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Time-periodic problem for the compressible Navier-Stokes
equation on the whole space

Kazuyuki TSUDA
Graduate School of Mathematics,
Kyushu University,
Fukuoka 819-0395, JAPAN

1 Introduction

We consider time periodic problem of the following compressible Navier-Stokes equa-
tion for barotropic flow in R” (n > 3):

{atP-I-V-(p’U):O, (1.1) »
p(Ow + (v - V)v) — pAv — (u+ p)V(V - v) + Vp(p) = pg. '

Here p = p(z,t) and v = (v1(z,t),--- ,vn(z,t)) denote the unknown density and the
unknown velocity field, respectively, at time ¢ € R and position z € R™; p = p(p) is
the pressure that is assumed to be a smooth function of p satisfying p/(p.) > 0 for
a given positive constant p,; p and y’ are the viscosity coefficients that are assumed
to be constants satisfying u > 0, %u + ' > 0; and g = g(z,t) is a given external
force periodic in t. We assume that g = g(z,t) satisfies the condition

glz,t+T) = g(z,t) (xeR" teR) (1.2)

for some constant T > 0.

Time periodic flow is one of basic phenomena in fluid mechanics, and thus,
time periodic problems for fluid dynamical equations have been extensively studied.
We refer, e.g., to [8, 9, 12, 18] for the incompressible Navier-Stokes case, and to
[1, 2, 3, 6, 16, 17] for the compressible case. In this paper we are interested in
time periodic problem for the compressible Navier-Stokes equation on unbounded
domains. Ma, Ukai, and Yang [16] proved the existence and stability of time periodic
solutions on the whole space R™. They showed that if n > 5, there exists a time
periodic solution (pper, Uper) around (ps, 0) for a sufficiently small g € CO(R; HN=1n
LYY with g(z,t + T) = g(z,t), where N € Z satisfying N > n + 2. Furthermore,
we put u(t) := (p(t), v(t)) — (Pper(t), Uper(t)), then if ||u(0)|| gv-1z1 << 1, the time
periodic solution is stable and there holds the estimate

(@)l < C(L+ )3 [u(0) ]l 5-1nz0-
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Here H* denotes the L2-Sobolev space on R™ of order k.
On the other hand, it was shown in [6] that, for n > 3, if the external force g
satisfies the oddness condition

g(—z,t) = —g(z,t) (zeR", teR) (1.3)

and if g is small enough in some weighted Sobolev space, then there exists a time
periodic solution (pper, Uper) for (1.1) around (p,, 0) and upe,(t) = (oper (t) =P, Vper (t))
satisfies

sup (||uper(t)l|z2 + |2V ttper (t) | 22)
te[0,77]

< C{ll( + lzDgllcqomyerncyy + (1 + [2))gll Lao,rimm-1y }- (1.4)

Furthermore, if ||u(0)| gsnz: << 1, the time periodic solution (pper, Uper) is asymp-
totically stable, and the perturbation satisfies

1(p(1), v(£)) = (Pper (), Vper(t)) 2 = O(t™%) as t — oo. (1.5)

In this paper we will show the existence of a time periodic solution for (1.1)
without assuming the oddness condition (1.3) for n > 3 under sufficiently small g.
Furthermore, we show that the time periodic solution (pper, Uper) is asymptotically
stable under sufficiently small g and initial perturbations, and the perturbation
satisfies

1(o(2), v(£)) — (per(t), Vper (£)) | Lo — O

ast — oo.

We will prove the existence of a time periodic solution around (p.,0) by an
iteration argument by using the time-T-map associated with the linearized problem
at (p.,0). Asin [6] we formulate the time periodic problem as a system of equations
for low frequency part and high frequency part of the solution. (Cf., [7, 11].) In
the proof of the existence of a time periodic solution without assuming the oddness
condition (1.3), there are two key observations. One is concerned with the spectrum
of the time-T-map for the low frequency part. Another one is concerned with the
convection term v-Vv. As for the former matter, we need to investigate (I-51(T)) !,
where S;(T) = e T4 with A being the linearized operator around (p.,0) which
acts on functions whose Fourier transforms have their supports in {£ € R™;|¢]| <
Teo} for some ro, > 0. (See (3.16) and (3.17) bellow.) We will show that the
leading part of (I — S;(T'))~! coincides with the solution operator for the linearized
stationary problem used by Shibata—Tanalfa in [14]. In fact, the Fourier transform
of (I — $,(T))~F takes the form (I — e T4¢)~1F where F is the Fourier transform
of F and

A=(0 i€
T\ vIEPL +ETE



By using the spectral resolution, we see that
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(I - e“T“i‘f)'1 ~ - as £ —0.
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The right-hand side is the solution operator for the linearized stationary problem in
the Fourier space. This motivates us to introduce a weighted L* space for the low
frequency part employed in the study of the stationary problem in [14].

