Squares by Matrices with Coherent Sequences

Tadatoshi MIYAMOTO February, 22nd, 2015

Abstract

We formulate a matrix with coherent sequences that entail squares. A matrix comprises models of set theory of a size equal to the least uncountable cardinal. A matrix with coherent sequences entail a simplified morass with linear limits. A simplified morass with linear limits entails squares by Velleman. Hence, a matrix with coherent sequences entails squares. We provide a direct proof of this fact. This study is based on Velleman's construction of squares by a simplified morass with linear limits.

Introduction

Velleman introduced simplified morasses as an alternative to constructions in the constructible universe ([V1], [V2], [V3]). Koszmider followed Velleman to formulate semimorasses ([K]). Todorcevic concieved matrices of isomorphic models of set theory along his so-called side condition methods ([T1], [T2]). Aspero and Mota rediscovered the use of matrices ([A-M]). Shelah and Baumgartner had a forcing construction in that each condition keeps its history ([B-S]). We noted a connection between these types of objects in the universe of set theory: namely, certain kinds of matrices of isomorphic models of set theory entail simplified morasses, semimorasses, and quagmires ([M1], [M2]). In this paper, we consider a matrix with coherent sequences that entails a simplified $(\omega_2, 1)$ -morass with linear limits ([M3]). Simplified $(\omega_2, 1)$ -morasses with linear limits entail \square_{ω_2} by Velleman. He provided two proofs of this implication. We sort of combine these two proofs to directly show that matrices with coherent sequences entail \square_{ω_2} . This study is motivated by a question posed by Brooke-Taylor during my presentation on matrices of isomorphic models in the RIMS set theory workshop, Kyoto, 2013.

§1. A matrix with coherent sequences

We formulate a matrix with coherent sequences. Since we are not sure which direction to proceed in this line of study yet, our treatment of this subject tends to be rather ad hoc ([M1], [M2], [M3]).

- 1.1 Definition. Let H be a transitive set model of a sufficient fragment of set theory such that
- $\omega_3 \subset H \subset H_{\omega_3}$.
- $^{\omega_1}H \subset H$: namely for any sequence $f: \omega_1 \longrightarrow H$, we demand $f \in H$.

In particular, we have

- If $M \subset H$ with $|M| = \kappa \in \{\omega, \omega_1\}$, then $M \in H$ and $H \models$ " $|M| = \kappa$ ".
- ω_1 , ω_2 are definable in H with no parameters and are absolute between H and H_{ω_3} .

Typically, H is H_{ω_3} in the ground model V and we are in the generic extensions V[G], where G are P-generic over V, and P is a notion of forcing that forces a matrix with coherent sequences. We may assume that P is σ -closed, ω_2 -Baire (no new sequences of ordinals of length ω_1 get created), and has the ω_3 -c.c. under $2^{\omega_1} = \omega_2$ ([M3]).

Let \mathcal{M}_1 be a set of elementary substructures of a prefixed structure (H, \in, \cdots) such that

- For each $M \in \mathcal{M}_1$, it is required that $|M| = \omega_1$ and $(\omega_1 <) M \cap \omega_2 < \omega_2$.
- \mathcal{M}_1 is closed under finite intersections: for $M, M' \in \mathcal{M}_1, M \cap M' \in \mathcal{M}_1$.
- \mathcal{M}_1 is closed under taking the unions of \in -increasing sequences of elements, at most of a length ω_1 : if $\langle M_i \mid i < \nu \rangle$ is an \in -increasing sequence of elements of \mathcal{M}_1 with $\nu \leq \omega_1$, then $\bigcup \{M_i \mid i < \nu\} \in \mathcal{M}_1$.
- \mathcal{M}_1 is \in -cofinal in H: $\bigcup \mathcal{M}_1 = H$.

