
Some Integral Equations Related to

A Branching Model

Isamu D\^OKU

Department of Mathematics, Faculty of Education,
Saitama University, Saitama 338-8570 JAPAN

idoku@mail.saitama-u.ac.jp

分枝モデルに関連する積分方程式

道工 勇

埼玉大学教育学部数学教室・数理科学コース

The present study has been carried out based upon the motivation to clarify the mathematical mechanism
usually hidden in the background of biological systems, mainly by making use of mathematical models
including stochastic models. In particular, we are interested in branching models, and we are very eager
to characterize their fundamental properties by formulating an aspect of random branching in the viewpoint
of functional equations. As an exciting case study, when a certain class of integral equations is given, then
we are going to introduce in this article a method to construct its solution in a probabilistic manner by
using branching models. To put things in a distinct way, this implies that the above-mentioned integral
equations themselves are nothing but a characterization of the mathematical model that is constructed by
a branching process arising in the description of biological systems. Paying attention to the tree structure
that a proper branching process determines, we would introduce a space of marked trees and construct a
“tree-based functional”’ in terms of non-commutative star-product. It is proven that if a certain tree-based
ordinary multiplication functional satisfies the integrability condition, then there exists a proper weighted
tree-based star-product functional such that the function determined by expectation of the functional gives
a unique solution to the original deterministic integral equations.

本研究は確率モデルなどを含むいわゆる数理モデルを主な道具として用いることにより、生命系の背後に隠された

数理メカニズムの解明を主な動機として始められた．とくに分枝モデルにおいて，ランダムに枝分かれしていく様
相を方程式的に定式化して，その性質を特徴付けることを目指す．スタディ ケースとして，あるクラスに属する確

定的な積分方程式が与えられたとき，その解を分枝モデルを用いて確率論的に構成する手法について紹介する．こ

のことは視点を変えてみると，生命系の記述に現れる分枝過程を用いた数理モデルの数学的特徴付けとして，上述の
積分方程式が出現するという構図になっている．適当な分枝過程の定める樹形構造に着目して，マーク付き樹木の
空間を導入し，非可換なスター積に基づいた「樹状汎関数」 を構成する．ある樹状通常積汎関数が可積分性の条件を

みたせば，適当な重み付き樹状スター積汎関数が存在して，その期待値にょって定められる関数は元の積分方程式の
一意解であることが示される．

1 Introduction

Let $D_{0}$ $:=\mathbb{R}^{3}\backslash \{O\}$ and $\mathbb{R}+:=[0, \infty$). For every $\alpha,$
$\beta\in \mathbb{C}^{3}$ , we use the symbol $\alpha\cdot\beta$ for inner product,

and we put $e_{x}$ $:=x/|x|$ for every $x\in D_{0}$ . In this article we consider the deterministic nonlinear integral

equation of the type

$e^{\lambda t|x|^{2}}u(t, x)=u_{0}(x)+ \frac{\lambda}{2}\int_{0}^{t}dse^{\lambdas|x|^{2}}\int p(s, x, y;u)n(x, y)dy$

$+ \frac{\lambda}{2}\int_{0}^{t}e^{\lambda s|x|^{2}}f(s, x)ds$ , for $\forall(t, x)\in \mathbb{R}+\cross D_{0}$ , (1)

where $u$ is an unknown function: $\mathbb{R}+\cross D_{0}arrow \mathbb{C}^{3},$ $\lambda>0$ , and $u_{0}$ : $D_{0}arrow \mathbb{C}^{3}$ is the initial data. Moreover,
$f$ : $\mathbb{R}_{+}\cross D_{0}arrow \mathbb{C}^{3}$ is a given function satisfying $f(t, x)/|x|^{2}=:\tilde{f}\in L^{1}(\mathbb{R}_{+})$ for each $x\in D_{0}$ . The term
$p$ in (1) is given by

$p(t, x, y;u)=u(t, y)\cdot e_{x}\{u(t, x-y)-e_{x}(u(t, x-y)\cdot e_{x}$ (2)

Suppose that the integral kernel $n(x, y)$ is bounded and measurable with respect to $dx\cross dy$ . While, we
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consider a Markov kernel $K$ : $D_{0}arrow D_{0}\cross D_{0}$ , namely, for every $z\in D_{0},$ $K_{z}(dx, dy)$ lies in the space

