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Generalized sub-Riemannian manifold
and abnormal extremals
of generic driftless control-affine systems

Wataru Yukuno
Hokkaido University

Abstract

In order to study length minimizers on a generalized sub-Riemannian manifold,
we consider the optimal control problem associated to the polynomial driftless
control-affine systems on a finite dimensional smooth manifold with the Euclidean
topology such that the formulation coincides with the ordinary normal Hamiltonian
formalism in sub-Riemannian geometry in ordinary meaning. Then we have the
following theorem: for generic polynomial driftless control-affine systems such that
every degree of polynomial vector fields is sufficiently high and that the number
of polynomial vector fields is two or more, any non-trivial abnormal extremal is
strictly abnormal.

1 Introduction

A sub-Riemannian manifold is a triple such that a finite dimensional smooth manifold, a
subbundle of the tangent bundle on its manifold, and a Riemannian metric on the fibres
of its subbundle. In a sub-Riemannian manifold, there can exist length-minimizers not
depending on the metric but depending only the subbundle. These geodesics never rise
in Riemannian geometry, which are called abnormal geodesics.

By a rigorous application of the Pontryagin maximal principle of optimal control
theory, every length-minimizer associated to a sub-Riemannian structure is either a nor-
mal extremal or an abnormal extremal. Note that, abnormal extremals do not depend
on the metric but may be geodesic, and the two possibilities of normal and abnormal
extremals are not mutually exclusive. It may happen that an extremal is both normal
and abnormal. An abnormal extremal that is not the projection of a normal bi-extremal
is called strictly abnormal.

Until recently, it was not clear whether strictly abnormal extremals that actually
are length-minimizers can exist. Montgomery ([11]) and Kupka ([9]) seperately gave
an example of length minimizer and strictly abnormal extremal for a two-dimensional
subbundle of the tangent subbundle in R3. Moreover, since different authors had written



false proofs of the fact that an abnormal extremal cannot be length-minimizer associated
to a sub-Riemannian structure, Montgomery gave in [11] the list of several false proofs by
different authors. After that, Liu and Sussmann constructed in [10], [14] more examples
of strictly abnormal and length-minimizer by more simply proof.

Belliaiche widely generalized in [2] a sub-Riemannian structure. The metric in a
generalized sub-Riemannian structure is defined by using the system of vector fields on
a finite dimensional manifold. Note that, the metric can be defined even if the system
of vector fields is not always linearly independent everywhere on a finite dimensional
manifold. If linearly independent everywhere, then the system generates a subbundle
of the tangent bundle of the manifold and the metric in a generalized sub-Riemannian
structure is the same as the sub-Riemannian metric in ordinary meaning.

Bonnard and Heutte showed in the preprint of [3], that for a generic linearly inde-
pendent driftless control-affine system, any non-trivial abnormal extremal associated to
the sub-Riemannian metric in ordinary meaning is always strictly abnormal. After that,
Chitour, Jean and Trélat gave a more complete proof in the Appendix in [5] and had
generalized the result of Bonnard and Heutte in [6].

In our paper, we consider the length-minimizer on a generalized sub-Riemannian
structure by Belliaiche as an analogy of a sub-Riemannian geometry and generalize
the result of [5] to driftless control-affine systems including possibly linearly-dependent
systems of vector fields.

Let X be an n dimensional smooth manifold M. Let X = (X1, -+, Xy) be a system
of smooth vector fields over M. Consider the driftless control-affine systems

T = f: u; Xi(x).
i=1

Moreover, consider the optimal control problem associated to the driftless control-affine
systems to minimize the energy functional

1 m
e(u) = 3 Zuf
i=1

on an X-admissible control with the fixed initial point and the end point. Our for-
mulation coincides with the ordinary normal Hamiltonian formalism in sub-Riemannian
geometry (see §2.2).