As for the high frequency part, we will employ the weighted energy estimates
established in [6].

Another point in our analysis is concerned with the convection term v - Vv. Due
to the slow decay of v(z,t) as |z| — oo, there appears some difficulty in estimating
v-Vu. To overcome this, we will use the momentum formulation for the low frequency
part, which takes a form of a conservation lows, and the velocity formulation for the
high frequency part, for which the energy method works well. We also note that,
in estimating the high frequency part of v - Vv, we will use the fact that a Poincaré
type inequality || f||zz < C||V f]|12 holds for the high frequency part.

The asymptotic stability of the time periodic solution (pper, Uper) can be proved
as in the argument in Kagei and Kawashima [4] by using the Hardy inequality.

2 Main results

To state our results, we define function spaces with spatial weight.
For a nonnegative integer £ and 1 < p < oo, we denote by Lj the weighted L?
space defined by

L} = {u € L7; ullz = |1 + |z])*ullz» < o0}.

Let k and £ be nonnegative integers. We define the weighted L?-Sobolev space
H} by :

Hf = {u € H |lu|l g < +oo},

where

[N

HE = Que S Julg = | 3 102ully | < oo
ol <k

We also introduce function spaces of T-periodic functions in t. We denote by
Cper(R; X) the set of all T-periodic continuous functions with values in X equipped
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with the norm || - ||lc(o.,x); and we denote by L2, (R; X) the set of all T-periodic

per
locally square integrable functions with values in X equipped with the norm | -

llz20.1:) -
Our result on the existence of a time periodic solution is stated as follows.

n

Theorem 2.1. Let n > 3 and let s be an integer satisfying s > [-2—] + 1. Assume
that g(z,t) satisfies (1.2) and g € Cper(R; L* N LX) N L2, (R; H27Y). We set

per
[9]s == Ilg |lc([o,T];LlnL;-,°)nL2(o,T;H:;:i)

Then there exists a constant § > 0 such that if [g]s < 6, then the system (1.1) has a
time-periodic solution Uper = (Pper — Px, Uper) € Cper(R; H®) satisfying

sup (|l|z["~ Bper (8) oo + 21" *vper(t) oo + 21" Vper (t) | 2) < Clg]s.

’

We next consider the stability of the time-periodic solution obtained in Theorem
2.1.

Let " (pper, Uper) be the periodic solution given in Theorem 2.1. We denote the
perturbation by u = T(¢,w), where ¢ = p — pper,w = v — Uper- Substituting
p =&+ pper a0d U = W + e, into (1.1), we see that the perturbation u = (¢, w)
is governed by

Ot + Uper + Vo + ¢divuper + pperdiviw + w - Vppe, = f°,

By + per - Vo + w - Vger — = Aw — EE U diva (2.1)
A (Bper + (1 + 1) Vivige,) + V(ELEDg) = f,
where
O = —div(ow),
f=-w -Vw- Zpe_r(i;-%r—‘*'g)—(“Aw + (p + ¢)Vdivw)
e (e + (4 ) Vi)
2T tpr, 10) + Tl + 0)
1

+ —V(0® (oper, 9)6%),

per

1
2D (pper, §) = / P (0per + 08) 6,
0



1
P (per, ) = / (1 = 6)p" (Pper + 00)db.
0
We consider the initial value problem for (2.1) under the initial condition
Ul=o = up = " (¢po, wo)- (2.2)

Our result on the stability of the time-periodic solution is stated as follows.

Theorem 2.2. Let n > 3 and let s be an integer satisfying s > [%] +1. Assume that
g(z,t) satisfies (1.2) and g € Cper(R; L* NLP) N L2 (R; Hy ;). Then there exists
constants 81 > and € > 0 such that if

[9ls+1 < 61, 1(p(0) = pper(0), v(0) — vper(0))]|

then there exists a unique global solution u = T (¢, w) of (2.1)-(2.2) satisfies

HSSE,

u(t) € C([0,00); H®),

()l + / 1) e < Clu0)]

|lu(t)|jze =0 (t — 00).

2
H3»

It is not difficult to see that Theorem 3.2 can be proved by the energy method ([4],
~ [10]), since the Hardy inequality works well to deal with the linear terms including
(Ppers Uper) due to the estimate for (pper,vper) in Theorem 3.1; and so the proof is
omitted here.