$\mathcal{P}(D_{0}\cross D_{0})$ of all probability measures on $D_{0}\cross D_{0}$ . When the kernel $k$ is given by $k(x, y)=i|x|^{-2}n(x, y)$ ,

then we define $K_{z}$ as a Markov kernel satisfying that for any positive measurable function $h=h(x, y)$ on

$D_{0}\cross D_{0},$

$\iint h(x, y)K_{z}(dx, dy)=\int h(x, z-x)k(x, z)dx$ . (3)

Moreover, we assume that for every measurable functions $f,$ $g>0$ on $\mathbb{R}^{+},$

$\int h(|z|)\nu(dz)\int g(|x|)K_{z}(dx, dy)=\int g(|z|)\nu(dz)\int h(|y|)K_{z}(dx, dy)$ (4)

holds, where the measure $v$ is given by $\nu(dz)=|z|^{-3}dz.$

2 Main results

In this section we shall state the main results on the existence and uniqueness of solutions to the

nonlinear integral equation (1). That is to say, we derive a probabilistic representation of the solutions

to (1) by employing the star-product functional. As a matter of fact, the solution $u(t, x)$ is nothing but

a probabilistic solution. Let

$M_{\star} \langle(\omega)=\prod\star[x_{n^{-}}]^{-}-m_{2}^{1}.m_{3}[u_{0}, f](\omega)$ , (5)

be a random quantity in terms of tree-based star-product functional with weight functions $(u_{0}, f)$ . On

the other hand, $M_{*}^{\langle U,F\rangle}(\omega)$ denotes the associated $*$-product functional with weight $(U, F)$ . In fact, in

a similar manner as (5) we can construct $a(U, F)$-weighted tree-based $*$ -product functional $M_{*}^{\langle U,F\rangle}(\omega)$ .

This quantity is indexed by the nodes $(x_{m})$ of a binary tree. We suppose that $U$ (resp. $F$) is a non-

negative measurable function on $D_{0}$ $($resp. $\mathbb{R}+\cross D_{0})$ respectively, and also that $F(\cdot, x)\in L^{1}(\mathbb{R}_{+})$ for

each $x$ . Indeed, ordinary multiplication $*is$ taken in construction of $the*$-product functional, instead of

the star-product $\star$ in (5).

THEOREM 1. Suppose that $|u_{0}(x)|\leq U(x)$ for $\forall x$ and $|\tilde{f}(t, x)|\leq F(t, x)$ for $\forall t,$ $x$ , and also that for
some $T>0$ ( $T>>1$ sufficiently large),

$E_{T,x}[M_{*}^{\langle U,F\rangle}(\omega)]<\infty$ , ae. $-x$ (6)

Then there exists $a(u_{0}, f)$-weighted tree-based star $\star$-product functional $M_{\star}^{\langle u_{0},f\rangle}(\omega)$ , indexed by a set of
node labels accordingly to the tree structure which a binary critical branching process $Z^{K_{x}}(t)$ determines.

Furthermore, the function
$u(t, x)=E_{t,x}[M_{\star}^{\langle u_{0},f\rangle}(\omega)]$ (7)

gives a unique solution to the integral equation (1). Here $E_{t,x}$ denotes the expectation with respect to a

probability measure $P_{t,x}$ as the time-reversed law of $Z^{K_{x}}(t)$ .

3 Construction of branching model and tree-like structure

In this section we consider a continuous time binary critical branching process $Z^{K_{x}}(t)$ on $D_{0}$ , whose

branching rate is given by a parameter $\lambda|x|^{2}$ , whose branching mechanism is binary with equi-probability

(see Figure 1), and whose descendant branching particle behavior (or distribution) is determined by the

kernel $K_{x}$ . Next, taking notice of the tree structure by the process $Z^{K_{x}}(t)$ , we denote the space of marked

trees
$\omega= (t, (t_{m}), (x_{m})_{)}(\eta_{m}), m\in \mathcal{V})$ (8)
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図 1Binary Branching

by $\Omega$ . Furthermore, the time-reversed law of $Z^{K_{x}}(t)$ on $\Omega$ is written as $P_{t,x}$ . Here $t$ denotes the birth

time of common ancestor, and the particle $x_{m}$ dies when $\eta_{m}=0$ , while it generates two descendants