To formulate the main theorem, we reintroduce the important concept of an X-
strictly abnormal extremal (see Definition 3.1). An X-abnormal extremal z : [0,T] — M
is called strictly if it is not the projection of a normal X-bi-extremal. Let VF(M)™
denote the set of systems of smooth vector fields X = (Xi,--- , Xp) over M. We endow
VF(M)™ with the Whitney smooth topology. Then, the following holds (see Theorem
3.2) :

Theorem A (Y. Chitour, F. Jean, and E. Trélat, [6]) Suppose2 < m = n. Then,
there ezists an open dense subset G C VF(M)™ such that, if X € G and if an X-

abnormal extremal = : [0,T] — M is non-trivial for the fized initial point To € M and
end point 1 € M, then x is strictly abnormal.
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Theorem A is the special case of Proposition 2.19 in [6] and Thom's transversality theo-
rem (for instance see [8]) is used in the proofs of the result. However, since the proof of
Proposition 2.19 in [6] is hard to read and in particular, as an important part, the con-
crete construction of G seems to be not written and the codimension of its complement
as a semi-algebraic set is not computed. Therefore, in this paper, we give more complete
proof of Theorem A in this paper, independently from Proposition 2.19 in {6]. Note that
the idea of the proofs of Theorem A are performed basically following the ideas from (5]
and Thom’s transversality theorem (for instance see [8]) is used in the proof.

Note that an abnormal trajectory is of corank one if and only if it admits a unique
(up to scalar normalization) abnormal extremal lift. It is strictly abnormal and of corank
one if and only if it admits a unique extremal lift which is abnormal.

On the other hand, we consider abnormal extremals for a generic polynomial drift-
less control-affine system: Let D = (di,---,dn) denote an m-tuple of integers, and
VFpﬂy(Rn) denotes the product space of m-tuple systems of polynomial vector fields
over R", Q = (Q1, - ,Q@m), such that the degree of Q; satisfiies deg @; < d; for every
integer i (1 £ i < m), and we endow VFpﬁy(R") with the Euclidean topology.

For Q = (Q1, -+ ,Qm) € VF B (R"), consider the polynomial driftless control-affine

poly
systems
m
T = Z u; Qi()
i=1

with the control parameter (uy,---,um) € R™. Moreover, consider the optimal con-
trol problem associated to the driftless control-affine systems to minimize the energy

functional
1o~ o
e(u) = 5 ;:1 u;.

on a Q-admissible control with the fixed initial point and end point. Then, the following
theorem holds (see Theorem 4.1):

Main theorem Suppose 2 < m < n and suppose that, an m-tuple of integers D =
(di,--- ,dn) satisfies the inequality : min{dy,dz, - ,dn} 2 3n+2. Then, there exists an
open dense semi-algebraic subset H C VFplgly(R”) such that, if Q € H, if a Q-abnormal
extremal z : [0,T] — R"™ is non-trivial for a fized initial point xg € M and end point

x1 € M, then x is strictly abnormal.

The ideas of the proof of the main theorem are performed basically following the ideas
from [5] and Tarski-Seidenberg theorem (for instance see [7]) is used in the proof of the
main Theorem.

In §2, we recall a generalized sub-Riemannian geometry by Belliche and consider the
necessary condition for length-minimizer on a generalized sub-Riemannian manifold. We
show Theorem A in 3 and the main theorem in §4 repectively.



2 Generalized sub-Riemannian geometry and length
minimizers

In §2.1, we recall the generalized sub-Riemannian geometry by Belliche (see [2]). In §2.2,
we consider the geodesic on generalized sub-Riemannian manifold.

2.1 Generalized sub-Riemannian geometry

Let X = (X1, -+, X,) be a system of vector fields over an n-dimensional smooth man-
ifold M. Given a point z € M, let L, C T, M be the vector space over R generated
by Xi(z), -, Xm(x), namely L, = (X1(z), - , Xm(z))r. Let L C T'M be the union of
the sets L, with £ € M. In particar, if the system of vector fields X = (X1, -+, Xm)
is linearly independent, then L C T'M is a subbundle of TM, and L C TM is called a
distribution of TM.

Definition 2.1 Let X = (X1, -, X,») be a system of vector fields over an n-dimensional
smooth manifold M. Let L ¢ TM be the union of the sets L, = (X1(z), -, Xm(2))r
with £ € M. Then g : L — R is called a generalized sub-Riemannian metric or a
generalized sub-Riemannian metric if for w = (z,v) € L,

g(w) = g(z,v) = min{(u1)* + -+ + (um)* | wXa(2) + -+ + wr Xm(2) = v},
where w = (z,v) is canonical coordinates of L C T'M, namely, ¢ € M,v € L,.

Note that, if X = (X, -, X,,,) is linearly independent everywhere on M, then the sys-
tem generates a distribution and the metric ¢ in a generalized sub-Riemannian structure
is the same as the sub-Riemannian metric in ordinary meaning.

