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Abstract

We formulate a matrix with coherent sequences that entail squares. A matrix comprises models of set
theory of a size equal to the least uncountable cardinal. A matrix with coherent sequences entail a simplified
morass with linear limits. A simplified morass with linear limits entails squares by Velleman. Hence, a
matrix with coherent sequences entails squares. We provide a direct proof of this fact. This study is based
on Velleman’s construction of squares by a simplified morass with linear limits.

Introduction

Velleman introduced simplified morasses as an alternative to constructions in the constructible universe
([v1], [V2], [V3]). Koszmider followed Velleman to formulate semimorasses ([K]). Todorcevic concieved
matrices of isomorphic models of set theory along his so-called side condition methods ([T1], [T2]). Aspero
and Mota rediscovered the use of matrices ([A-M]). Shelah and Baumgartner had a forcing construction in
that each condition keeps its history ([B-S]). We noted a connection between these types of objects in the
universe of set theory: namely, certain kinds of matrices of isomorphic models of set theory entail simplified
morasses, semimorasses, and quagmires ([M1], [M2]). In this paper, we consider a matrix with coherent
sequences that entails a simplified (wo, 1)-morass with linear limits ([M3]). Simplified (w2, 1)-morasses with
linear limits entail o,, by Velleman. He provided two proofs of this implication. We sort of combine these
two proofs to directly show that matrices with coherent sequences entail o,,. This study is motivated by a
question posed by Brooke-Taylor during my presentation on matrices of isomorphic models in the RIMS set
theory workshop, Kyoto, 2013.

§l. A matrix with coherent sequences

We formulate a matrix with coherent sequences. Since we are not sure which direction to proceed in
this line of study yet, our treatment of this subject tends to be rather ad hoc ([M1], [M2], [M3]).

1.1 Definition. Let H be a transitive set model of a sufficient fragment of set theory such that

e w3sCHCH,,.
e “IH C H: namely for any sequence f : w3 — H, we demand f € H.

In particular, we have

o If M C H with |M|=x € {w,w1}, then M € H and H = “|M| =k".
® wy, wy are definable in H with no parameters and are absolute between H and H,,,.
Typically, H is H,, in the ground model V and we are in the generic extensions V[G], where G are
P-generic over V, and P is a notion of forcing that forces a matrix with coherent sequences. We may assume

that P is o-closed, wq-Baire (no new sequences of ordinals of length w; get created), and has the ws-c.c.
under 2! = wy ([M3]).

Let M; be a set of elementary substructures of a prefixed structure (H, €, - ) such that
e For each M € M, it is required that |M| = w; and (w; <) M Nwz < ws.
e M, is closed under finite intersections: for M, M' € M1, M N M' € M;.

e M, is closed under taking the unions of €-increasing sequences of elements, at most of a length wy: if
(M; | i < v) is an e-increasing sequence of elements of M; with v < wy, then J{M; | i < v} € M;.

e M, is e-cofinal in H: YM; = H.



o If M,M' e My and ¢: (M,€,---) — (M',€,--+) is an isomorphism such that ¢ is the identity on the
intersection M N M’, then for any M" € M N M, we demand ¢(M") € M;.

Typically, M comprises the elementary substructures M of (H, 2,’3, €, <), where < well-orders Hu‘,/a in the
ground model V, such that (M| =w; and M Nws < wg in V.

We record the following.
1.2 Proposition. Let M, M’ € M,.

(1) f M € M’', then M C M’ (proper inclusion). In particular, (M1, €) is a well-founded strongly partially
ordered set (irreflexive, transitive and has no infinitely €-descending sequences).

(2) If¢: (M,€,-+-) — (M',€,--) is an isomorphism, then it is unique, ¢(w1) = w1, P(w2) = we, and if

X € M with |X| = wy, we have ¢(X) = {¢(z) | z € X}, denoted by ¢[X]. In particular, if X € M,
then we have ¢(X Nw1) = ¢[X Nuwy] = ¢[X]Nwy = ¢(X)Nwy. If X € M with | X | = wy, then we have

$(X Nws) = $[X Nws] = ¢[X]Nwz = $(X) Nwa,
¢(X ﬂwg) = ¢[XQW3] = ¢[X} Nws = ¢>(X) Nws.