$x_{m1},$ $x_{m2}$ when $\eta_{m}=1$ . On the other hand,

$\mathcal{V}=\bigcup_{\ell\geq 0}\{1, 2\}^{\ell}$

is a set of all labels, namely, finite sequences of symbols with length $\ell$ . For $\omega\in\Omega$ we denote by $\mathcal{N}(\omega)$ the

totality of nodes being branching points of tree, and let $N_{+}(\omega)$ be the set of all nodes $m$ being a member

of $\mathcal{V}\backslash \mathcal{N}(\omega)$ , whose direct predecessor lies in $\mathcal{N}(\omega)$ and which satisfies the condition $t_{m}(\omega)>0$ , and let
$N_{-}(\omega)$ be the same set as described above, but satisfying $t_{m}(\omega)\leq 0$ . Finally we put

$N(\omega)=N_{+}(\omega)\cup N_{-}(\omega)$ . (9)

4 Star $\star$-product functional and $*$-product functional

Let us now introduce a tree-based star-product functional. First of all, we denote by the symbol
$Proj^{z}$ a projection of the objective element onto its orthogonal part of the $z$ component in $\mathbb{C}^{3}$ , and we

define a $\star$-product of $\beta,$
$\gamma$ for $z\in D_{0}$ as

$\beta\star_{[z]}\gamma=-i(\beta\cdot e_{z})Proj^{z}(\gamma)$ . (10)

We shall define $\Theta^{m}(\omega)$ for each $\omega\in\Omega$ realized as follows. When $m\in N_{+}(\omega)$ , then $\Theta^{m}(\omega)=$

$\tilde{f}(t_{m}(\omega), x_{m}(\omega))$ , while $\Theta^{m}(\omega)=u_{0}(x_{m}(\omega))$ if $m\in N_{-}(\omega)$ . Then we define

$\Xi_{m_{2}.m_{3}}^{m_{1}}(\omega)\equiv_{-m_{2},m_{3}}--7\gamma\iota_{1}\fbox{Error::0x0000}[u_{0}, f]( \omega):=\Theta^{m_{2}}( \omega)\star_{rx_{m_{1}}]}\Theta^{m_{3}}( \omega))$ (11)

where as for the product order in the star-product $\star$ , when we write $m\prec m’$ lexicographically with

respect to the natural order $\prec$ , the term $\Theta^{m}$ labelled by $m$ necessarily occupies the left-hand side and

the other $\Theta^{m’}$ labelled by $m’$ occupies the right-hand side. And besides, we write

$–\emptyset(\omega)\equiv_{-,\emptyset[u_{0}}-, f](\omega):=\Theta^{m}(\omega)$ , (12)

when $m\in \mathcal{V}$ is a label of single terminal point.

Under these circumstances, we consider a random quantity which obtained by executing the star-

product $\star$ inductively at each node in $\mathcal{N}(\omega)$ , and we call it a tree-based $\star$-product functional, and we

express it symbolically as
$M_{\star}^{\langle u0,f\rangle}( \omega)=\prod\star_{[x_{m^{-}}]}\Xi_{m_{2}^{1}.m_{3}}^{m}[u_{0}, f](\omega)$ , (13)

where $m_{1}\in \mathcal{N}(\omega)$ and $m_{2},$ $m_{3}\in N(\omega)$ , and by the symbol $\prod\star$ (as a product relative to the star-product)

we mean that the star-products $\star$ ’s should be succeedingly executed in a lexicographical manner with

respect to $X_{m}^{-}$ such that $\tilde{m}\in \mathcal{N}(\omega)\cap\{|\tilde{m}|=\ell-1\}$ when $|m_{1}|=\ell.$
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図 2Example of a Realized Tree $\omega_{1}$

図 3Classification of Nodes for $\omega_{1}$

EXAMPLE 2. Suppose that a tree structure $\omega_{1}(\in\Omega)$ has been realized here (see Figure 2). Clearly we

have $\mathcal{N}(\omega_{1})=\{\phi$ , 1, 2, 21 $\},$ $N_{+}(\omega_{1})=\{22$ , 211 $\}$ , and $N_{-}(\omega_{1})=\{11$ , 12, 212 $\}$ . However, for this $\omega_{1}\in\Omega,$

unfortunately labels {121}, {122} are not included in any $\mathcal{N}(\omega_{1})$ , $N_{+}(\omega_{1})$ , nor $N_{-}(\omega_{1})$ . As a matter of

fact, we can construct
$-11,12-1$

by a star-product $u_{0}(x_{11}(\omega_{1}))\star_{[X_{1}]}u_{0}(x_{12}(\omega_{1}))$ in accordance with the rule, because both $m_{1}=11$

and $m_{2}=12lie$ in $N_{-}(\omega)$ . As to the node $x_{21}$ , it goes similarly. Hence $–211,212(\omega_{1})$ is given by