Let z : [0,7] — M be an absolutely continuous curve. Then, z : [0,7] — M is
called X -admassible (or L-admissible) if for a.e. t € [0,T],

E(t) € Lay = (Xa((1), -+, Xm(2()) -

Then, generalized Carnot-Carathéodry distance doc : M x M — RU{oo} is defined by
the following:
for p,q € M,

} Vv g(a(t), 2(t))dt

o, z(0) =p, z(T) =¢

dcc(p, q) = inf {

z:[0,T] — M : X-admissible }

Definition 2.2 An X-admissible curve = : [0,7] — M is called a length-minimizer if
the length of z is equal to dec(z(0), z(T)) :

doo(z(0), 2(T)) = / NECOROL
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2.2 Necessary condition of length-minimizer

Let X be an n dimensional manifold. Let o € M and T > 0. Let X = (X1, -, Xnm)
be a system of smooth vector fields over M. Consider the driftless control systems

m
T = E u;: X;(x
i=1

with the control parameter v € R™. We denote by Uy, ,, r the set of admissible X-
controls from [0, 7] to R™ such that the corresponding trajectory to u has a fixed initial
point £y € M and end point z; € M.

We define an energy function e : R™ — R by

1 m
e(u) = 5 Zuf, for u € R™.
=1

Consider the optimal control problem to minimize the energy functional C, : Uy, 7, 7 — R

C.(u / t))dt = / u;(t dt for u € Uy 1,1
) = [0,T] ( [UT] Z i

It is known that the problem is equivalent to minimizing the length :

m
> ui(t)?dt, for u € Uppa, .

i=1

If Xy, --,X,, are linearly independent everywhere, then the optimal problem (X, e)
is exactly to minimise the Carnot-Carathéodory distances in sub-Riemannian geometry
(see [12]).

The Hamiltonian function H = H(x) : (T*M x R™) x R — R of the optimal control
problem (X e) is given by

H(z,pus o) = Y0, uXi(0) + 5 7o(Y )

where (z,p,u) = (1, ,&n,P1," " P> U1, ** , Um) is the local coordinate of T*M x R™
with a canonical coordinate of (z,p) of T*M. Then the constraint & = 0 is equivalent
to the following

pou; = —(p, X;(x)),(L £ j S m).

For an X-normal extremal, we have py < 0. Then we have

4y = ——(p, X;(2)), (1 £ j < m).
Po
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Then

m

H=—— . {p, Xi(z))*.

From the linearity of Hamiltonian function on (p,po), we can normalize po, so that

H=3 . X@)"

Thus our formulation coincides with the ordinary normal Hamiltonian formalism in sub-
Riemannian geometry.

Therefore, by the Pontryagin maximum principle (see [13],[1]), the following property
holds:

Proposition 2.3 Let zg,z; € M. Let u : [0,T] — R™ be an admissible X -controls and
z :[0,T] — M be the corresponding trajectory with a fizxed initial point zo € M and
end point ¥, € M. Then, if u is optimal, namely, = is length-minimizer, then there
exists a pair (z,p0) of an absolute continuous curve z : [0,T] = T*M and a real number
po < 0 such that, T = woz, and that the following equations hold: for any local canonical
coordinates (x,p,u) = (T1,"*+ , Tny Py " Py U1, -+ Um) Of T*M X Q with a canonical
coordinate of (z, p) of T*M

(1) &:(t) = ( (t),p(t),u(t); po) (1S i< n) foraetel0,T]
(2) pi(t) = — 5 (z(t), p(t); ul(t) ; po) (1 =i S n) foraet €0, T]
(3) 2 (), P(t) ut);po) =0(1Sjsm)  foraete0,T]
(4) (p(t), po) # 0. forevery t € [0, T]

with H(.’L‘,p, U) = HX(xapa u) = <pa Z:r;l Us; Xz(x»

.

A curve z : [0,T] — T*M is called an X-normal bi-extremal (resp. an X-abnormal
bi-extremal) if py < O (resp.py = 0). A curve z : [0,7] — T*M is called an X-normal ez-
tremal (resp. an X-abnormal extremal ) if it possesses an X-normal bi-extremal lift (resp.
an X-abnormal bi-extremal lift).

Definition 2.4 An X-abnormal extremal z : [0,T] — M is called strictly abnormal if
it 1s mot the projection of an X -normal bi-extremal.