Prior to introducing homogeneity, we consider 4 types of so-called history M N M for each member
M € M, where M is a given subset of M;.

1.3 Definition. Let M C M;. Define

o zeroM)={MeM|MNM=0}

e suci(M) ={M € M| there exists (unique) M; such that M N M = (M N M) U {M}}.

o suce(M) = {M € M| there exist (unique) M1, M, such that M; Nwe = Mz Nws, (M1 Nws)N{(MzNws)
is a proper initial segment of both M; Nws and M2 Nws, M1 Nws C min((Mz Nws) \ M), and that
MNM= (M ﬂM]) U (M n M2) U {M],Mz}}.

o lim(M) ={M e M| JMN M) =M}

We note that in lim(M), |JM N M) = M entails that M N M is €-directed. We are interested in
subsets M of M; that are partitioned into the 4 parts:

M = zero(M) U suci (M) U sucg (M) U lim(M).

1.4 Defintion. M is called a matriz (of isomorphic models of set theory), if

(1) M is an €-cofinal (equivalently, | JM = H) subset of M.
(2) If M, M’ € M with M Nwy = M’ Nw,, then there exists an (unique) isomorphism ¢ : (M, €,--) —
(M’,€,---) such that ¢ is the identity on the intersection M N M’, and that M N M] = MN M’

(3) M, M’ € Mwith MNws < M'Nws, then there exists M € M such that M € M and MNwy = M'Nws.
(4) M gets partitioned into the 4 parts.

Ttem (2) is called the homogeneity of M. We may call item (3), upward-density of M. Note that the
€-cofinal in (1) entails e-directed: i.e. for each M, M’ € M, there exists M" € M with M,M' € M". Tt is

shown that if M is a matrix, then IM = {M Nws | M € M} is a cub subset, consisting of limit ordinals, of
we, and that {M Nws | M € M} forms a simplified (ws, 1)-morass ([M3]).

1.5 Proposition. Let M be a matrix and M, M’ € M. Then following are equivalent.

(1) The two e-structures (M, €) and (M’, €) are isomorphic.

(2) MNwy; =M Nws.

(3) The two substructures (M, €,---) and (M’,€,..-) are isomorphic and the isomorphism is the identity
on the intersection M N M’'.
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1.6 Proposition. Let M be a matrix and M, M’ € M be isomorphic with ¢ : M — M’. Then ¢
preserves types of histories: namely
o M € zero(M) iff M’ € zero(M).
o M € suc; (M) iff M’ € sucy(M).
M € suce(M) iff M’ € sucy(M).
M € lim(M) iff M’ € lim(M).
A matrix M is called a matrix with coherent sequences, if there exists a map (M — LLy | M € lim(M))
such that
e (linear) LLyy C M N M and LLy, is well-ordered by €.
o (cofinal) | JLLy = M.
e (coherent) If M’ € LLjs such that LLy N M’ has no €-last element, then M’ € lim(M) and LLyy» =
LLy N M'. .
o (homogeneous) If M, M’ € lim(M) with the isomorphism ¢ : M — M’, then ¢[LLys] = LLap.
e (short) The order type of (LLy, €) is at most w.

Hence, LLjy is a list of major events, so to speak, in the history M N M of the current stage M. We
proved the following that is motivated by a question posed by Brooke-Taylor.

1.7 Theorem. ([M3]) (1) There exists a notion of forcing P that is o-closed, wo-Baire, and has the
ws-c.c. under 2** = wy, and that there exists a matrix with coherent sequences in the generic extensions by
P.

(2) If there exists a matrix with coherent sequences, then there exists a simplified (w2, 1)-morass with linear
limits.

Since simplified (wg,1)-morass with linear limits entails o,, ([V3]), so does a matrix with coherent
sequences. We would like to provide a direct construction to this weaker implication.

§2. Squares by a matrix with coherent sequences

2.1 Theorem. If there exists a matrix with coherent sequences, then o,, and ci,, hold.

It is rather straightforward to identify o, out of (LLps | M € lim(M)): namely, {M Nwq | M € LLy}
provides a club at each M Nw; with M € lim(M), except that the whole space is I that is a club subset
of wy. Now we concentrate on 0O,,. We sort of combine two proofs found in [V3].

