28}{9}P_1 + \frac{19}{48}\log\frac{28}{19}P_2 \\ & \frac{11}{48}\log\frac{20}{11}P_1 + \frac{9}{48}\log\frac{20}{9}P_2 \end{pmatrix} \quad \text{and} \\ I(A;B) &= -\begin{pmatrix} \frac{9}{48}\log\frac{35}{27}P_1 + \frac{19}{48}\log\frac{49}{57}P_2 \\ & \frac{11}{48}\log\frac{25}{33}P_1 + \frac{9}{48}\log\frac{35}{27}P_2 \end{pmatrix}. \end{split}$$

Thus the desired equality does not hold.

参考文献

- V.P.Belavkin and P.Staszewski, C*-algebraic generalization of relative entropy and entropy, Ann. Inst. H. Poincaré Sect. A.37(1982), 51-58.
- [2] G.Corach, H.Porta and L.Recht, Geodesics and operator means in the space of positive operators. Internat. J. Math. 4 (1993), 193–202.
- [3] G.Corach and A.L.Maestripieri, Differential and metrical structure of positive operators, Positivity 3 (1999), 297–315.
- [4] J.I.Fujii and E.Kamei, Relative operator entropy in noncommutative information theory, Math. Japon. **34** (1989), 341–348.
- [5] J.I.Fujii and E.Kamei, Uhlmann's interpolational method for operator means, Math. Japon. 34 (1989), 541–547.
- [6] J.I.Fujii and E.Kamei, Interpolational paths and their derivatives, Math. Japon. 39 (1993), 557–560.
- [7] J.I.Fujii, Structure of Hiai-Petz parametrized geometry for positive definite matrices, Linear Algebra. Appl. **432** (2010), 318–326.
- [8] J.I.Fujii, Path of quasi-means as a geodesic, Linear Algebra. Appl. 434 (2011), 542–558.
- [9] F.Hiai and D.Petz, Riemannian metrics on positive definite matrices related to means, Linear Alg. Appl. 430 (2009), 3105–3130.
- [10] F.Kubo and T.Ando, Means of positive linear operators, Math. Ann. 246 (1980), 205–224.
- [11] M.Nakamura and H.Umegaki, A note on the entropy for operator algebras, Proc. Jap. Acad., 37 (1961), 149-154.
- [12] M.Ohya, On compound state and mutual information in quantum information theory, IEEE trans. IT, 29(1983), 770-774.
- [13] D.Petz, "Quantum Information Theory and Quantum Statistics", Springer, 2008.
- [14] A.Uhlmann: Relative entropy and the Wigner-Yamase-Dyson-Lieb concavity in an interpolation theory, Commun. Math. Phys. 54 (1977), 22–32.
- [15] H.Umegaki: Conditional expectation in an operator algebra IV, Kodai Math. Sem. Rep. 14 (1962), 59–85.
- [16] H.Umegaki, Conditional expectation in an operator algebra IV, Kodai Math. Sem. Rep. 14 (1962), 59–85.