Note that it may happen that an X-extremal z : [0,7] — M is both normal and
abnormal.
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3 Abnormal extremals of generic driftless control-
affine system in generalized sub-Riemannian ge-
ometry

We prove Theorem A (Theorem 3.2). In order to formulate the Theorem A, we recall
the strictly abnormal extremal: Let X be an n dimensional manifold M. Let X =
(X1, -, Xm) be a system of smooth vector fields over M. Consider the driftless control-
affine systems

i=1

Moreover, consider the optimal control problem associated to the driftless control-affine
systems to minimize the energy functional

on an X-admissible control with the initial point £ € M. The Hamiltonian function
H = Hx. : (T*M x R™) x R = R of the optimal control problem (X, e) is given by

m

H(z,p,u; po) = Z(P,uixi($)> + %po(z uf)

=1

where (z,p,u) = (21, ,Zn, D1, ,Pn, U1, - , Um) is the local coordinate of T* M x R™
with a canonical coordinate of (z,p) of T*M.
Recall the definition of a strictly abnormal extremal (see 2.4).

Definition 3.1 An X-abnormal extremal z : [0,7] — M is called strictly if it is not the
projection of a normal X-bi-extremal.

Let VF(M)™ denote the set of systems of smooth vector fields X = (Xi,--- , Xmm) over M.
We endow VF(M)™ with the Whitney smooth topology. Then, the following Theorem
3.2 holds:

Theorem 3.2 (Y. Chitour, F. Jean, and E. Trélat, [6]) Suppose 2 £ m < n. Then, there
exists an open dense subset G C VF(M)™ such that, if X € G and if an X-abnormal
extremal x : [0,T] = M is non-trivial for the fized initial point xo € M and end point
x1 € M, then x is strictly abnormal.

This Theorem 3.2 is the special case of Proposition 2.19 of [6]. However the proof of
Proposition 2.19 is hard to read , because the construction of G is not written. We will
improve the proof of Proposition 2.19 clearly.

Outline of proof Let d = 1 be an integer. Put N = d + 1. We denote the space of
all N-jets of vector ficlds X € VF(M) by JY(VF(M)), and the fibre product over M of



m-tuple spaces of JV(VF(M)), by J¥(VF(M))™. Then, we will show Theorem 3.2 by
the following procedures:

[Step1] Construct the “bad set” with respect to minimal order, By, (d) C JY(VF(M))™.
[Step2] Show that, if X € VF(M)™ satisfies the condition that any z € M, j,X & Bs.(d)
and if an X-abnormal extremal z : [0,7] — M is non-trivial, then z is of strictly
abnormal.

[Step3] Compute the codimension of By, (d) in JN(VF(M))™.

[Step4] For N > 3n+1(d > 3n), let G be the set of X € VF(M)™ such that the jet
7N X is not included in the closure of By, (d) in JN(VF(M))™. Then, show that, G is
an open dense subset of VF(M)™ in the sense of Whitney smooth topology by Thom
transversality theorem (for instance see [8]).

3.1 Construction of bad set with respect to strictly abnormal

Let (2IM, 2l9) € T*M x5 T*M and z = n(2I") = 7(24). For every muliti index I of
{1,---,m}, set

H}n](z{n],z[a]) = HI(Z["]) and H}a} (z[n],z[a]) — H[(Z[a]).

and define inductively the following functions in F, depending on (21 2la))

B’LO - i
{ Bisrr = 2 HMLipBisy (s=1,2,---),

Jj=1

where F and L:ﬁz are defined in before section.
J

Definition 3.3 Let d be a positive integer. Let N = d + 1. For every integer ¢ (1 <
i < m) and (2", 219) € T*M x T*M, we define B(d, i, 21", 219) by the set of j¥X €
JN(VF(M))™ such that the following conditions hold:

1) Xi(z) #0;

2)H[ (2, 219) # 0;

3)B;.s(2IM, 219) = 0 for every integer s (0 £ s < d - 1).
B((d, 21", 21 ¢ JN(VF(M))™ is the union of B(d, 3, 2I", 21) with i (1 £ i < m).
Definition 3.4 Let d be a positive integer. Let N = d + 1. we define By(d) C
JN(VE(M))™ x5 T*M x 3 T*M by

A

Bua(d) = (G X, 17, 213 X € B((d, 2, 2},

Definition 3.5 Let d be a positive integer. Let N = d+1. we define the bad set with re-
spect to strictly abnormal B, (d) by the canonical projection of By, (d) on JN (VF(M))™.
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3.2 The property of abnormal bi-extremals avoiding bad set
with respect to strictly abnormal
Lemma 3.6 Suppose that, 2 < m < n. Let d be a positive integer and N = d + 1.