• If $M, M' \in \mathcal{M}_1$ and $\phi : (M, \in, \cdots) \longrightarrow (M', \in, \cdots)$ is an isomorphism such that ϕ is the identity on the intersection $M \cap M'$, then for any $M'' \in M \cap \mathcal{M}_1$, we demand $\phi(M'') \in \mathcal{M}_1$.

Typically, \mathcal{M}_1 comprises the elementary substructures M of $(H^V_{\omega_3}, \in, \triangleleft)$, where \triangleleft well-orders $H^V_{\omega_3}$ in the ground model V, such that $|M| = \omega_1$ and $M \cap \omega_2 < \omega_2$ in V.

We record the following.

1.2 Proposition. Let $M, M' \in \mathcal{M}_1$.

- (1) If $M \in M'$, then $M \subset M'$ (proper inclusion). In particular, (\mathcal{M}_1, \in) is a well-founded strongly partially ordered set (irreflexive, transitive and has no infinitely \in -descending sequences).
- (2) If $\phi: (M, \in, \cdots) \longrightarrow (M', \in, \cdots)$ is an isomorphism, then it is unique, $\phi(\omega_1) = \omega_1$, $\phi(\omega_2) = \omega_2$, and if $X \in M$ with $|X| = \omega_1$, we have $\phi(X) = \{\phi(x) \mid x \in X\}$, denoted by $\phi[X]$. In particular, if $X \in M$, then we have $\phi(X \cap \omega_1) = \phi[X \cap \omega_1] = \phi[X] \cap \omega_1 = \phi(X) \cap \omega_1$. If $X \in M$ with $|X| = \omega_1$, then we have

$$\phi(X \cap \omega_2) = \phi[X \cap \omega_2] = \phi[X] \cap \omega_2 = \phi(X) \cap \omega_2,$$

$$\phi(X \cap \omega_3) = \phi[X \cap \omega_3] = \phi[X] \cap \omega_3 = \phi(X) \cap \omega_3.$$

Prior to introducing homogeneity, we consider 4 types of so-called history $\mathcal{M} \cap M$ for each member $M \in \mathcal{M}$, where \mathcal{M} is a given subset of \mathcal{M}_1 .

1.3 Definition. Let $\mathcal{M} \subset \mathcal{M}_1$. Define

- $zero(\mathcal{M}) = \{ M \in \mathcal{M} \mid \mathcal{M} \cap M = \emptyset \}.$
- $\operatorname{suc}_1(\mathcal{M}) = \{ M \in \mathcal{M} \mid \text{ there exists (unique) } M_1 \text{ such that } \mathcal{M} \cap M = (\mathcal{M} \cap M_1) \cup \{M_1\} \}.$
- $\operatorname{suc}_2(\mathcal{M}) = \{ M \in \mathcal{M} \mid \text{ there exist (unique) } M_1, M_2 \text{ such that } M_1 \cap \omega_2 = M_2 \cap \omega_2, (M_1 \cap \omega_3) \cap (M_2 \cap \omega_3) \text{ is a proper initial segment of both } M_1 \cap \omega_3 \text{ and } M_2 \cap \omega_3, M_1 \cap \omega_3 \subset \min((M_2 \cap \omega_3) \setminus M_1), \text{ and that } \mathcal{M} \cap M = (\mathcal{M} \cap M_1) \cup (\mathcal{M} \cap M_2) \cup \{M_1, M_2\} \}.$
- $\lim(\mathcal{M}) = \{M \in \mathcal{M} \mid \bigcup(\mathcal{M} \cap M) = M\}.$

We note that in $\lim(\mathcal{M})$, $\bigcup(\mathcal{M} \cap M) = M$ entails that $\mathcal{M} \cap M$ is \in -directed. We are interested in subsets \mathcal{M} of \mathcal{M}_1 that are partitioned into the 4 parts:

$$\mathcal{M} = \operatorname{zero}(\mathcal{M}) \cup \operatorname{suc}_1(\mathcal{M}) \cup \operatorname{suc}_2(\mathcal{M}) \cup \operatorname{lim}(\mathcal{M}).$$