2.2 Definition. For each M € M, let
AM = {sup(M Nws) | M € MN M}.
Hence, we are concentrating on one aspect sup(+ Nws) of the history M N M of each M. We have
AM c S3USE = {6 <ws |cf(€) =w}U{€ <ws|cf(€) =w}.

Since M has the partition, we classify

o If M € zero(M), then AM = 0.

Let M € suc; (M) with MNM = (MNM;)U{M;}. Then AM = AMi1y{m}, where m = sup(M;Nw3).
e Let M € suco(M) with MNM = (MNM;)U(MNMz)U{M;, M2} and sup(M; Nws3) < sup(M2Nw3).
Then AM = AM:+ U AM2 U {m;, 72}, where 71 = sup(M; Nws3), T2 = sup(M2 Nws), and so m; < ma.
If M € lim(M), then AM = J{AL | M e MNM} = {AY | M € LLp} = | J{AM: | i < vM}, where
(M; | i < v™) denotes the natural listing of LLys.

In particular, abusively writting,



o If M € suci(M), then max(AM) = m,.
o If M € suca(M), then max(AM) = .

If M € lim(M), then there exists no last elements of A™ and the sequence (sup(M; Nws) | i < vM) is
<-increasing countinuous, and cofinal in AM,

Therefore,

M € zero(M) iff AM = 0.

M € suc; (M) Usucz (M) iff AM # 0 has a max.

M € lim(M) iff AM # { has no last element.

We have the homogeneity of AM. Let M, M’ € M with the isomorphism ¢ : M — M’. Then

$[AM] = {$(sup(M Nw3)) | M € MN M} = {sup(M" Nw3) | M" e MAM'} = AV,
In particular,
o If M € sucy(M) with MNM = (MN M)U{M}, then MNM = Mn$(M) U {¢(M;)} and
¢(sup(M1 Nws)) = sup(@(M1) Nws).
e If M € sucy(M) with MNM = (MNM;1)U(MNMz)U{My, Mz}, then MNM' = (MN@(M1))U(MnN
¢(A312)) U {¢(M1), 6(M3)}, ¢(sup(M;1 Nws3)) = sup(¢(M1) Nws)), and ¢(sup(Mz Nws)) = sup(p(Ma2) N
(4)3) .

If M € lim(M), then ¢[{sup(M Nws) | M € LLp}] = {sup(M' Nw3) | M' € LLpp}.

2.3 Definition. We recursively construct FM (7 € AM) such that

FMCAMNr,

ssup(FM) = ssup(AM n 7).

o For M € M N M with 7 € AM, we demand FL Cong FM.

For two isomorphic M’, M" € M such that M’ Nwy = M" Nws < M Nws, we demand ¢[FM'] = Fé‘{;’)
for all 7 € AM'| where ¢ : M’ — M", the isomorphism.

Here for a set of ordinals X, ssup(X) denotes the strong-sup of X: namely, the least ordinal o such
that X C a. Let A = {sup(M Nws3) | M € M}. Then we may think of FM as a record of (A N 7)’s history
AM N7 in the current stage of M, in a partial but excellent manner.

Depending on which cell M belongs to and relative positions of 7 in A™, we make several specifications
on FM,
® M € zero(M): AM = (. Hence, there exists no 7 to set F:M.
o M € suc;(M): Let AM = AM: g {m}.

0, if 7 =m and M; € zero(M).
M _ {max(AM1)}, if 7 =m and M; € suc; (M) Usuca(M).
T 7 ) {sup(M.Nws) | M €LLy,}, if 7 =m and M, € lim(M).
FM if T € AM1,

o M € sucy(M): Let AM = AM1 y AM2 U {7y, my}.

{m}, if M, € zero(M).
Fpl = { max{max(4™?),m}, if M € suc; (M) Usucz(M).
{sup(M Nws) | M € LLps,}, if My € im(M).

Let 72 = min(AM2 \ M;) and 7 = min(AM \ My), if any. For 7 € AMz
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FMz ifne <.
FM = ¢ FM2u{m}, ifT=n,.
FMa, if T € AM1 N AM:,

0, if My € zero(M).
FM = { {max(AM)}, if M, € suc; (M) Usuca(M).
{sup(M Nws) | M € LLp, }, if M1 € im(M).