$\tilde{f}(t_{211}(\omega_{1}), x_{211}(\omega_{1}))\star_{[x_{21}]}u_{0}(x_{212}(\omega_{1}))$ , see Figure 3. Consequently, we obtain finally an explicit repre-

sentation of the star-product functional

$M_{\star}^{\langle u0,f\rangle}(\omega_{1})=([x_{1}]$

$\{([x_{21}]$ . (14)

口

5 A sketch of the proof of existence result

In this section we shall first construct $a(U, F)$-weighted tree-based $*$-product functional $M_{*}^{\langle U,F\rangle}(\omega)$ ,

which is indexed by the nodes $(x_{m})$ of a binary tree. Moreover, in construction of the functional, the

product is taken as ordinary multiplication $*$ instead of the star-product $\star$ . We need the following

technical lemma.
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LEMMA 3. For $0\leq t\leq T$ and $x\in D_{0}$ , the function $V(t, x)=E_{t,x}[M_{*}^{\langle U,F\rangle}(\omega)]$ satisfies

$e^{\lambda t|x|^{2}}V(t, x)=U(x)+ \int_{0}^{t}ds\frac{\lambda|x|^{2}}{2}e^{\lambda s|x|^{2}}\{F(s, x)$

$+ \int V(s, y)V(s, z)K_{x}(dy, dz)\}$ . (15)

Proof of lemma 3. By making use of the conditional expectation we can get

$V(t, x)=E_{t,x}[M_{*}^{\langle U,F\rangle}(\omega)]$

$=E_{t,x}[M_{*}^{\langle U,F\rangle}(\omega), t_{\phi}\leq 0]+E_{t,x}[M_{*}^{\langle U,F\rangle}(\omega), t_{\phi}>0]$

$=E_{t,x}[M_{*}^{\langle U,F\rangle}(\omega))t_{\phi}\leq 0]+E_{t,x}[M_{*}^{\langle U,F\rangle}(\omega), t_{\phi}>0, \eta_{\phi}=0]$

$+E_{t,x}[M_{*}^{\langle U,F\rangle}(\omega), t_{\phi}>0, \eta_{\phi}=1]$ . (16)

As to the first term in (16), the $*$-product functional is allowed to have a simple representation:

$E_{t,x}[M_{*}^{\langle U,F\rangle}, t_{\phi}\leq 0]=E_{t,x}[M_{*}^{\langle U,F\rangle}\cdot 1_{\{t_{\phi}\leq 0\}}]=U(x)\cdot P_{t,x}(t_{\phi}\leq 0)$

$=U(x) \int_{t}^{\infty}f_{T}(s)ds=U(x)l^{\infty}\lambda|x|^{2}e^{-\lambda s|x|^{2}}ds$

$=U(x)\cdot\exp\{-\lambda t|x|^{2}\}$ . (17)

As to the third term, the Markov property guarantees that the lower tree structure below the first
generation branching node point (or location) $x_{1}$ is independent of that below the location $x_{2}$ with

realized $\omega\in\Omega$ , hence $a*$-product functional branched after time $s$ is also probabilistically independent

of the other $*$ -product functional branched after time $s$ . Therefore, an easy computation provides with

$E_{t,x}[M_{*}^{\langle U,F\rangle}, t_{\phi}>0, \eta_{\phi}=1]=\frac{1}{2}\int_{0}^{t}ds\lambda|x|^{2}e^{-\lambda|x|^{2}(t-s)}\cross\int\int E_{s,x_{1}}[M_{*}]\cdot E_{s,x_{2}}[M_{*}]K_{x}(dx_{1}, dx_{2})$ .