- **1.4 Defintion**. \mathcal{M} is called a *matrix* (of isomorphic models of set theory), if
- (1) \mathcal{M} is an \in -cofinal (equivalently, $\bigcup \mathcal{M} = H$) subset of \mathcal{M}_1 .
- (2) If $M, M' \in \mathcal{M}$ with $M \cap \omega_2 = M' \cap \omega_2$, then there exists an (unique) isomorphism $\phi : (M, \in, \cdots) \longrightarrow (M', \in, \cdots)$ such that ϕ is the identity on the intersection $M \cap M'$, and that $\phi[\mathcal{M} \cap M] = \mathcal{M} \cap M'$.
- (3) If $\underline{M}, M' \in \mathcal{M}$ with $\underline{M} \cap \omega_2 < M' \cap \omega_2$, then there exists $M \in \mathcal{M}$ such that $\underline{M} \in M$ and $M \cap \omega_2 = M' \cap \omega_2$.
- (4) \mathcal{M} gets partitioned into the 4 parts.

Item (2) is called the homogeneity of \mathcal{M} . We may call item (3), upward-density of \mathcal{M} . Note that the \in -cofinal in (1) entails \in -directed: i.e. for each $M, M' \in \mathcal{M}$, there exists $M'' \in \mathcal{M}$ with $M, M' \in M''$. It is shown that if \mathcal{M} is a matrix, then $I^{\mathcal{M}} = \{M \cap \omega_2 \mid M \in \mathcal{M}\}$ is a cub subset, consisting of limit ordinals, of ω_2 , and that $\{M \cap \omega_3 \mid M \in \mathcal{M}\}$ forms a simplified $(\omega_2, 1)$ -morass ([M3]).

- **1.5 Proposition.** Let \mathcal{M} be a matrix and $M, M' \in \mathcal{M}$. Then following are equivalent.
- (1) The two \in -structures (M, \in) and (M', \in) are isomorphic.
- (2) $M \cap \omega_2 = M' \cap \omega_2$.
- (3) The two substructures (M, \in, \cdots) and (M', \in, \cdots) are isomorphic and the isomorphism is the identity on the intersection $M \cap M'$.

1.6 Proposition. Let \mathcal{M} be a matrix and $M, M' \in \mathcal{M}$ be isomorphic with $\phi : M \longrightarrow M'$. Then ϕ preserves types of histories: namely

- $M \in \text{zero}(\mathcal{M})$ iff $M' \in \text{zero}(\mathcal{M})$.
- $M \in \operatorname{suc}_1(\mathcal{M})$ iff $M' \in \operatorname{suc}_1(\mathcal{M})$.
- $M \in \operatorname{suc}_2(\mathcal{M})$ iff $M' \in \operatorname{suc}_2(\mathcal{M})$.
- $M \in \lim(\mathcal{M})$ iff $M' \in \lim(\mathcal{M})$.

A matrix \mathcal{M} is called a matrix with coherent sequences, if there exists a map $\langle M \mapsto \mathrm{LL}_M \mid M \in \lim(\mathcal{M}) \rangle$ such that

- (linear) $LL_M \subset \mathcal{M} \cap M$ and LL_M is well-ordered by \in .
- (cofinal) $\bigcup LL_M = M$.
- (coherent) If $M' \in LL_M$ such that $LL_M \cap M'$ has no \in -last element, then $M' \in \lim(\mathcal{M})$ and $LL_{M'} = LL_M \cap M'$.
- (homogeneous) If $M, M' \in \lim(\mathcal{M})$ with the isomorphism $\phi : M \longrightarrow M'$, then $\phi[LL_M] = LL_{M'}$.
- (short) The order type of (LL_M, \in) is at most ω_1 .

Hence, LL_M is a list of major events, so to speak, in the history $\mathcal{M} \cap M$ of the current stage M. We proved the following that is motivated by a question posed by Brooke-Taylor.