Let X € VF(M)™ such that for any © € M, j¥X ¢ Byo(d). Then, if an X -abnormal
bi-extremal x : [0, T] — M s non-trivial, then = is of strictly abnormal.

Proof: By contradiction, assume that there exists a nontrivial abnormal X-trajectory z :
[0,7] = M with an X-abnormal control u : [0, T] — R™ such that z = 70 2l" = 70209,
where 2 is a normal X-bi-extremal lift of z, and 2!l is an X-abnormal bi-extremal lift
of z.

For every multi-index I C {0,---,m} and t € [0, T, set

Hi(2"(1)) = (1(2), X1 (2(8)), Hi(29(2)) = (1(8), X1(2(1)))-
After time differentiation, we have on [0, T},

LH (1) = 3 wlt) His(2 (1)),

i=1

LHI((0) = 3. w(t) Hi(2(0).

i=1

By Pontryagin maximum principle,

{uz(t) Hy(z1()) = H (1), (1)),
H((8), 21 (1)) = Hi(2P(8) = 0--- (+)

1

for every integer ¢ (1 < ¢ < m),t € [0, 7]

Since z : [0,7] — R™ is nontrivial, there exists an open subset J C [0,7] and an
integer i0 (1 £ %9 £ m) such that u,o(t)X (z(t)) # 0 on J. Therefore, u;,(t) # 0 and
Xi,(x(t)) # 0 on J. Since uy(t) = (z["](t)),

Ho(21(t)) # 0.

on the other hand, by differentiating () with respect to ¢ € [0, 77,
0 = GHIL (M), 24(1)

= zw) HlE (08, 29(2)

= ZH["](z[" (t), 249 (8)) HEZ, ), (217 (8), 219 (1)

= 5i0,1(z I(2), 2 (t))
For every t € (0,71, by induction,
ﬂio,s(z[n] (t)’ Z[a](t)) = 0.

for every s(0 £ s S d—1) and t € J. Hence, jYX € E(d, 30, 2™, 2191) for ¢ € J, which
contradicts the hypothesis. O



117

3.3 Codimension of bad set with respect to strictly abnormal

Lemma 3.7 codim(B,,(d); JN(VE(M))™) 2 d — 2n.

Proof: We describe only the outline of the proof of Lemma 4.6. Let VFpoly( ") be the
m-tuple product space of polynomial vector ficlds of degree < N over R™.

Stepl: Construct the typical fiber Gs,(d) of By, (d).

Typical fiber Gyo(d) of Bse(d) is the canonical projection of Gyo(d; TgR™ x TyR™)
by VFpoly(R”) x R x R* — VFpoly(R”). Gsa(d; TEM X Ty M) is defined by the set
of (@, p[" p[“]) € VFpoly(R") x R™ x R™ such that there exists 7 (1 < i < m) such that
(Q, p", p19l) satisfies the following conditions 1) to 4):

1)Q:(0) are linearly independent;
2)H[ (Zo 720 ) #0;
3)B;(2, 21%) = 0 for every integer s (0 < s < d - 1).
where z([) a z([)] are the elements of T*R" glven in coordinates by (0, p1), (0, p2).
Step2: Construct the mapping ¢; : VF 5 (R") x R™ x R* — R¢:
Let i(1 £ ¢ £ m) be a positive 1nteger Then we define the mapping ¢; : VFPOIY(R")
R™ x R™ — R¢ by for (Q,p1,p2) € VEN (R™) x R* x R™,

poly

¢i(Q:plap2) = ﬂi S(Z([)n]7 z([)a])’

where z([) 3 z(g} are the elements of 7*R™ given in coordinates by (0, p1), (0, p2).

Step3: Construct the open subset V; C VFpoly(R”) x R® x R"
Let i(1 £ i £ m) be a positive integer. Then V; is the defined by the set of (Q, p1,p2) €

VF_ 0 (R™) x R™ x R” such that (@, p1,p2) satisfies the following condition:

poly(
Hw(zo ,Zo )7‘40

where 2", 219 are the elements of T*R™ given in coordinates by (0, p1), (0,pz). Then, V;

is an open subset of VF pfly (R™) x R™ x R™.

