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Topological representation of lattices and
their homomorphisms

ALEKSANDER BLASZCZYK

1. BASIC NOTIONS AND FACTS.

Results presented here were obtained jointly with Wojciech Bielas and will appear in [1].

An algebraic structure L = (L,A,V,0,1), abbreviated L, is called a lattice whenever the
binary operations A and V are commutative, associative, satisfy the absorption property and
xA1=zV 0=z holds for all x € L.

A natural ordering in L is given by equivalences:

rLY<=rsANy=z<+xVy=y.

Then 0 is the smallest and 1 the greatest element. For a space X, C1(X) denotes the lattice of
all closed subsets of X, whereas Z(X) denotes the lattice of all zero-sets in X.
A lattice L is called:

(1) distributive if for all z,y, z € L there is
zA(yVz)=(zAy)V(zAz),

(2) normal if it is distributive and for all a,b € L with a A b = 0 there exist z,y € L such
that

zVy=landzAa=yAb=0,

(3) separative if it is distributive and for all z,y € L with = £ y, there exists z € L \ {0}
such that z <z and yAz=0.

Let us note the following easy observations:
Fact 1.1. Every Boolean lattice is a normal and separative lattice.
Fact 1.2. The lattice CI{X) is normal iff the space X is normal.

A family £ C CI(X) is called a closed base in a space X whenever for every F' € CI(X) there
exists some F C L such that F' = [} F. Moreover, if £ is closed under finite unions and finite
intersections then it is called a base lattice.

Example 1.3. If X is an infinite discrete space, then
L={FCX:|X\F|<w}U{0}
is a closed base for X but as a lattice it is not separative.
Let . us leave without proof the following easy facts:

Proposition 1.4. Let X be a compact Hausdorff space. If a sublattice L C CI(X) is a closed
base for X, then the lattice L is both normal and separative.

Proposition 1.5. Let X be a Tychonoff space. Then the lattice Z(X) is both normal and
separative.



2. ULTRAFILTERS

A nonempty set § C L is called centered provided that the following condition holds true:
(*) z1,z0,...,Zzn €€ =>T1ANZ2 A ... A2y > 0.
The following fact is well known in the literature; see e.g. Koppelberg [6] or Sikorski [8].

Theorem 2.1 (Tarski’s Theorem). Every centered family is contained in a mazximal one.

For a lattice L we set
Ult(L) = {¢ C L: ¢ is a maximal centered family}.

Elements of Ult(L) are called ultrafilters in the lattice L. Directly from this definition we can
obtain the following:

Lemma 2.2. IfL is a distributive lattice and & C L then & € Ult(L) iff the following conditions
hold true:

(1) 0¢& andl e,

(2) z,ye €=z Ay €L,

(@) zeL\{=>(TyefzAy=0),
for all z,y € L.

For a distributive lattice L the Wallman topology on Ult(L) is generated by the family
{Ult(L) \ u*: u € L},

where u* = {£ € Ult(L): u € &}.
The following theorem was proved first by Wallman [10}; see also Johnstone [5].

Theorem 2.3 (Wallman’s Theorem). If L is a distributive lattice, then the Wallman space
Ult(L) ¢s a compact T1-space. If additionally the lattice L is normal, then Ult(L) is a compact
Hausdorff space.

Let us note that if B is a Boolean lattice, then the Wallman space Ult(B) coincide with the
Stone space of B. Also, if L is separative then it is isomorphic with the sublattice {u*: v € L}
of CI(Ult(LL)) and {u*: v € L} is a closed base for Ult(IL). We have the following:

Theorem 2.4. If the lattice L C CI(X) is a closed base for a compact Hausdorff space X, then
Ult(L) ¢s homeomorphic to X .

Let us note the same compact Hausdorff space can be the Wallman space of several non-
isomorphic lattices. To do this it is enough to consider for a compact space two closed bases
of different size. In the theory of Boolean algebras the situation is completely different: every
compact zero-dimensional space is the Stone space of the Boolean algebra consisting of all clopen
subsets of the space and such a representation is unique.

3. HOMOMORPHISMS

It appears that, similarly like in the theory of Boolean algebras, homomorphisms of lattices
appoints continuous functions of their Wallman spaces; see Johnstone [5], Simons [9] and also
Kubis [7]. We propose the following:

Theorem 3.1. Let K, be normal lattices and let ¢ : K — L be a homomorphism. Then there
erists a continuous function * : Ult(L) — Ult(K) given by the formula:

') ={xeK:zAy>0 forally € p'[¢]}
for each €& € Ult(L).