- 1.7 Theorem. ([M3]) (1) There exists a notion of forcing P that is σ -closed, ω_2 -Baire, and has the ω_3 -c.c. under $2^{\omega_1} = \omega_2$, and that there exists a matrix with coherent sequences in the generic extensions by P.
- (2) If there exists a matrix with coherent sequences, then there exists a simplified $(\omega_2, 1)$ -morass with linear limits

Since simplified $(\omega_2, 1)$ -morass with linear limits entails \square_{ω_2} ([V3]), so does a matrix with coherent sequences. We would like to provide a direct construction to this weaker implication.

§2. Squares by a matrix with coherent sequences

2.1 Theorem. If there exists a matrix with coherent sequences, then \Box_{ω_1} and \Box_{ω_2} hold.

It is rather straightforward to identify \square_{ω_1} out of $(LL_M \mid M \in \lim(\mathcal{M}))$: namely, $\{\underline{M} \cap \omega_2 \mid \underline{M} \in LL_M\}$ provides a club at each $M \cap \omega_2$ with $M \in \lim(\mathcal{M})$, except that the whole space is $I^{\mathcal{M}}$ that is a club subset of ω_2 . Now we concentrate on \square_{ω_2} . We sort of combine two proofs found in [V3].

2.2 Definition. For each $M \in \mathcal{M}$, let

$$A^{M} = \{ \sup(\underline{M} \cap \omega_{3}) \mid \underline{M} \in \mathcal{M} \cap M \}.$$

Hence, we are concentrating on one aspect $\sup(\cdot \cap \omega_3)$ of the history $\mathcal{M} \cap M$ of each M. We have

$$A^M \subset S_0^3 \cup S_1^3 = \{ \xi < \omega_3 \mid \operatorname{cf}(\xi) = \omega \} \cup \{ \xi < \omega_3 \mid \operatorname{cf}(\xi) = \omega_1 \}.$$

Since \mathcal{M} has the partition, we classify

- If $M \in \text{zero}(\mathcal{M})$, then $A^M = \emptyset$.
- Let $M \in \operatorname{suc}_1(\mathcal{M})$ with $\mathcal{M} \cap M = (\mathcal{M} \cap M_1) \cup \{M_1\}$. Then $A^M = A^{M_1} \cup \{\pi_1\}$, where $\pi_1 = \sup(M_1 \cap \omega_3)$.
- Let $M \in \operatorname{suc}_2(\mathcal{M})$ with $\mathcal{M} \cap M = (\mathcal{M} \cap M_1) \cup (\mathcal{M} \cap M_2) \cup \{M_1, M_2\}$ and $\operatorname{sup}(M_1 \cap \omega_3) < \operatorname{sup}(M_2 \cap \omega_3)$. Then $A^M = A^{M_1} \cup A^{M_2} \cup \{\pi_1, \pi_2\}$, where $\pi_1 = \operatorname{sup}(M_1 \cap \omega_3)$, $\pi_2 = \operatorname{sup}(M_2 \cap \omega_3)$, and so $\pi_1 < \pi_2$.
- If $M \in \lim(\mathcal{M})$, then $A^M = \bigcup \{A^{\underline{M}} \mid \underline{M} \in \mathcal{M} \cap M\} = \bigcup \{A^{\underline{M}} \mid \underline{M} \in LL_M\} = \bigcup \{A^{M_i} \mid i < \nu^M\}$, where $\langle M_i \mid i < \nu^M \rangle$ denotes the natural listing of LL_M .

In particular, abusively writting,

- If $M \in \operatorname{suc}_1(\mathcal{M})$, then $\max(A^M) = \pi_1$.
- If $M \in \operatorname{suc}_2(\mathcal{M})$, then $\max(A^M) = \pi_2$.
- If $M \in \lim(\mathcal{M})$, then there exists no last elements of A^M and the sequence $\langle \sup(M_i \cap \omega_3) \mid i < \nu^M \rangle$ is $\langle -increasing countinuous$, and cofinal in A^M .