Stepd: Gy (d; T{R™ x T{R™) is the union of the kernel of restriction to V; of the
mapping ¢; with i (1 £ < m).

Step5: Let ) be the set of Q € VFpoly(R”) such that @; # 0. It is well-known
that the local (,oordlnate systems on Q can be constructed (see Coordinate systems in
[4],[5]) Then, for every integer i (1 < i < m), the restriction to the intersection V; N V of
the mapping ¢; is a submersion for every coordinate neighborhood V of Qo x R™.

Step6: codim(B.,(d); J¥(VF(M))™) = d — 2n.

By step 4,5, codim(Gy(d; TgR™ x TgR™); VF S (R") x R x R") = d. On the
other hand, Gsa(d) of B,,(d) is the canonical projection of Gsq(d; TgR™ x T¢R™) by
VEN (R™) x R™ x R® — VF [ (R"). Therefore, codim(G(d); VFp];’ly(R")) > d - 2n.
Since Gsa( ) is the typical fiber of By (d),

codim(Byq(d); JY (VF(M))™) = codim(Ga(d); VF 5, (R™)) 2 d — 2n.
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Since the dimensions of B, (d) and B, (d) are equal,

codim(Bsq(d); JN(VE(M))™) 2 d — 2n

3.4 Proof of Theorem A

Let d > 3n be an integer. Let N = d + 1(> 3n +1). Let G be the set of X € VF(M)™
such that for any z € M, j¥ X is not included in the closure of By, (d) in J¥ (VF(M))™:

G= {X € VE(M))™ | i X ¢ Boo(d) for any z € M.} :

By Lemma 3.7,
codim(Bo(d), JN (VE(M))™) 2 d — 2n > n.

Then G is an open dense subset of VF(M)™ by using the transversality theorem (see

[8])-

Let X = (X1,---,X,) € G. Then, for any z € M, j¥X ¢& B, (d). Therefore, by
using Lemma 3.6, if z : [0,7] — M is X-abnormal extremal then z : [0,T] = T*M is
strictly abnormal. O

4 Abnormal extremals on generic polynomial sys-
tem in generalized sub-Riemannian geometry

We prove the main theorem (Theorem 4.1). In order to formulate the main theporem,
recall that, D = (dy,--- ,d,,) denotes an m-tuple of integers, and VFpﬁy(Rn) denotes
the product space of m-tuples of polynomial vector fields over R : (Qq,- - ,Qm), such
that the degree of Q; satisfiies deg Q; < d; for every integer 7 (1 < ¢ £ m), and we endow
VFPIO),Y(R") with the Euclidean topology.

For Q@ = (Q1, - ,Qm) € VF pﬂy(Rn), consider the polynomial driftless control-affine
systems

i=1

with the control parameter (ui,---,un) € R™. Moreover, consider the optimal con-
trol problem associated to the driftless control-affine systems to minimize the energy

functional
1 e
e(u) = 3 1221 u;.

on @-admissible controls with the fixed initial point o € M and the fixed end point z,
Then, the following holds:



Theorem 4.1 Suppose 2 < m < n and suppose that, an m-tuple of integers D =
(d1,- -+ ,dy) satisfies the inequality : mm{dl, dy, -+ ,dm} 2 3n+2. Then, there exists an
open dense semi-algebraic subset H C VFpoly(Rn) such that, if Q € H, if a Q-abnormal
extremal x : [0,T] — R™ is non-trivial for a fized initial point xo € M and end point
z1 € M, then x is strictly abnormal.

Outline of proof Let D = (d;, - - - ,d,,) be an m-tuple Let d = min{d;,- - ,dp}. Then,
we will show 4.1 by the following procedures:
[Stepl] Construct the “bad set” with respect to minimal order, By, (D) C VFpoly(R").

[Step2] Show that, if Q@ € VF o (R") satisfies the condition that any z € @, (@, ) &
B,.(D) and if a Q-abnormal extremal z : [0, T] — R™ is non-trivial, then x is of strictly
abnormal.

