
2014年度冬の LA シンポジム [D-1]

Space Complexity of Self-Stabilizing Leader Election
in Population Protocol on Hypernetworks
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Abstract

Population protocol (PP) is a distributed computing
model for passively mobile systems, in which a compu-
tation is executed by interactions between two agents.
This paper investigates a generalized model, popula-
tion protocol based on interactions among at most $k$

agents $(PP_{k})$ , where $PP_{2}$ is exactly the same as com-
mon PP model. Cai et al. (2012) showed that self-
stabilizing leader election (SS-LE) in PP of $n$ agents
requires $n$ agent states on complete communication net-
work under the global faimess assumption, while Xu et
al. (2013) gave a space complexity of SS-LE in $PP_{k},$

which is roughly $n/(k-1)$ , as well. This paper shows
that these space complexities are still sufficient for con-
nected communication (hyper)graphs, in general. To be
exact, our solution is not static, meaning that the leader
agent is always unique but ever-changing after a con-
vergence, for the purpose of self-stabilization avoiding
deadlock. We also report $an_{(}i$nteresting fact that the
space complexity of SS-LE in PP$k$ on some particu-
lar hypergraphs is strictly smaller than complete hyper-
graphs when $k\geq 3.$

1 Introduction

Population Protocol (PP), proposed by Angluin et
al. [1], is a model of distributed systems consisting
ofmobile agents with limited computational resources,
in which agent-to-agent communication (called inter-
action) is carried out only when two agents approach
by accident where the model is motivated by networks
such as networks ofsmart sensors attached to cars or an-
imals, synthesis ofchemical materials, complex biosys-
tems, and so on (see also e.g., [3, 7 Every agent is an
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identical finite state machine, and two interacting finite
state machines (i.e., two agents under communication)

can update their states by using a transition function.
Once an initial configuration is given, an execution of
the system is determined by the order of interactions
among the agents, which however is unpredictable and
is assumed to be given by an adversarial scheduler sat-
isfying afairness condition.

Population Protocol by interactions of at most $k$

agents $(PP_{k})$ is a generalized model of PP where in-
teractions among more than two agents are allowed.
Such a generalization is already suggested by Angluin
et al. [1], nevertheless very few facts, due to recent
works [4, 11], are known on $PP_{k}$ model.

The Leader Election (LE) is a problem to assign a
special state of $Q$ , representing the “leader”, to exactly
one agent. A configuration $C\in Q^{n}$ is legitimate if
$C$ contains exactly one agent in the leader state, and
so does any configuration $C’$ satisfying $Carrow*C’$ . Let
$\mathcal{L}(\subseteq Q^{n})$ denote the set ofall legitimate configurations.
$PP_{k}$ for LE is self-stabilizing (SS) (with respect to $\mathcal{L}$)

if the following condition holds: For any configuration
$C_{0}\in Q^{n}$ and any execution $E=C_{0}4^{R}C_{1^{-}}^{R}3\ldots$

starting from $C_{0}$ , there is an $i\geq 0$ such that $C_{i}\in \mathcal{L}.$

$1$

Angluin et al. [2] showed that there is no PP for SS-
LE that works for any system of $n$ agents, if $n$ is not
available to the agents. Fischer and Jiang [9] showed
that there is a PP for SS-LE, if the scheduler is globally
fair and the system can make use ofthe eventual leader
detector $\Omega?$ , that eventually detects the presence or ab-
sence of a leader. Canepa and Potop-Butucaru [6] pro-
posed deterministic and probabilistic protocols when
communication networks (i.e., interaction graphs) are
rooted trees and arbitrary graphs, under the same as-
sumption as [9]. Cai, Izumi, and Wada [5] retumed to
the original setting in [2] and asked a natural question:

lWe allow that the agent with leader state changes in successive
configurations that appear after the system reaches a legitimate con-
figuration.
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how many agent states are necessary and sufficient in a
PP for SS-LE? They then showed that $n$ agent states are
necessary and sufficient. Thus we cannot solve this typ-
ical and important problem in PP, unless we enhance the
amount of agent memory until this large size, and this
fact seems to contradict to the original design policy of
PP. Xu $et$ al. [11] extend the results to $PP_{k}$ , and showed
that the space complexity of SS-LE on $PP_{k}$ is exactly
$\lceil(n-1)/(k-1)\rceil+1.$