Therefore,

- $M \in \text{zero}(\mathcal{M}) \text{ iff } A^M = \emptyset.$
- $M \in \operatorname{suc}_1(\mathcal{M}) \cup \operatorname{suc}_2(\mathcal{M})$ iff $A^M \neq \emptyset$ has a max.
- $M \in \lim(\mathcal{M})$ iff $A^M \neq \emptyset$ has no last element.

We have the homogeneity of A^M . Let $M, M' \in \mathcal{M}$ with the isomorphism $\phi: M \longrightarrow M'$. Then

$$\phi[A^M] = \{\phi(\sup(\underline{M} \cap \omega_3)) \mid \underline{M} \in \mathcal{M} \cap M\} = \{\sup(M'' \cap \omega_3) \mid M'' \in \mathcal{M} \cap M'\} = A^{M'}.$$

In particular,

- If $M \in \operatorname{suc}_1(\mathcal{M})$ with $\mathcal{M} \cap M = (\mathcal{M} \cap M_1) \cup \{M_1\}$, then $\mathcal{M} \cap M' = \mathcal{M} \cap \phi(M_1) \cup \{\phi(M_1)\}$ and $\phi(\operatorname{sup}(M_1 \cap \omega_3)) = \operatorname{sup}(\phi(M_1) \cap \omega_3)$.
- If $M \in \operatorname{suc}_2(\mathcal{M})$ with $\mathcal{M} \cap M = (\mathcal{M} \cap M_1) \cup (\mathcal{M} \cap M_2) \cup \{M_1, M_2\}$, then $\mathcal{M} \cap M' = (\mathcal{M} \cap \phi(M_1)) \cup (\mathcal{M} \cap \phi(M_2)) \cup \{\phi(M_1), \phi(M_2)\}$, $\phi(\operatorname{sup}(M_1 \cap \omega_3)) = \operatorname{sup}(\phi(M_1) \cap \omega_3)$, and $\phi(\operatorname{sup}(M_2 \cap \omega_3)) = \operatorname{sup}(\phi(M_2) \cap \omega_3)$.
- If $M \in \lim(\mathcal{M})$, then $\phi[\{\sup(\underline{M} \cap \omega_3) \mid \underline{M} \in \mathrm{LL}_M\}] = \{\sup(\underline{M'} \cap \omega_3) \mid \underline{M'} \in \mathrm{LL}_{M'}\}.$
 - **2.3 Definition.** We recursively construct F_{τ}^{M} ($\tau \in A^{M}$) such that
- $F_{\pi}^M \subset A^M \cap \tau$.
- $\operatorname{ssup}(F_{\tau}^{M}) = \operatorname{ssup}(A^{M} \cap \tau).$
- For $\underline{M} \in \mathcal{M} \cap M$ with $\tau \in A^{\underline{M}}$, we demand $F_{\tau}^{\underline{M}} \subseteq_{\text{end}} F_{\tau}^{\underline{M}}$.
- For two isomorphic $M', M'' \in \mathcal{M}$ such that $M' \cap \omega_2 = M'' \cap \omega_2 < M \cap \omega_2$, we demand $\phi[F_{\tau}^{M'}] = F_{\phi(\tau)}^{M''}$ for all $\tau \in A^{M'}$, where $\phi : M' \longrightarrow M''$, the isomorphism.

Here for a set of ordinals X, $\operatorname{ssup}(X)$ denotes the strong-sup of X: namely, the least ordinal α such that $X \subseteq \alpha$. Let $A = \{ \sup(M \cap \omega_3) \mid M \in \mathcal{M} \}$. Then we may think of F_{τ}^M as a record of $(A \cap \tau)$'s history $A^M \cap \tau$ in the current stage of M, in a partial but excellent manner.