For 7 € AM1(\M,), let
FM = FM

o M elim(M): AM = J{AM | M € MM} = U{AY | M € LLy}.
For 7 € AM, let

FM = | (FE | re A, Me MM} = J{F*|7ec A%, M eLLy}).

The construction is straightforward by inductively showing that F™ are homogeneous.

2.4 Claim. If M, M’ € M with the isomorphism ¢ : M — M/, then for T € AM, we have ¢[FM] =
FM
@(r)
Proof. By induction on M Nws.

2.5 Lemma. Let M € M and 7,m € AM. Let  be a limit ordinal with y < 7 < 7. If sup(FM Nn+y) =
sup(FM N ) = v, then there exists (M, 7, x) such that
e MeMNM,
er,me AM
e y<z<m,
o {(Frny, Fffny} = {FMny, FMna}.
2.6 Corollary. Let M € M and 7,m € AM. Let ~y be a limit ordinal with v < 7 < 7. If sup(FM ny) =
sup(FM N~q) =+, then FM Ny =FMnN~.

Proof. Try to apply repeatedly the lemma above. As long as 7 < &, we may continue. Since there exists
no infinite €-descending sequences of M’s, it must stop. Hence we have (M’, 7/, 7') such that

e MeMnNM,

e AM',

e y<1' =7,

{FM Ny, FM N} = {FMny, FY na}.

In particular, we have FM Ny = FM N +~.

Proof of 2.5 Lemma. By induction on (M, €).
Case. M € lim(M): Pick M e MN M with 7,m € AM, Then,
T < ssup(AX N7) = ssup(F,rM'),

M
L4 F;r—gendF;W~
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Hence,
o FAN(r+1)=FMn(r+1).

And so,

M M

o FF-nNy=F"nN~.

Then,
. F,{w NyCAM N7,
o v < ssup(A¥ N 1) = ssup(F2L),
o P Cona FM.

Hence FAE Ny =FM 4.

Case. M € sucy(M): Let M € MNM with MNM = (MNM)U{M}. We have AM = AMU {m},

where m, = sup(M Nws).

Subcase 1. 7 € AY; Then 7 € A, By definition, FM = F&X and FM = FZ Letr =7 and r = 7.
Then,

e ySI<um,

M M
o Fr-Ny=F"nNy,
FEny=FMny.

Subcase 2. 7 = m;: Then 7 € AM and F%— = FM. Since FM is infinite, we have
M € im(M),

v € AY,

F — FM = FM 4,

Let 7 =+ and # = 7. Then,
*y=1=T,
FAny=F¥ny=FMny,
FAny=F¥ny=FMn,.

Case. M € sucg(M): Let My, Mz € MNM such that MNM = (MNM;)UMNM2)U{M:i, Ms}. Let
m1 = sup(M; Nws) and 73 = sup(MzNw3). We have AM = AM1yAMz2 y{r;,m3}. Let ny be the least element
of AM2\ My, if any, and 71 be the least element of AM*\ My, if any. We have (M1, AM,m) ~ (My, AM2,np).
We have a dozen of subcases.

Subcase 1. 7 =7y, 7 € AM2 and 1, < 7. Then,
o M; € lim(M),
o yc AMz,
e FMny= F,f,wz.
By definition,
o FM = pMz,
Let M = M,, 7 = v and = = 7. Then,
o y=1<m,
. F_,?_I‘/Lﬁ'yzF,{"’2 Ny=FMny,
o FNy=FMny=FM =F¥ny
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Subcase 2. m = m and 7 = 73: Then we have

M, € lim(M),

v € AMe,

FMNny= F,i"’.

By definition, FM = FM2 U {m }. But y < m;. Hence,
FMNny=FMiny,

Let M = M,, 7 = v and = = 7. Then we have
Y=I<T,

F1M0'7= FM:ny=FMny,
FAny=FMny=FM =FMn~.