[Step3] Compute the codimension of 71(Bsq(D)) in VF 5 (R™) by = : VF_ 5, (R") xR* —
VFpoly(Rn)

[Step4] For d > 3n—1, let H be the set of @ € VF 2 (R") such that (@, z) is not included
in the closure of m(Bg (D)) in VFpoly(R") Then, show that, by Tarski-Seidenberg
theorem, H is an open dense semi-algebraic subset of VF Z_(R") in the sense of Euclidean
topology.

poly

4.1 Construction of bad set

Let (2, 2191y € T*M xp T*M and z = 7(2") = 7(2). For every muliti index I of
{1,---,m}, set

B, M) = ) and ), 1) = ),

and define inductively the following functions in F, depending on ([, 219)

Bio=H
5’i,s+1 = ZIHJ[n]‘CI.T;ﬁ’L,Sa (8 = 17 27 e )7
J:

where F and ﬁﬁ’- are defined in before section.
2

Definition 4.2 Let D = (di,--- ,d,) be a pair of positive integers such that d; = 2
for every integer i(1 < i < m). Let d = min{d;,--- ,dn} — 1. For every integer
i(1S:S m) and (2", z[“]) € T*M xpr T*M, we define B(D i, 21", 2190) by the set of
(Q,z) € VF poly(Rn) x R™ such that the following conditions hold:
2)H[”](z[n [a ) 74 0.
3)B;,s(2I", 21¢1) = 0 for every integer s(0 < s S d —1).
B((D, 21", 2l9) ¢ VF 2 (R™) x R™ is the union of B(D,i, 2", 21%) with i (1 £ i < m).

poly
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Definition 4.3 Let D = (dy,--- ,d,,) be a pair of positive integers such that d;geqq2
for every integer (1 £ 7 < m). Let d = min{dy, -+ ,dn} — 1. we define By, (D) C
VF P (R™) x R™ x 3y T*M X ps T*M by

poly

B, (D) = {((Q, ), 21", 29)|(Q, z) € B((D, 2, 21%)}.

Definition 4.4 Let D = (d;,--- ,d,,) be a pair of positive integers such that d; = 2
for every integer i (1 = i < m). we define the bad set with respect to strictly abnormal
B,.(D) by the canonical projection of B,,(d) on VF 2 (R") x R™,

poly

4.2 The property of abnormal bi-extremals avoiding bad set
with respect to strictly abnormal

Lemma 4.5 Suppose that, 2 £ m < n. Let D = (dy, - ,dm) be a pair of positive
integers such that d; 2 2 for every integer i (1 £ i < m). Let X € VF(M)™ such that
for any x € M, (Q,z) & Bso(D). Then, if z: [0,T] — R" is a Q-abnormal bi-extremal,
then x is of strictly abnormal.

Proof: By contradiction, assume that there exists a nontrivial abnormal X-trajectory
z : [0,T] = M with an Q-abnormal control u : [0, T] = R™ such that z = mozI" = 7ozl
where z[" is a normal X-bi-extremal lift of z, and 2! is a Q-abnormal bi-extremal lift
of x.

For every multi-index I C {0,--- ,m} and ¢ € [0,T, set

Hy (M) = (2M(2), X1 (2(t))), Hi(21(8)) = ((t), X1 (z(t))).
After time differentiation, we have on [0, T},
FHI(M(@) = Zuz( )Hri(2(2)),
FHi(21(t)) = z,=leui(lt)flfn(z[" (1))
By Pontryagin maximum principle,

{ wit) = Hy(21"(8)) = HIM (2l (t), 219(2)),
H(21(t), 219(8)) = Hy(2(t) = 0- - ()

Since z : [0,T] — R™ is nontrivial, there exists an open subset J C [0,7] and an
integer ip (1 < 49 < m) such that u,;,(t)X;,(2(t)) # 0 on J. Therefore, u;(t) # 0 and
Xio(2(t)) # 0 on J. Since u;y(t) = Hio(z[n](t))’

Hyy(27(1)) # 0.

for every integer i (1 < ¢ < m),t € (0,7



on the other hand, by differentiating (*) with respect to t € [0, 7],
0 = FH (), 2(0)

O A ELIORLCID)

= SSHPER(), 20) HEL (2P0, 2 (0)

= Bioa(2I"(1), 21(1))

For every t € [0, 7], by induction,
ﬁio,s(z[n] (t)7 z[a}(t)) = 0.

for every s(0 S s <d—1)and t € J. Hence, ;7YX € B(d, iy, 2™, 2!4) for t € J, which
contradicts the hypothesis. a

4.3 Codimension of bad set with respect to strictly abnormal
Lemma 4.6 codim(7(By,(D)); V. oly(R”)) 2 d— 3n.

Proof: We describe only the outline of the proof of Lemma 4.6. Let VFpoly(R”) be the

m-tuple product space of polynomial vector fields of degree < N over R™.