Depending on which cell M belongs to and relative positions of τ in A^M , we make several specifications on F_{τ}^M .

- $M \in \text{zero}(\mathcal{M})$: $A^M = \emptyset$. Hence, there exists no τ to set F_{τ}^M .
- $M \in \text{suc}_1(\mathcal{M})$: Let $A^M = A^{M_1} \cup \{\pi_1\}$.

$$F_{\tau}^{M} = \begin{cases} \emptyset, & \text{if } \tau = \pi_{1} \text{ and } M_{1} \in \text{zero}(\mathcal{M}). \\ \{ \max(A^{M_{1}}) \}, & \text{if } \tau = \pi_{1} \text{ and } M_{1} \in \text{suc}_{1}(\mathcal{M}) \cup \text{suc}_{2}(\mathcal{M}). \\ \{ \sup(\underline{M} \cap \omega_{3}) \mid \underline{M} \in \text{LL}_{M_{1}} \}, & \text{if } \tau = \pi_{1} \text{ and } M_{1} \in \text{lim}(\mathcal{M}). \\ F_{\tau}^{M_{1}}, & \text{if } \tau \in A^{M_{1}}. \end{cases}$$

• $M \in \text{suc}_2(\mathcal{M})$: Let $A^M = A^{M_1} \cup A^{M_2} \cup \{\pi_1, \pi_2\}$.

$$F_{\pi_2}^M = \begin{cases} \{\pi_1\}, & \text{if } M_2 \in \text{zero}(\mathcal{M}).\\ \max\{\max(A^{M_2}), \pi_1\}, & \text{if } M_2 \in \text{suc}_1(\mathcal{M}) \cup \text{suc}_2(\mathcal{M}).\\ \{\sup(\underline{M} \cap \omega_3) \mid \underline{M} \in \text{LL}_{M_2}\}, & \text{if } M_2 \in \text{lim}(\mathcal{M}). \end{cases}$$

Let $\eta_2 = \min(A^{M_2} \setminus M_1)$ and $\eta_1 = \min(A^{M_1} \setminus M_2)$, if any. For $\tau \in A^{M_2}$,

$$F_{\tau}^{M} = \begin{cases} F_{\tau M_{2}}^{M_{2}}, & \text{if } \eta_{2} < \tau. \\ F_{\eta_{2}}^{M_{2}} \cup \{\pi_{1}\}, & \text{if } \tau = \eta_{2}. \\ F_{\tau}^{M_{2}}, & \text{if } \tau \in A^{M_{1}} \cap A^{M_{2}}. \end{cases}$$

$$F_{\pi_{1}}^{M} = \begin{cases} \emptyset, & \text{if } M_{1} \in \text{zero}(\mathcal{M}). \\ \{\max(A^{M_{1}})\}, & \text{if } M_{1} \in \text{suc}_{1}(\mathcal{M}) \cup \text{suc}_{2}(\mathcal{M}). \\ \{\sup(\underline{M} \cap \omega_{3}) \mid \underline{M} \in \text{LL}_{M_{1}}\}, & \text{if } M_{1} \in \text{lim}(\mathcal{M}). \end{cases}$$

For $\tau \in A^{M_1}(\backslash M_2)$, let

$$F_{\tau}^{M}=F_{\tau}^{M_{1}}.$$

• $M \in \lim(\mathcal{M})$: $A^M = \bigcup \{A^{\underline{M}} \mid \underline{M} \in \mathcal{M} \cap M\} = \bigcup \{A^{\underline{M}} \mid \underline{M} \in LL_M\}$. For $\tau \in A^M$, let

$$F_{\tau}^{M} = \bigcup \{F_{\tau}^{\underline{M}} \mid \tau \in A^{\underline{M}}, \ \underline{M} \in \mathcal{M} \cap M\} = \bigcup \{F_{\tau}^{\underline{M}} \mid \tau \in A^{\underline{M}}, \ \underline{M} \in \mathrm{LL}_{M}\}.$$

The construction is straightforward by inductively showing that F_{τ}^{M} are homogeneous.