Note that as for the second term, it goes almost similarly. Finally, summing up we obtain

$V(t, x)=E_{t,x}[M_{*}^{\langle U,F\rangle}(\omega)]$

$=U(x)r^{-\lambda t|x|^{2}}+ \int_{0}^{t}\frac{\lambda|x|^{2}}{2}e^{-\lambda|x|^{2}(t-s)}F(s, x)ds$

$+ \int_{0}^{t}\frac{\lambda|x|^{2}}{2}e^{-\lambda|x|^{2}(t-s)}\int\int V(s, y)V(s, z)K_{x}(dy, dz)ds$ . (18)

This completes the proof. $\square$

Next notice that
$E_{t,x}[M_{*}^{\langle U,F\rangle}(\omega)]<\infty$ (19)

holds for $\forall t\in[0, T]$ and $x\in E_{c}$ , where a measurable set $E_{C}$ denotes the totality of all the elements $x$

in $D_{0}$ such that $E_{T,x}[M_{*}^{\langle U,F\rangle}]<\infty$ holds for a.e.-x. Another important aspect for the proof consists in

establishment of the $M_{*}$ -control inequality.

LEMMA 4. ( $M_{*}$ -control inequality) The following inequality

$|M_{\star}^{\langle u_{0},f\rangle}(\omega)|\leq M_{*}^{\langle U,F\rangle}(\omega)$ (20)

holds $P_{t,x}-a.s.$
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In fact, the $M_{*}$ -control inequality yields immediately from a simple inequality

$|w\star_{[x]}v|\leq|w|\cdot|v|$ for every $w,$
$v\in \mathbb{C}^{3}$ and every $x\in D_{0}.$

If we define

$u(t, x):=\{\begin{array}{l}E_{t,x}[M_{\star}^{\langle u_{0},f\rangle}(\omega)], on E_{c},0, otherwise,\end{array}$

then $u(t, x)$ is well-defined on the whole space $D_{0}$ under the assumptions of the main theorem (Theorem

1). Moreover, it follows from the $M_{*}$ -control inequality (20) that

$|u(t, x)|\leq V(t, x)$ on $[0, T]\cross D_{0}$ . (21)

On this account, it is easy to see from (15) that

$\int_{0}^{T}ds\int|u(s, y)|\cdot|u(s, z)|K_{x}(dy, dz)<\infty$ for $x\in E_{c}$ . (22)

Hence, taking (22) into consideration we define the space $\mathcal{D}$ of solutions to (1) as

$\mathcal{D}$ $:=\{\varphi$ : $\mathbb{R}_{+}\cross D_{0}arrow \mathbb{C}^{3};\varphi$ is continuous in $t$ and measurable such that

$\int_{0}^{\infty}ds\int e^{\lambda|x|^{2}s}|\varphi(s, y)|\cdot|\varphi(s, z)|K_{x}(dy, dz)<\infty$ holds a.e. $-x$ }. (23)

By employing the Markov property with respect to time $t_{\phi}$ and by a similar technique as in the proof of

Lemma 3, we may proceed in rewriting and calculating the expectation: for $\forall t>0$ and $x\in E_{c}$

$u(t, x)=E_{t,x}[M_{\star}^{\langle u_{0},f\rangle}(\omega)]$

$=e^{-\lambda t|x|^{2}}u_{0}(x)+ \int_{0}^{t}ds\lambda|x|^{2}e^{-\lambda(t-s)|x|^{2}}\cross$

$\cross\frac{1}{2}\{\tilde{f}(s, x)+\iint E_{8x_{1}}[M_{\star}]\star_{[x]}E_{s,x_{2}}[M_{\star}]K_{x}(dx_{1}, dx_{2})\}$ . (24)

Furthermore, we may apply the integral equality (3) in the assumption on the Markov kernel for (24) to

obtain

$E_{t,x}[M_{\star}^{\langle u0,f\rangle}( \omega)]=e^{-\lambda t|x|^{2}}\{u_{0}(x)+\frac{\lambda}{2}\int_{0}^{t}e^{\lambda s|x|^{2}}f(s, x)ds$

$+ \frac{\lambda}{2}\int_{0}^{t}ds\int e^{\lambda s|x|^{2}}p(s, x, y;u)n(x, y)dy\}$ . (25)

Finally we attain that $u(t, x)=E_{t,x}[M_{\star}^{\langle u0,f\rangle}(\omega)]$ satisfies the integral equation (1), and this $u(t, x)$ is a

solution lying in the space $\mathcal{D}$ . This completes the proof of the existence.
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