Stepl: Construct the typical fiber G, (d) of Bs,(d).

Typlcal fiber Gs4(d) of Bg,(d) is the canonical projection of Gy (d; T§R™ x TgR™)
by VFpoly(R") X R™ x R — VF N (R™). Gio(d; Ty M x Ty M) is defined by the set
of (Q, p[" p[“) € VFJ (R") x R™ x R™ such that there exists i (1 £ ¢ < m) such that
(Q, p™, pl9l) satisfies the following conditions 1) to 4):

1)Qi(0) are linearly independent;

2H (7, 257) # 0,
)513(750 ,z([)a]) = 0 for every integer s(0 S s <d—1).
where z([J a z([)] are the elements of 7*R" glven in coordinates by (0, p1), (0, p2).
Step2: Construct the mapping ¢; : VF,3 (R") x R* x R* — R*:

Let ¢(1 £ ¢ < m) be a positive mteger Then we define the mapping ¢; : VF Y
R™ x R™ — Rd by for (Q pl:p2) € VF (Rn) x R™ x Rna

(R™) x

poly

poly
$:(Q,p1,p2) = BzS(zO azt[)a])v

where z([] L z({)a] are the elements of T*R™ given in coordinates by (0,p1), (0, p2).

Step3: Construct the open subset V; C VFPIXI},(IR") x R™ x R®

Let i(1 £ i < m) be a positive integer. Then V; is the defined by the set of (Q, p1,p2) €
(R”) % R™ x R™ such that (Q, p1, p2) satisfies the following condition:

poly
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where z([) I zf[)] are the elements of T*R™ given in coordinates by (0,p;), (0,p2). Then, V;
is an open subset of VF.3 (R™) x R" x R™.

Stepd: Gy (d; TgR™ x T;R™) is the union of the kernel of restriction to V; of the
mapping ¢; with ¢ (1 < ¢ < m).

Step5: Let Q) be the set of Q € VFpoly(R") such that Q; # 0. It is well-known
that the local coordinate systems on Q) can be constructed (see Coordinate systems in
[4],[5]) Then, for every integer 7 (1 < i § m), the restriction to the intersection V; NV of
the mapping ¢; is a submersion for every coordinate neighborhood V of )y x R™.

Step6: codim(B,,(d); JN(VF(M))™) = d — 2n.

By step 4,5, codim(Gy(d; TyR™ x TgR™); VF S, (R™) x R x R*) = d. On the
other hand, G,,(d) of By(d) is the canonical projection of G, (d; T*Rm x TeR™) by
VE ), (R™) x R™ x R™ — VF,N (R"). Therefore, codim(Gsa(d); VF A, (R")) = d — 2n.
Since G4, (d) is the typical fiber of By, (d),

poly (

codim(B,,(d); J¥ (VF(M))™) = codim(G,q(d); VFpoly(R")) 2d-2n.
Since the dimensions of By, (d) and B,,(d) are equal,

codim(x(B.a(d)); VED,(R") = codim(n(Bea(d)); VE2, (R"))

> codim(Bs,(d)); VF poly(R") xR") —n
= codim(Gs(d)); VF,5,(R™) — n
2 d-3n

4.4 Proof of main theorem

It is well-known that for every positive integer K 2= 1, if B C R¥ is semi-algebraic, then
the complement of B in R¥ is dense if and only if dim(RX, B) > 0. In particular, the
complement of the closure of B in RK, RK\B is open dense subset of RX.

Let d > 3n be an 1nteger such that min{D,, Ds, - , Dy} =d+1(>3n+1). Let H
be the set of Q € VF B (R") such that for any (Q,z) is not included in the closure of

7(Bso(D)) by 7 : VF (R™):

poly

poly(Rn) x R™ — VFpoly

{Q € VEB (R") | (Q,z) & 7(Boa(D)) for any z € M.} .
By Lemma 4.6,

codim(By,,(d), VF B (R")) 2 d — 3n > 0.

poly (

Then 7(By, (D)) is an open dense semi-algebraic subset of VFpely (R™).

Let Q@ = (Q1, - ,@m) € H. Then, for any z € M, (Q,z) € Bs(D). Therefore, by
using Lemma 4.5, if z : [0,T] — R™ is Q-abnormal extremal, then z : [0,T] — T*R" is
strictly abnormal. 0O
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