3 Outline of the proof of the main result

3.1 Formulation

We formulate (1.1) as follows. Substituting ¢ = L;:& and w = % with v = /P (ps)
into (1.1), we see that (1.1) is rewritten as

Oyu + Au = —BluJu + G(u, ), (3.1)
where
(0 ydiv B K +
A= (~N —VvA — ﬂVdiV) » V= Ox V= Px (3.2)

BliiJu = v (“’ 'OV¢> for u = T(¢,w), i = (&, @) (3.3)
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and
G(u,9) = (;Zf"g))) (3.4)
F'(u) = —~v¢divw, (3.5)
Flu,g) = —v(1+8)(w- V) — g8 — V(o' ($)6) + 1—'5—‘?9, (3.6)

) = 2 / (1= 0)p"((1 + 86))de.

As in [6], to solve the time periodic problem for (3.1), we decompose u into a low
frequency part u; and a high frequency part u.,, and then, we rewrite the problem
into a system of equations for u; and uy.

To decompose u, We introduce operators which decompose a function into its
low and high frequency parts. Operators P; and P,, on L? are defined by

Pif =F % Flf] (fel?j=1:),
where
52](6) € Coo(Rn) (.7 = 1,00), 0< )2]' <1 (J = 1700)7
A — 1 ('ﬂ S 7‘1),
Xl = { 0 (I > 7o),
Xoo(§) =1 —%1(6), 0 <71 < ree.

We fix 0 <7 < 70 < ;2;_1”- in such a way that the estimate (3.19) in Lemma 3.11

below holds for |{] < r.
As in [6], we set
u; = Piu, us = Pyu.
Applying the operators P; and P, to (3.1), we obtain,

Oyuy + Auy = Fi(u; + Uoo, 9), (3.7)
Ottioe + Ao + Poo(Bltr + Ueo]Uoo) = Foo(Uy + U, g). (3.8)

Here

Fi(uy 4+ too, 9) = Pi[=Bluy + too| (U1 + Uoo) + G(u; + Uoo, 9)],
Foo(u1 4+ Uso, 9) = Poo[—Blug + teo)us + G(u; + o, 9)].

Suppose that (3.7) and (3.8) are satisfied by some functions u; and .. Then by
adding (3.7) to (3.8), we obtain

Oi(ur + Ueo) + A(Us + Uos) = —Poo(Blur + Uoo)Uoo) + (Pr + Poo) F(uy + Uco, 9)



= —Bluy + Uoo) (U1 + Ueo) + G(u1 + U, 9)-
Set u = u; + Uy, then we have
Owu + Au + Bluju = G(u, g).

Consequently, if we show the existence of a pair of functions {u;,uc} satisfying
(3.7)-(3.8), then we can obtain a solution u of (3.1).

We next introduce function spaces for the low frequency part and the high fre-

quency part.
We set 2(1)(a,b) := C([a,b]; Z ) x #(1)) for the low frequency part, where

Zw = {¢;supp ¢ C {l¢] < oo}, 8]l g, < +o0},
11l g, = 1Vellzz + I8l
Y1) = {w;supp w C {[£] < oo} lwllgy < +oo},

lwllg, = annp +Z||wwumﬂ

These spaces are similar to the ones introduced in the stationary problem by Shibata-
Tanaka [14].

On the other hand, we define the weighted Sobolev space for the high frequency
part by

Higyn1 = {u € H*; supp @ C {|¢| 2 1}, llullm_, < +00}

-1
for k = s, s — 1. Then we introduce a function space for the high frequency part by

‘Efl(coo),n—l(aﬂ b) = C([a" b];H(koo),n— ) [ ([a b] oo)'n 1) ﬂLz([CL,b] H(ko-Z)ln— )]

Finally, We set
X*(a,b) :== {{u1, v };u1 € Z1)(a,b), U € Q"?w)(a, b},
o, oM lxtian = sl 2, oy + ool g2
In this paper, we consider the low frequency part u; in a weighted L* space. To

" do so, the velocity formulation is not suitable, and, instead, we use the momentum
formulation for the low frequency part.

Let us now reformulate the system (3.7)-(3.8) by using the momentum. We set
my and Uy, by

mp = w; + P1(¢w), Ulm = T(¢1, ml)’ (3-9)
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where ¢ = ¢1 + @0, and w = wy + Weo. Then, we see that {uym, U} defined by
(3.9) satisfies the following system of equations.

Lemma 3.1. ([15, Lemma 4.5]) Assume that {u;,u} satisfies the system (3.7)-
(3.8). Then, {u1,m, U} satisfies the following system:

Oty m + Aty m = Fim(u1 + Yoo, 9), (3.10)
OpUoo + Aloo + Poo(Blu1 + Uso)tieo) = Foo (U1 + Uoo, g)-
Here
Fim(u + U, g) = (0, Fim(us + too, g)),
Fim(ts +toe,9) = —Pi{pA(w) + Vv ($) + 2V (6 (8)¢?)
+rdiv (1+ ww) - Z((1+ $)o)} (3.11)

Conversely, one can see that the momentum formulation (3.8), (3.9) and (3.10)
gives the solution {u;, u} of (3.7)-(3.8) if ¢ = ¢1 + @ is sufficiently small. In fact,
we have the following Lemma.