This paper shows that SS-LE in PP is solved with at
most $n$ agent states on any connected communication
graph, which is exactly the same upper bound as the
complete communication graph due to Cai $et$ al. [5]. In
fact, our solution $is$ not static, meaning that the leader
agent is always unique but ever-changing after a con-
vergence. For general $PP_{k}(3\leq k\leq n)$ of $n$ agents,
in a similar way, we show that the upper bound of the
space complexity on an arbitrary appropriate communi-
cation hypergraph is $\lceil(n-1)/(k-1)\rceil+1$ , which is
exactly the space complexity on “complete” communi-
cation hypergraph. What is interesting is that we show
that when $k\geq 3$ , the space complexity of SS-LE in PP$k$

is strictly smaller on some communication hypergraphs
than that of the complete communication hypergraphs.

2 Model Description

A population consists of $n$ anonymous agents
$u_{1},$ $u_{2}$ , . $u_{n}$ . Anonymous agents do not contain iden-
tifiers, and are treated in the same way during transition.
An interaction graph $G=(V, E)$ is a simple undirected
graph where each vertex representing an agent. The
edge between $u_{i}$ and $u_{j}$ implies that agent $u_{i}$ is able
to interact with agent $u_{j}$ . A population protocol based
on $k$-interaction denoted with $PP_{k}(k\geq 2)$ is defined
by $(Q, \delta)$ , where $Q=\{q_{0}, q_{1}, . . . , q_{m-1}\}$ denotes a fi-
nite set of states and an update function $\delta$ , defined by
$Q^{k’}arrow Q^{k’}$ maps each $k’$ -tuple states to $k’$ -tuple states
$(2\leq k’\leq k)$ . Notice that $PP_{2}$ is exactly the traditional
PP. For $PP_{k}$ model, when the interaction graph is com-
plete (denoted by complete $PP_{k}$ ), the scheduler is able
to choose any $k’$ -tuple of agents. For incomplete graph,
the interaction graph specifies the possibilities of inter-
actions among different agents. To allow $fu$]$[$ ability of
interaction graph,we extend the common graph to hy-
pergraph. And for a PP$k$ model, there exists at least one
hyperedge containing $k$ agents.

A configuration is a $n$-tuple $(s_{1}, s_{2}, s_{n})$ of states
with $s_{i}$ corresponding to the state of agent $u_{i}$ . In

a configuration, it is able to have more than one
agent with the same state $q$ . A transition from a
configuration $C$ to the next configuration $C’$ in an
$PP_{k}$ is defined as follows. At the beginning, the
scheduler chooses a $k’$ -mple $(2 \leq k’ \leq k)$ of
agents $(u_{1}, u_{2}, . u_{k’})$ . Suppose the. states of the $k’-$

tuple agents are $(s_{1}, s_{2}, s_{k’})$ respectively, and let
$R$ : $(s_{1}, s_{2}, s_{k’})arrow$ $(s\’{i}, s_{2}’, s_{k}’,)$ be a transition
rule of $\delta$ . Then, the $k’$ -tuple agents $(u_{1}, u_{2}, . u_{k’})$ in-

teract, denoted by $C3C’$ , and the states of agents
$(u_{1}, u_{2}, u_{k’})$ in $C’$ are $(s\’{i}, s_{2}’, . s_{k}’,)$ respectively,
while all other agents keep their states in the transition.

We say that a transition $Carrow C’R$ is active ifat least one
agent changes its state or silent otherwise.

An execution $E$ is defined as an infinite sequence of
configurations and transitions in altemation $C_{0},$ $R_{0},$ $C_{1},$

$R_{1}$ , . . . such that $C_{i}\lrcorner^{R}C_{i+1}$ for each $i$ . Like most of
the literature on PP, we assume that the scheduler in
each of models in this paper is adversarial, but satisfy-
ing somefairness conditions.

A scheduler is said to be stronglyfair while following
the condition that if $C$ is a configuration that appears
infinitely often in an execution, and there exists Rsuch

that $c3C’$ , then $C’$ must also appear infinitely often
in the execution. All protocols given in this paper are
assumed to run under global fairness.