2.4 Claim. If $M, M' \in \mathcal{M}$ with the isomorphism $\phi : M \longrightarrow M'$, then for $\tau \in A^M$, we have $\phi[F_{\tau}^M] = F_{\phi(\tau)}^{M'}$.

Proof. By induction on $M \cap \omega_2$.

2.5 Lemma. Let $M \in \mathcal{M}$ and $\tau, \pi \in A^M$. Let γ be a limit ordinal with $\gamma \leq \tau < \pi$. If $\sup(F_{\tau}^M \cap \gamma) = \sup(F_{\pi}^M \cap \gamma) = \gamma$, then there exists $(\underline{M}, \underline{\tau}, \underline{\pi})$ such that

- $\underline{M} \in \mathcal{M} \cap M$,
- $\tau, \pi \in A^{\underline{M}}$
- $\gamma \leq \underline{\tau} \leq \underline{\pi}$,
- $\bullet \ \{F_{\underline{\tau}}^{\underline{M}} \cap \gamma, F_{\underline{\pi}}^{\underline{M}} \cap \gamma\} = \{F_{\tau}^{\underline{M}} \cap \gamma, F_{\pi}^{\underline{M}} \cap \gamma\}.$

2.6 Corollary. Let $M \in \mathcal{M}$ and $\tau, \pi \in A^M$. Let γ be a limit ordinal with $\gamma \leq \tau < \pi$. If $\sup(F_{\tau}^M \cap \gamma) = \sup(F_{\pi}^M \cap \gamma) = \gamma$, then $F_{\tau}^M \cap \gamma = F_{\pi}^M \cap \gamma$.

Proof. Try to apply repeatedly the lemma above. As long as $\underline{\tau} < \underline{\pi}$, we may continue. Since there exists no infinite \in -descending sequences of M's, it must stop. Hence we have (M', τ', π') such that

- $M' \in \mathcal{M} \cap M$,
- $\tau', \pi' \in A^{M'}$,
- $\gamma \leq \tau' = \pi'$,
- $\bullet \ \{F_{\tau'}^{M'} \cap \gamma, F_{\pi'}^{M'} \cap \gamma\} = \{F_{\tau}^{M} \cap \gamma, F_{\pi}^{M} \cap \gamma\}.$

In particular, we have $F_{\tau}^{M} \cap \gamma = F_{\pi}^{M} \cap \gamma$.

Proof of 2.5 Lemma. By induction on (\mathcal{M}, \in) .

Case. $M \in \lim(\mathcal{M})$: Pick $\underline{M} \in \mathcal{M} \cap M$ with $\tau, \pi \in A^{\underline{M}}$. Then,

- $\tau < \operatorname{ssup}(A^{\underline{M}} \cap \pi) = \operatorname{ssup}(F^{\underline{M}}_{\pi}),$
- $F_{\overline{\pi}}^{\underline{M}} \subseteq_{\mathrm{end}} F_{\pi}^{\underline{M}}$.

Hence,

• $F_{\pi}^{\underline{M}} \cap (\tau + 1) = F_{\pi}^{\underline{M}} \cap (\tau + 1)$. And so,

• $F_{\pi}^{\underline{M}} \cap \gamma = F_{\pi}^{\underline{M}} \cap \gamma$.

Then.

- $F_{\pi}^{M} \cap \gamma \subseteq A^{\underline{M}} \cap \tau$,
- $\gamma \leq \operatorname{ssup}(A^{\underline{M}} \cap \tau) = \operatorname{ssup}(F_{\tau}^{\underline{M}}),$
- $F_{\tau}^{\underline{M}} \subseteq_{\mathrm{end}} F_{\tau}^{\underline{M}}$.

Hence $F_{\tau}^{\underline{M}} \cap \gamma = F_{\tau}^{\underline{M}} \cap \gamma$.