Lemma 3.2. ([15, Lemma 4.6]) (i) Let s be an integer satisfying s > [2] +1 and
let uim = T(¢1,m1) and Uoo = " (Poos Weo) atISfY {11 m, Uoo } € X°(a,b). Then there
exists a positive constant &y such that if ¢ = ¢1+ doo satisfies supyei,y (19l < o,
then there uniquely exists wy € C([a,b]; #(1)) that satisfies

w; =my — Pi(d(w + weo)) (3.12)
where @ = @1 + Poo. Furthermore, there hold the estimates

||w1||c([a,b];g/(1)) < C(“mll'c([a,b];g/(l))'l' ||w00“0([a,b];L2))~ (3.13)

(ii) Let s be an integer satisfying s > [2] + 1 and let uym = "(¢1,m1) and
Uso = | (Poo, Weo) Satisfy {Urm, U} € X*(a,b). Assume that ¢ = ¢1 + ¢oo satisfies

sup ||@llze, < do
tela,b)

and {U1m, s} Satisfies
atul,m + Aul,m = Fl,m(ul + uooag)y
w; = m — Pi(dw),
Otoo + Attes + Poo (Bt + Ueo)ts) = Foolts + Ueo, 9).

Here w = w; + we with wy defined by (3.12). Then {u1, ue} with uy = T(d1,w;)
satisfies (3.7)-(3.8).



By Lemma 3.2, if we show the existence of a pair of functions {u1m, e} €
X*(a, b) satisfying (3.8), (3.10) and (3.12), then we can obtain a solution {u1, U} €
X*(a,b) satisfying (3.7)-(3.8). Therefore, we will consider (3.8), (3.10) and (3.12)
instead of (3.7)-(3.8).

We look for a time periodic solution  for the system (3.8), (3.10) and (3.12). To
solve the time periodic problem for (3.8), (3.10) and (3.12), we introduce solution
operators for the following linear problems:

{ Opur,m + Aurm = Fim, (3.14)
UL m|t=0 = Uo1,m,

and

{ Bhtios + Atioo + Poo(Bli]uce) = Fro, (3.15)

Uoo|t=0 = Upoo)
where @ = (¢, D), Uo1 m, Udeo, F1,m and Fi, are given functions.

To formulate the time periodic problem, we denote by Si(t) the solution operator
for (3.14) with F ,, = 0, and by .%#1(t) the solution operator for (3.14) with upym =
0. We also denote by S, (t) the solution operator for (3.15) with Foo = 0 and by
Zo,a(t) the solution operator for (3.15) with ugee = 0. (The precise definition of
these operators will be given later.)

As in [6], we will look for a {u; m, ux} satisfying

Ut m(t) = S1(t)torm + F1(8)[Frm(u, 9)],
{ Yoo (t) = Soou(t)Uoco T % oou(t) [Foo (U, 9)], (3.16)

where

Uoi,m — (I - Sl (T))dlyl(T) [Fl,m(ua g)],
{ Upoo — (I — Soo’u(T))_lyoo,u(T)[Foo(U, g)]’ (317)

u="(¢,w) is a function given by uym = " (¢1,m1) and us = T (foo, Weo) through
the relation
=1+ b, W=W;+Weo, w1 =my— P(ow).

Let us explain the relation between (3.16)-(3.17) and the time periodic problem
(3.8), (3.10) and (3.12) for the reader’s convenience.

If {U1m, Uoo} satisfies (3.8), (3.10) and (3.12), then uym(t) and uco(t) satisty
(3.16). Suppose that {u1m,Uw} is a T-time periodic solution of (3.16). Then, since
U1 (T) = u1,m(0) and us(T) = Uso(0), We see that

{ (I = 81(T))urm(0) = F1(T)[Frm(u, )},
(I = Soou(T)too(0) = Fo0u(T) [Foo (v, 9)],
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where u = T(¢,w) is a function given by u1,m = T (¢1,m1) and U = ' (oo, Weo)
through the relation

=01+ b, W=w1+We, wi=my— P(dw).

Therefore if (I — S1(T)) and (I — Sxu(T)) are invertible in a suitable sense, then
one obtains (3.16)-(3.17).

Hereafter we abbreviate u; , to u;. We set
Ly [{ur, uoo}] 1= S1(8)(I = $2(T)) ' F1(T)[Frym(u, 9)) + F1(t) [Frim(u, 9)],
F(OO)[{UI’ Uso}] = Soo,U(t)UOOO(I”Soo,u(T))_lyoo,u(T)[Fw(u»9)]+yoo,U(t)[Foo(U,9)]:

where u = (¢, w) is a function given by u; and u., through the relation
®=0¢1+ b, W=W1+Weo, w1 =my — Pi(ow).