We sometimes abbreviate $Carrow RC’$ to $Carrow C’$ , un-
less it is confusing. The reflexive and transitive closure
$ofarrow is$ denoted by $arrow*$ . That is, $Carrow*C’$ means that a
configuration $C’$ is reachable from a configuration $C$ by
a sequence oftransitions of length greater than or equal
to O.

We show tha$t^{\backslash }SS$-LE on any general graph has the
same upper bound of space complexity as space com-
plexity on complete hypergraph. Considering the lim-
ited resources on mobile agents, we are concemed with
finding special hypergraphs which can reduce the lower
bound of space complexity. And we introduce the fol-
lowing two cases:

$PP_{k_{-}l}:n$ agents in total are separated into two groups
$S$ and S. With the given number $k$ and $l(2\leq l\leq$

$k-1)$ , the scheduler chooses $k’(2\leq k’\leq k)$ agents in
total from the groups $S$ and $\overline{S}$ in each interaction with
one condition that at most $l$ agents are chosen from $\overline{S}$

in any interaction. Group $\overline{S}$ is guaranteed to have more
than $l$ agents, otherwise the condition makes no sense.

$PP_{k*c}:n$ agents are separated into $c$ groups. Each
group is guaranteed to have at least $k$ agents. The sched-
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uler chooses $k’(2\leq k’\leq k)$ agents in total from all
the groups in each interaction with one condition that at
most $k-1$ agents are chosen from each group.

3 General Graphs

This section considers the upper bound of space com-
plexity of PP$k$ for SS-LE on general hypergraphs.

3.1 UpperBoundoftheSpaceComplexity
of General PP

General PP is PP on a general graph. The following the-
orem presents an upper bound of the space complexity
of general PP for SS-LE.

Theorem 1. There exists a $PP$ using $n$ agent-states
which solves the $SS$-LEfor $n$ agents in any general net-
work.

Proof We present the following protocol 1.

Protocol l. $Q=\{q_{0}, q_{1}, . . . , q_{n-1}\}$ , where $q_{0}$ denotes
the leader state.

$\delta=\{$

$R_{1}$ : $(q_{i},.q_{i})arrow(q_{i-1}(mod n),q_{i})$ , for any $i\in$

$0$ , . . . , $n-1,$
$R_{2}:(q_{i}, q_{j})arrow(q_{j}, q_{i})$ , for any $i\neq j.$

$\}$

In protocol 1, ifrule $R_{1}$ is applied on a complete net-
work, agents in the same state are not able to coexist.
And finally each agent is in a distinct state as proved
by Cai, Izumi, Wada [5]. On a general network, we
add an additional rule $R_{2}$ to make sure agents in the
same state be able to interact without affecting the size
of agents in any state. Finally each agent will be in a
distinct state. Then the configuration contains exactly
one leader agent and the size of agents in each state is
not able to change any more according to all the rules.
The effect of $R_{2}$ is that while agents $u_{i}$ and $u_{j}$ in the
same state $q$ are not adjoined to each other, there must
exist a path connecting agents $u_{i}$ and $u_{j}$ . Agent $u_{j}$ is
able to exchange the states with the neighbor on the path
that is closer to $u_{i}$ . By exchanging the states one by one
towards $u_{i}$ , we are able to apply $R_{1}$ on state $q$ . If there
exists one agent in state $q$ between $u_{i}$ and $u_{j}$ , they can
interact as well because the goal is to interact with an
agent with the same state.. In this way, we are able to

get an execution $Carrow*C’$ where $C$ is an arbitrary con-
figuration and $C’\in \mathcal{L}$ is a legitimate configuration that

each agent stays in a distinct state. Since then the num-
ber of agents in each state is not able to change, we
obtain that for each $C’arrow C$ $C”\in \mathcal{L}.$ $\square$

3.2 UpperBoundoftheSpaceComplexity
of General $PP_{k}$

The following theorem presents an upper bound of the
-space complexity of general $PP_{k}$ for SS-LE.

Theorem 2. There exists a $PP_{k}$ using
$\lceil(n-1)/(k-1)\rceil+1$ agent-states which solves
the $SS$-LEfor $n$ agents on any general network.

Proof. We present the following protoco12 in case $n\equiv$

$1(mod k-1)$ .