The next theorem says that if NLat denotes the category of normal and distributive lattices
with 0 and 1 and homomorphisms and Comp denotes the category of compact Hausdorff spaces
and continuous mappings, then there exists a contravariant functor from NLat into Comp. This

functor is also called the Wallman functor.

Theorem 3.2. Assume K, L, M are normal lattices and let ¢ : K > L and ¢ : L - M be
homomorphisms. Then

(o) =¢"oy™
Ifidk : K — K is the identity, then (idg)* is the identity as well.
Corollary 3.3. If ¢ : K — L is an isomorphism, then ¢* : Ult(L) — Ult(K) is a homeomor-
phism of Wallman spaces.

Next theorem says that the Wallman functor described above carries monomorphisms into
surjections.

Theorem 3.4. IfK,L are normal lattices and o : K — L is a monomorphism, then the function
@* : Ult(L) — Ult(K) ¢s a continuous surjection.

For a space X, RC(X) denotes the Boolean lattice (Boolean algebra) of all regular closed
subsets of X. The operations in RC(X) are given by the formulas
(1) FVvG=FUGQG,
(2) FAG =cl Int(F N G),
8) —F=cl(X\F)
However, the Wallman functor does not carry epimorphisms into injections. The last property
makes a difference with the Stone functor which carries epimorphisms of Boolean lattices onto
embeddings of Stone spaces.

Example 3.5. If X is an infinite compact metric space then the homomorphism h : C}(X) —
RC(X) given by the formula

h(F)=clInt F
is an epimorphism, but the function A* : Ult(RC(X)) — Ult(Cl(X)) is not one-to-one. In fact,
since the lattice RC(X) is complete, the space Ult(RC(X)) is extremally disconnected and thus
it cannot contain convergent sequences. On the other hand Ult(Cl(X)) is homeomorphic with
X, hence it is a metric space.

4. APPLICATIONS
We start with the following easy observation; see also Gillman and Jerison [4].

Proposition 4.1. Let X be a Tychonoff space. If a separative normal sublattice L C CI(X) is a
closed base in X and Z(X) C L, then Ult(L) is a compactification of X. Moreover, Ult(Z(X))
is homeomorphic to the Cech—Stone compactification of X.

Let X be a compact Hausdorff space and let a lattice L. C C1(X) be a closed base in X. Let L¢
denotes the Boolean sublattice of P(X) generated by L. Since L€ is a Boolean lattice the space
XO(L) = Ult(LL¢) is a zero-dimensional compact space. Let e: L — ¢ be the injection appointed
by the inclusion L. C L€. Then, by the Theorem 3.4 we get a continuous surjection e*: Ult(L°¢) —
Ult(L). If fxr: Ult(L) —» X denotes the canonical homeomorphism (see Theorem 2.4), we set

pxL = fxLoe".

Theorem 4.2. Assume X and Y are compact Hausdorff and g: X — Y is a continuous map.
If lattices L C C1(X) and K C CL(Y) are closed bases in X and Y, respectively, and g~}[F] € L
for every F € K then there exists a continuous map g°: X°(L) — Y°(K) such that

PYK © 90 =g o pPXL,
i.e. the following diagram is commutative:



XO(L) £ YO(K)
pX,Ll IPY,K
g
X Y

A sublattice L C CI(X) is called disjunctive, if for all z € X and F € L such that z ¢ F,
there is G € L such that z € G and FNG = 0.

Let us observed that if X is a Tj-space, then the lattice C1(X) is disjunctive. But not every
sublattice L C CI(X) has to be disjunctive, even if X is normal. However, we have the following:

Theorem 4.3 (Frink [2]). If X is a T1-space and there exists a disjunctive normal sublattice of
CUX) which is a base in X, then X is a Tychonoff space.

If X and Y are Tychonoff spaces then a bijection ® : C(X) — C(Y) of rings of continuous
functions is a ring isomorphism whenever

o(f +9) = 2(f) + 2(g) and &(f - g) = &(f) - 2(g)
for all f,g € C(X). We have the following theorem:

Theorem 4.4. If X and Y are Tychonoff spaces, and C(X) and C(Y) are ring isomorphic,
then Z(X) and Z(Y') are isomorphic as lattices.

As an immediate corollary we obtain the well known Gelfand—Kolmogoroff Theorem, see
e.g. [4].
Corollary 4.5 (Gelfand-Kolmogoroff 3] ). If X and Y are compact Hausdorff spaces such that
C(X) is a ring isomorphic to C(Y), then X is homeomorphic to Y.
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