To obtain a T-time periodic solution of (3.8), (3.10) and (3.12), we look for a pair
of functions {ui, ue} satisfying

{ w1 = Ty[{ur, voo}l,

Uoo = I'(oo) [{11, Uoo }]-

Hence, We estimate I'(1)[{u1, uoo }] in subsection 3.2; and we estimate I' (o) [{u1, Yoo }]
in subsection 3.3.

In the remaining of this subsection we introduce some lemmas which will be used
in the proof of Theorem 2.1.

We first derive some inequalities for the low frequency part.

Lemma 3.3. ([6, Lemma 4.3]) (i) Let k be a nonnegative integer. Then P, is a
bounded linear operator from L? to H*. In fact, it holds that

IVEPLfll2 S Cllflee - (f € L7).

As a result, for any 2 < p < oo, P, is bounded from L? to LP.

(ii) Let k be a nonnegative integer. Then there hold the estimates

IVEfille + I fille < Clifillze (£ € L),

where 2 < p < oo.

The following inequality is concerned with the estimates of the weighted L? norm
for the low frequency part.



Lemma 3.4. ([15, Lemma 4.3]) Let k and £ be nonnegative integers and let 1 < p <
co. Then there holds the estimate

llel*V* fillze < Cllielfillr (f € Ly N LE)-

The following lemma is related to the estimates for the integral kernels which
will appear in the analysis of the low frequency part.

Lemma 3.5. ([15, Lemma 4.8]) Let ¢ be a nonnegative integer and let E(z) =
F1®, (x € R"), where &, € O®(R" — {0}) is a function satisfying

opd, e L' (o] <n—3+90),
078 < CleI> P (€ #0, 6] 2 0).

Then the following estimate holds for x # 0.

|E(z)| < Cla|~"=2+9.
We will also use the following lemma for the analysis of the low frequency part.

Lemma 3.6. ([15, Lemma 4.9]) (i) Let E(z) (z € R") be a scalar function satisfying

10%E(z)] < ——n

< Gy (=012, (3.18)

Assume that f is a scalar function satisfying || fl|zenzr < 0o. Then there holds the
following estimate for'|a| = 0,1.

C
(1 + |z])led+n=2

67 E * fl(z)] < I fllzgores-

(ii) Let E(z) (x € R™) be a scalar function satisfying (3.18). Assume that f is
a scalar function of the form: f = 0y, f1 for some 1 < j < n satisfying ||0q, fill e +
| fillzee , < 00. Then there holds the following estimate for |a| =0, 1.

A
T e

[0z E * fl(z)] < 0z, fill e + Il fillzee,)-

(iii) Let E(z) (z € R™) be a scalar function satisfying

C

> <
|0z E(z)| < (1 + |x])latn-1

(la] = 0,1).
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Assume that f is a scalar function satisfying ||f||re < co. Then there holds the
following estimate for |a| =0, 1.

C log |z|
T+ )T

62 E % fl(2)] < 7l fllze-

Remark 3.7. When n = 3, Lemma 3.6 (i) and (ii) are given in the stationary
problem [14, Lemma 2.5].

As for the high frequency part, we have the following Poincaré type inequalities.

Lemma 3.8. ([6, Lemma 4.4]) (i) Let k be a nonnegative integer. Then Py is a
bounded linear operator on HF.

(ii) There hold the inequalities
1Pofllzz < ClVSllzz (f € HY),

Ifwllzz < CliVfwllze (foo € Hioo))-

Lemma 3.9. ([15, Lemma 4.13]) Let £ € N. Then there exists a positive constant
C depending only on £ such that

|Poofllzz < CIV£llzz-

3.2 The estimates for I'(;)

In this section we investigate S;(t) and .#;(t) and establish estimates for I'(y).

We denote by A, the restriction of A on £ (1) X #(1). Using Lemma 3.4, we have
the following properties of S;(¢) and %1 (¢).

Proposition 3.10. ([15, Proposition 5.1]) (i) A; is a bounded linear operator on
1) X D) and S1(t) = e~ is a uniformly continuous semigroup on X'y X ¥ ().
Furthermore, S1(t) satisfies

Sl(t)u1 € C([O, T’]; %(1) X @(1))’ 3t5’1(~)u1 € C([O,T’]; L2)
for each u € X1y X H 1y and all T' > 0,

3t.5'1(t)u1 = ——Alsl(t)ul (—_— ——ASl(t)ul), Sl(O)ul = U fOT u € ‘%.(1) X g/(l);



k
10t Sl(')ul”C([OvT'];e%/(l)xg/(n) s C”ulng(l)xg(l)’

foruy € Ly x ¥y, k=0,1, where T' > 0 is any given positive number and C is
a positive constant depending on T".