Subcase 3. m = my and 7 = m;: Then we have
M; € lim(M),

M, = M>,

v € AMr 0 AMz2,

FMNy=FM,

FMny= Fj”‘,

FMa = M,

Let M = M; and £ = m = v. Then we have
y=r=m,

Ffny=FMiny=FM =FMny,
Fny=FM =FM =FMny

Subcase 4. 7 = m; and 7 € AM:: Then we have

M; € lim(M),

v € AMrn AMz2,

F,f”ﬂ’y:F.j”’ :F.f"",

FM = pMs,

Let M = M;, 7 = v and ¥ = 7. Then we have

y=z1<m,

Ffny=FMny=FM"ny,

Fny=FMny=FM =FMnq.

Subcase 5. T € AM2, 7+ € AM2 and n; < 7: By definition, F,f" = FMz and FM = FMz Let M = Mo,

=7 and = = 7. Then we have

Yy<I<m,
Fftny=FM:ny=FMny
FLMﬁ'y:FTMzﬂ'yzF,f” n-.

Subcase 6. m € AM2 1y, < 7 and T = 72: By definition,

M __ pM
F1r “F1r27



° FTM = F,,Mz U{m}.
We also have
o v <.
Hence we have FM Ny = FM2N+. Let M = M, 7 = 7 and 7 = 7. Then we have
ey<z<m,
Ffny=FM:ny=F¥ny,
FANy=FMny=FMn,.

Subcase 7. m € AM2 5y < 7 and T = 7;: By definition, F,{W = F,]r”?. We also have
M, € hm(M),

v e AMin AMz,

FMny=FM = FM = pM:

Let M = M3, 7 = v and = = 7. Then we have
*y=1<g,
Fftny=FM:ny=F¥ny,
Ffny=FM:ny=FM = FMny.

Subcase 8. 7 € AM2 ny < 7 and 7 € AM: \ My: Let ' be the Mj-copy of m. Then, we have
U F,ffll Ny=FM:ny=FMny,
Hence, we have

o y< 1,7,
{EM 0y, B0y} ={FM 0y, FM 0y}

Let M = M1, 7 = min{r, 7'} and = max{r, 7'}. Then, we have

e y<z<m,
M M M: M)
o {Fo N, Frna}={FM 0y, Fatna).
Subcase 9. 7 € AM2, ny < 7 and T € AM1 N AM2: By definition, FM = FM2 and FM = FM: = FMs,

Let M = M2, 7 = 7 and 7 = 7. Then we have

s y<z<m,

o PNy =FMaq=FMno,

o FANy=FMny=FMny

Subcase 10. 7 =77 and 7 = 71: By definition, FM = FM2 U {m;}. We have

M, € Iim(M),
v e AMiN AMz,
F.y Ny = Fyl = Fy’.

Let M = My, 7 = v and 7 = w. Then we have

e y=7<7,
o Fftny=FM:ny=F¥ny,
FANy=FM:ny=FM = FMny.
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Subcase 11. 7 = 1, and 7 € AMt \ My: Then, we have
M _ My _ M

F771 _le _sz1

F,{W=F,;:”U{7r1},

¥ <™,

FM = M,

Let M = M;, 7 = m; and & = 7. Then, we have

y<z<m,

F_,_,_Mﬂ'y:FTM‘ﬁ'yzFT]"’ﬂ'y,

FAny=FMiny=FMny=FYny.

Subcase 12. 7 =7, and 7 € AM» N AM2; Then, we have
FM = FM2u{m}.

FM = FM = M2,

v < .

Let M = M,, 7 = 7 and = m. Then, we have
FEny=FMny=FMny.
F_T_M07=FTM?ﬂ'y=FTM n-y.

Subcase 13. 7 = m;: Then 7 € AM:, We have
M, € lim(M),

v e AM,

FMny=FM=FM,

FM = FM,

Let M = My, 7=~ and m = 7. Then, we have
Yy=1<m,

Ffrny=FMny=FMny,
FAny=FMiny=FM =FMny.
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Subcase 14. 7 € AM : Then 7 € AMi. By definition, FM = FM and FM = FM1. Let M = M;,
7 =7 and 7 = 7. Then, we have

y<I<m,
Fftny=FMny=F}ny,

LMﬂ'y:FTMlﬂ'y=FTMﬂ'y.

We continue our investigation of AM’s and FM’s to show O, .