Protoco12. $Q=\{q_{0}, q_{1}, . . . , q_{m-1}\}$ , where $q_{0}$ denotes

the leader state, $m^{d}=^{ef}(n-1)/(k-1)+1$ denotes the
size ofagent-states.

$\delta=\{$

$R_{1}$ : $(q_{0}, \ldots, q_{0}, q, \ldots, q’)$ $arrow$

$(q_{0},$ $q_{m-1},$ $\ldots,$ $q_{m-1},$ $q,$ $\ldots,$
$q$ for any $q$ , . . . , $q’$ $\in$

$Q\backslash \{q_{0}\},$

$R_{2}:(q_{i}, q_{i}, \ldots, q_{i})arrow(q_{i-1}, q_{i}, \ldots, q_{i})$ , for any
$i\in\{1, 2, . . . , m-1\}_{J}$

$R_{3}$ : $(q, q’, \ldots, q arrow (q’, \ldots, q q)$ ,

in cases other than $R_{1}$ and $R_{2}.$

$\}$

In protocol 2, if rule $R_{1}$ and $R_{2}$ are applied on a
complete network, under global fairness, we are able
to reach a configuration where there exists exactly one
agent in state $q_{0}$ and $k-1$ agents in any other state, as
showed by Xu et al. [11]. The idea is similar to general
PP. Since there exists at least one hyperedge adjoining
$k$ agents, we can transfer any state onto this hyperedge
and apply $R_{1}$ or $R_{2}$ to change the states. In case there
exists more than one agent in leader state or more than
$k-1$ agents in any other state, we are able to eliminate
one of them.
Proof in case other than $n\equiv 1(mod k-1)$ is similar
that we omit here. $\square$

4. Reducing Space Complexity on
Special Graphs

This section introduces two special graphs where the
space complexity can be reduced comparing to com-
plete graph. The following theorems present upper
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bounds of the space complexity of $PP_{k\lrcorner}$ and $PP_{k*c}$

$(k\geq 3)$ for SS-LE. We omit the proofs due to page
limitation.

Theorem 3. For any integer $k(k\geq 2)$ , andfor any
integer $n(n=|S|+|\overline{S}|\geq k)$ , there exists a $PP_{kI}$

using $\lceil(n-|\overline{S}|-1)/(k-1)\rceil+2$ agent states $(|\overline{S}|>$

l) which solves the $SS$-LEfor $n$ agents.

Theorem 4. For any integer $k$ $(k \geq 3)$ , and
for any integer $c$, there exists a $PP_{k*c}$ using
$\lceil(\min(|U_{1}|, \ldots, |U_{c}|)-1)/(k-2)\rceil+c$ agent states
which solves the $SS$-LEfor $nagen/s.$

5 Emulation of SS Algorithms on
$PP_{k}$

This section emulates SS algorithms on a complete
graph to any general graph. Emulations in this section
have a restriction, the legitimate configuration does not
have requirement on positions of agents in any state.
The following theorems present an emulating PP and
$PP_{k}$ ofSS algorithm solving problems under a complete
graph. We omit the proofs due to page limitation.

Theorem 5. Under $PP$ model, ifon a complete graph,
there exists an $SS$ algorithm A solving a problem with
$m$ states, then on any general graph, there exists an
algorithm $A’$ solving theproblem with $2m$ states under
globalfairness.

Theorem 6. Under $PP_{k}$ model, ifon a complete graph,
there exists an $SS$ qlgorithm A solving a problem with
$m$ states, then on any general graph, there exists an $SS$

algorithm $A’$ solving the problem with $2m$ states under
globalfairness.

6 Conclusion

This paper first gives a PP and $PP_{k}$ solving SS-LE on
any general graph with the upper bound of space com-
plexity exactly the same as a complete graph. Then
investigates two new models. One is called $PP_{k1}$ and
we give an upper bound of space complexity solving
SS-LE. Another is called $PP_{k*c}$ and we give two up-
per bounds of space complexity solving SS-LE in case
$k\geq 3$ . Still we are not familiar with the lower bounds
ofthese. problems currently, and would like to consider
in the future. At last we provide emulating PP and $PP_{k}$

ofSS algorithms solving problems on a complete graph.
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