(ii) Let the operator #1(t) be defined by
¢
S, = / Sy(t - T)Fy(r) dr
0

for Fy € C([0,T); Z 1)) x L*(0,T;%1)). Then
SV € CHO, T 2 ) x [C0, T Fy) x HO,T5 8]
for each Fy € C([0,T); Zy) x L*(0,T;% 1)) and
01 () Fy + A1 S () Fy = Fi(t), F1(0)F =0,
1651 0) Fll o . <y < OBy 2 zsor @iy

for k =0,1, where C is a positive constant depending on T

(iii) It holds that
S1(t)FL1(t) Fy = L1(1)[S1(t) Fi

foranyt >0, t' € [0,T] and Fy € C([0,T]; 1)) x L*(0,T;% 1))

To estimate I'(;), we prepare the following lemmas. The first Lemma is related
to the asymptotic expansion of the linearlized semigroup around |£| = 0.

Lemma 3.11. ([10]) (i) The set of all eigenvalues of —Ag consists of \;(€) (j =
1,4), where

{ M) = _V|§'2,
Ae(€) = =3 (v + D)€ £ 3/ (v + 0)2[E]* — 492[E1%

If |€] < 2L, then

v+’

(v +p)?
4~2

Re)\iz-%—(u+ﬁ)|§|2, Im)\izifylfl\/l— 1€]2.

(ii) For |§| < U—Z_;Lﬂ, et has the spectral resolution

e_tAE = z et)‘j(g)nj(é'),

j=1,%
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where I1;(§) is eigenprojections for A;(€) (j = 1,%), and I1;(€) (j = 1, ) satisfy
0 0
-2, %)
! 0 I, - 57

_ 1 —Ax —iyT¢

Furthermore, if 0 < 1o < ﬁ%, then there exist a constant C > 0 such that the
estimates

LI <C3GH=1,%) (3.19)
hold for |€]| < To.

Hereafter we fix 0 < 1 < re < U—z_Z; so that (3.19) in Lemma 3.11 holds for
€] < oo |

Lemma 3.12. ([15, Lemma 5.4]) Let o be a multi-index. Then the following esti-
mates hold true uniformly for & with |€| < ro and t € [0, 7).

(1) 18] < ClEP1, |0gAs| < CIEI (le] 2 0).

(1) [(GFTL)A < Clel I, (9T A] < Clel ™A (la > 0), where F; =
T(Floa Fl)

(i) [9g(e*)] < CIEP! (jaf 2 1).
(iv) (62 (e*1)] < Il (la] > 1).
(v) 10ge4) By| < C(E1| E| + 16" Fr]) (lod > 1), where Fi = T(FY, F).
(vi) 18 (I ~ 4t)71] < ClgI21e! ([af > 0).
(vii) 10¢(I - &+)71| < Clg|-¥! (ja] 2 0).

We are now in a position to give estimates for I'().

Proposition 3.13. Let n > 3 and let s be a nonnegative integer satisfying s >
(3] +1.

(i) Assume that u; = T(¢1,m1) and U = " (oo, Weo) Satisfy

{1, oo }|

xs(0,1) << 1.



Then it holds that
Ty {1, uoo}ll g7 0.1y < Cl{u1, Yoo }HIxs 0, + C (1 + {21, oo}

xs0,1))[9)s

uniformly for u; and ue.

(i) Assume that ul? = (¢, m®) and vl = (¥, W) satisfy
{uf?, u®Hxeor << 1 (k=1,2).
Then it holds that

IT @) {ulM, vV} - | ) {ul, u g)}]“,@f*;w)(o,T)

1 2
< OZn{ul uO Hxeon e — v, ul) — u@Y|xs-10.m)

2
+C[9]s||{u1 - ui”, ul) — u@Hlxe-s 0

uniformly for u ) and u (k=1,2).

Proof. As for (i), we set

Toyil{un, us}l] = S1(t)(I = S1(T)) ' 1(T)[Frm(u, 9)];
Foyal{un, v} = FL1()[Fim(u, 9)],

where F} ,,(u, g) is the same one defined in (3.11). As for I'1y1[{1, %o }], by Propo-
sition 3.10 and well-known properties of the Fourier transform, we have

Toal{un,ue}] = Si(t)I = Su(T)) " F1(T)Fim(u, 9)]
= FH et (1 - T /0 e TR, u, g)dr }

T
—. / Ey(t,7) % Fym(T,u, g)dr, (3.20)
0

where ) ) )
El (t, T) — f—l{)zoe‘mf (I _ e—TAe)—le—(T—T)AE}’
Xo is a cut-off function defined by xo = Fxo with X, satisfying
Xo€C®(R"), 0<% <1, Xo=1 on {|{|<re} and suppxo C {|¢| < 2rec}.