2.7 Definition. Let A = {sup(MNw3) | M € M}. Foreacht € A,let F, = J{FM |7 € AM,M € M}.

It is clear that A = |J{AM | M € M} and that o.t.(A) = w3.
Claim 1. Let 7 € A. Then we have

If M € Mand e AM, then FM Cena Fr.
ssup(Fy) = ssup(ANT).



(3) o.t.(Fr) < we.
(4) If 0.t.(F;) = w2, then AN T is a bounded subset of 7 and cf(o.t.(A N 7)) = we.

Claim 2. Let 7,7 € A and v be a limit ordinal with v < 7 < &. If sup(Fr Ny) = sup(Fr Ny) = v, then
Fony=Frney.

2.8 Definition. Let @ : A — w3 be the transitive collapse. For each limit ordinal i < w3 with, say,

O(n) =1, let
Ci = ®[Fr]\ {i},
where X denote the closure of X in ws.

We know o.t.(X) = 0.t.(X \ {sup(X)}) for X with no last elements. The sequence of these clubs C;’s
satisfies Oy, .

Claim 3. Let ¢ be a limit ordinal with 4 < ws. Then we have

(1) C; is closed and cofinal subset of ¢ with 0.t.(C;) < ws.
(2) If cf(4) < wa, then 0.t.(C;) < wo.
(3) If j is a limit ordinal with j € C; N4, then C; = C; N j.

Proof of Claim 1. For (1): Let y < & with y € F, and # € FM. Pick M’ € M with y € FM'. Pick
M" € M with M, M’ € M”. Then we have y € FM" and FM Copq FM Hence, y € FM.

For (2): Since F; € AN 7, we have ssup(F;) < ssup(AN 7). To show the converse, let z € AN,
Pick M € M with 7 € AM and x € AM N7. Then z < ssup(AM™ N 7) = ssup(FM) < ssup(F,). Hence
ssup(A N 1) < ssup(F,).

For (3): We have o.t.(FM) < 0.t.(AM N7) < 0.t.(MNw3) < wg and FM Cong F,. Hence, o.t.(F;) < wo.

For (4): Suppose 0.t.(F;) = ws. Then F; has no last elmenets and is a cofinal subset of AN 7. Hence,
cf(0.t.(ANT)) = wy. Since 7 = sup(M Nws) for some M € M, cf(7) < wy and so A N7 must be bounded
below 7.

Proof of Claim 2. This is like case M € lim(M) in the proof of 2.5 Lemma. Pick M € M with
m,7 € AM. Then we have 7 € AM N, v < 7 < ssup(A™ N 7) = ssup(FM) and FM Cena Fr. Since
FM nssup(AM Nr) = F; Nssup(AM N ), we have FM Ny = F, N~ and so v < ssup(4A™ N 1) = ssup(FM).
Since FM Cenq Fyr, we have FM Ny = F; Nv. But by 2.5 Lemma, we have FM N~y = FM N+~. Hence, we
have F, Ny =F.N~.

Proof of Claim 3. For (1): Let ¢ be a limit ordinal with ¢ < ws. Let 7 € A with ¢ = ®(n). Since ¢ is
limit, AN has no last elemenets and so Fy is cofinal in AN7. Then ®[F;] is a cofinal subset of ¢ and so C;
is a closed and cofinal subset of 5. We know that 0.t.(C;) = 0.t.(B[Fy] \ {i}) = 0.t.(®[Fy]) = 0.t.(Fy) < wy.

For (2): Suppose 0.t.(C;) = wa. Then cf(i) = ws.

For (3): Let ®(n) =4 and ®(7) = j. Hence, 7 < 7 in A. We observe that F,; N7 is a cofinal subset of
ANnT. Todosolet,z € AnT. Then ®(z) < ®(r) = j € C; Ni. Then ®(z) < ®(y) € ®[F] N j and so
z < y < 7 for some y € F,. Hence, AN T has no last elements and both F. and F, N7 are cofinal subsets
of AN . Hence, F; = F, N 7. Hence,

O[F;] = ®[F;| N ®(r) = [F,| Nj.

Hence,

C; = Q[F ]\ {j} = AF] Nj\{j} = [Fx] nj = CiNj.
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