By Lemma 3.11, e~tA¢ has the spectral resolution

e—tAE —_ ZetA](ﬁ)H](§)7

J
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where A; and II; (j = 1,%) are the same ones in Lemma 3.11. Therefore, we see
that

(I - e—T“if)'1 = (I — ™)L + (I — ™)L + (I — ™). (3.21)

Let o be a multi-index satisfying |a| > 0. It follows from Lemma 3.12 that
SioE@ <c [ e @er.
j lflsz"'oo

Since ||

1€]<ro0 |€172d€ < oo for n > 3, we see that

) |02Ei(z)| < C (z € R™), (3.22)

j
where C' > 0 is a constant depending on o, T and n. By Lemma 3.12, we have

198 ((i€)* k(I — M) 'My)| < ClgI2H=1 for |B] > 0,
102 ((6€)*%0(I — 7)™ MIy)| < Clg[HH=181 for |g] > 0.

It then follows from Lemma 3.5 and (3.21) that
|0%E,(z)| < C|z|~(n2HeD, (3.23)
From (3.22) and (3.23), we obtain that
|02 E1(z)] < C(1 + [a])~r=2HeD (3.24)

uniformly for z € R™.

We here estimate nonlinear and inhomogeneous terms. Concerning the estimate
for P;(ydivw ® w), by Lemma 3.2 (i), Lemma 3.6, Lemma 3.12, (3.20) and (3.24),
we see that

1S (I~ ST (D Frmall 2, 0y < Cll{am, o}

%oomy, (3.25)

where F} ,1(u) = T(0, P(ydivw ® w)). Similarly to (3.25), the remaining terms
can be estimated by applying Lemma 3.2 (i), Lemma 3.5, Lemma 3.6, Lemma 3.11
and Lemma 3.12. Hence, we obtain the desired estimate for I'(;),; The estimate for
I'(1),2 can be proved in a similar manner to the proof of the estimate for 'y 1.

The desired estimate in (ii) can be similarly obtained by applying Lemma 3.2 (i),
Lemma 3.5, Lemma 3.6, Lemma 3.11 and Lemma 3.12. This completes the proof.
d
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3.3 The estimates for I,

In this section we first state some properties of Sy, 4(t) and #4(t) in weighted
Sobolev spaces which were obtained in [15]. Using the properties, we derive the
estimates of I'().

Let us consider the following initial value problem (3.15). Concerning the solv-

ability of (3.15), we have the following

Proposition 3.14. ([15, Proposition 6.1]) Let n > 3 and let s be an integer satis-
fying s > [2] + 1. Set k = s —1 or s. Assume that

Vi € C([0,T'); H™1) N L?(0,T'; H?),
Ugoo = ' (Booor Wooe) € Hxy,
Foo = (F3,, Fo) € L*(0,T'; Hoy X HELY).

Here T' is a given positive number. Then there ezists a unique solution Uy, =
T(Boo, Woo) 0f (3.15) satisfying
b0 € C([0,T7); Hily), weo € C([0,T7); Hs)) VL0, T Hi) 0 HY 0, T HEy).

In view of Proposition 3.14, Se z(t) (t > 0) and #w4(t) (¢ € [0,T]) are defined
as follows.

We fix an integer s satisfying s > [3] 4+ 1 and a function @ = T(¢,w) satisfying

¢ € Cper(R; H?), Vb € Cper (R; H*Y) N L2, (R; HY) (3.26)

Let k= s — 1 or s. The operator Sw,a(t) : Hi,y — H(koo) (t > 0) is defined by

Uoo(t) = Soo,ﬂ(t)UOOO for upeo = T(¢Ooo, wOoo) € Hécoo)y

where ux(t) is the solution of (3.15) with F,,, = 0; and the operator #u4(t) :

L*(0,T; H,,y x Hi) — HE, (t € [0,T)) is defined by

Uoo(t) = Fooa(t)[Foo] for Foo = T(FY, Fio) € L*(0,T; Hi,y x HiS)),
where 4, (t) is the solution of (3.15) with uge = 0.

The operators S 4(t) and £« z(t) have the following properties.
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Proposition 3.15. ([15, Proposition 6.3]) Let n > 3 and let s be a nonnegative
integer satisfying s > [3] +1. Let k = s —1 or s and let £ be a nonnegative integer.

Assume that @ = T(¢,w) satisfies (3.26). Then there exists a constant § > 0 such
that the following assertions hold true if || V|| cqo1y;m-1)nL2(0,1;0%) < 6.

(i) It holds that Se 4(-)uose € C([0, oo);H(';o),e) for each Ugoo = T (Pooo; Woo) €
Hf,, , and there exist constants a > 0 and C > 0 such that Swa(t) satisfies the
estimate

|| So0,a(t) Uooo ||H£°m)’l < Ce—at”uooo”Hfm)’l

for allt > 0 and uoeo € Hf,y) -

(ii) It holds that Fwi(-)Fo € C’([O,T];H(’f)o),e) for each Fy = T(F2,Fy) €
L*(0,T; Hfy o < H, k')l’e) and #u(t) satisfies the estimate

(o0

t 3
1 sl < O [ Ny s o)
b 0 (c0),2

(00),¢

fort € [0,T) and Fs, € L?(0,T; Ht . ,xH k=1 ) with a positive constant C depending
T (00),€ (00),€
onT.

(iii) It holds that TH )Z(Soo,ﬁ(T)) < 1, where TH )Z(Soo,ﬂ(T)) is the spectral
radius of Seoa(T) on H (koo),l'

(iv) I — Seo.a(T) has a bounded inverse (I — Swoa(T))~! on H(koo),l and (I —
Sooa(T))™! satisfies

I(Z = Seoa(T) Mullms , < Cllullgy, for u€ Heoyp

Applying Proposition 3.15, we have the following estimate for a solution u., of
(3.15) satisfying e (0) = ueo(T').

Proposition 3.16. ([15, Proposition 6.5]) Let n > 3 and let s be a nonnegative
integer satisfying s > [3] + 1. Assume that

Foo = T(Fg,, Fi) € L*(0,T; Hfoy oy X Hig)nr)

(oo),n—

with k = s—1 or s. Assume also that & = T (¢, W) satisfies (3.26). Then there exists
a positive constant § such that the following assertion holds true if

IV@lloqomyme-ineaorae) < 6.
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The function
Uoo(t) := Soo,a(t)(I = So0a(T)) ™ Fo0a(T)[Foo) + & 00,a(t) [Fro) (3.27)
is a solution of (3.15) in Z{y) ,_1(0,T) satisfying ue(0) = us(T') and the estimate

||uoo||g?w),n_l(0,T < C“FOO“L2(OTH(  omet XHESL )

Applying Lemma 3.8, Lemma 3.9 and Proposition 3.16, we obtain the following

estimates for I'().

Proposition 3.17. Let n > 3 and let s be a nonnegative integer satisfying s >
5]+ 1.

(i) Assume that u; = T (¢1,m1) and Ueo = ' ($oo, Weo) SaLisfy

{1, Yoo } | xs0,7) << 1.

Assume also that uy and ue satisfy u1(0) = u1(T) and ux(0) = uw(T). Then it
holds that

IT (o), el 2 0.2 < CIHwt, oo} i 0.2 + C (1 + [{wa, uoo}llxe0m)lgls
uniformly for uy and Uy .
(ii) Assume that u(k) T 5),m§’°’) and ul) = T( & w®)Yy satisfy

k
||{U§ ) u U }“XS(OT) <<1 (k=1,2).

Assume also that u” and u®) satisfy uiP(0) = ugk)(T) and v (0) = ug’;)(T) for
k=1,2. Then it holds that

1 2
||r<oo>[{u§)u<l>}]— o l{u?, w22 0.1y
< OZn{ul L e H{ul = u?, ul) — u@Hxs-10.m)

[g]sll{u(” u®, ul) — u@}|xe-100m)

uniformly for u1 ) and ul® (k=1,2).

Proof. As for (i), concerning the estimates for nonlinear and inhomogeneous terms,
we here estimate only P, (w-Vw), since the computation is not straightforward due
to the slow decay of w; as |z| = oo. By Lemma 3.9, we see that

[Poo(w - V)llrz_, < [[V(w- V)L

n—1 -

-1
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Cl|lVw- Vulrz_ + |w- V?ullz2_
C(I(1 + |z})" ' Vw| o || Ve 2

(1 + [2))*?w| e |(1 + &) VPw] 22).  (3.28)

<
<

For 1 < |a| < s—1, by Lemma 3.4 and Lemma 3.8, we see that

| Poo8g (w - V)| 2

n—1

< lw-BVwlz_, + 167, w] - Vw2

n—1

1

< {30+ Vo + el )

3=0

{20+ 12l VPwllza + ool ,) - (3.29)

It follows from (3.28) and (3.29) that
| Poo (w - V)|l go-1

1

< I +1a) Ve + sy, |

j=0

2
(S N+ el Pl + )
j=1

Similarly to (3.29), the remaining terms can be estimated by applying Lemma 3.4
and Lemma 3.8. Integrating the obtained inequalities on (0, T") and applying Lemma
3.2 (i), we obtain the desired estimate.

The desired estimate in (ii) can be similarly obtained by applying Lemma 3.2
(i), Lemma 3.8, Lemma 3.9 and Proposition 3.16. This completes the proof. a

By Proposition 3.13, Proposition 3.17 and the iteration argument, we obtain
Theorem 3.1.
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