Case. $M \in \text{suc}_1(\mathcal{M})$: Let $\underline{M} \in \mathcal{M} \cap M$ with $\mathcal{M} \cap M = (\mathcal{M} \cap \underline{M}) \cup \{\underline{M}\}$. We have $A^M = A^{\underline{M}} \cup \{\pi_1\}$, where $\pi_1 = \sup(\underline{M} \cap \omega_3)$.

Subcase 1. $\pi \in A^{\underline{M}}$: Then $\tau \in A^{\underline{M}}$. By definition, $F_{\pi}^{M} = F_{\overline{\pi}}^{\underline{M}}$ and $F_{\tau}^{M} = F_{\overline{\tau}}^{\underline{M}}$. Let $\underline{\tau} = \tau$ and $\underline{\pi} = \pi$. Then,

- $\gamma \leq \underline{\tau} < \underline{\pi}$,
- $F_{\overline{\pi}}^{\underline{M}} \cap \gamma = F_{\pi}^{\underline{M}} \cap \gamma$,
- $F_{\underline{\tau}}^{\underline{M}} \cap \gamma = F_{\tau}^{M} \cap \gamma$.

Subcase 2. $\pi = \pi_1$: Then $\tau \in A^{\underline{M}}$ and $F_{\underline{\tau}}^{\underline{M}} = F_{\underline{\tau}}^{\underline{M}}$. Since $F_{\underline{\pi}}^{\underline{M}}$ is infinite, we have

- $\underline{M} \in \lim(\mathcal{M})$,
- $\gamma \in A^{\underline{M}}$,
- $F_{\gamma}^{\underline{M}} = F_{\gamma}^{\underline{M}} = F_{\pi}^{\underline{M}} \cap \gamma$.

Let $\underline{\tau} = \gamma$ and $\underline{\pi} = \tau$. Then,

- $\gamma = \underline{\tau} \leq \underline{\pi}$,
- $\bullet \ F_{\underline{\pi}}^{\underline{M}} \cap \gamma = F_{\underline{\tau}}^{\underline{M}} \cap \gamma = F_{\underline{\tau}}^{\underline{M}} \cap \gamma,$
- $F_{\underline{\tau}}^{\underline{M}} \cap \gamma = F_{\gamma}^{\underline{M}} \cap \gamma = F_{\pi}^{\underline{M}} \cap \gamma$.

Case. $M \in \text{suc}_2(\mathcal{M})$: Let $M_1, M_2 \in \mathcal{M} \cap M$ such that $\mathcal{M} \cap M = (\mathcal{M} \cap M_1) \cup (\mathcal{M} \cap M_2) \cup \{M_1, M_2\}$. Let $\pi_1 = \text{sup}(M_1 \cap \omega_3)$ and $\pi_2 = \text{sup}(M_2 \cap \omega_3)$. We have $A^M = A^{M_1} \cup A^{M_2} \cup \{\pi_1, \pi_2\}$. Let η_2 be the least element of $A^{M_2} \setminus M_1$, if any, and η_1 be the least element of $A^{M_1} \setminus M_2$, if any. We have $(M_1, A^{M_1}, \eta_1) \approx (M_2, A^{M_2}, \eta_2)$. We have a dozen of subcases.

Subcase 1. $\pi = \pi_2, \ \tau \in A^{M_2}$ and $\eta_2 < \tau$. Then,

- $M_2 \in \lim(\mathcal{M})$,
- $\gamma \in A^{M_2}$,
- $F_{\pi}^M \cap \gamma = F_{\gamma}^{M_2}$.

By definition,

• $F_{\tau}^{M} = F_{\tau}^{M_2}$.

Let $\underline{M} = M_2$, $\underline{\tau} = \gamma$ and $\underline{\pi} = \tau$. Then,

- $\gamma = \underline{\tau} \leq \underline{\pi}$,
- $\bullet \ F_{\underline{\pi}}^{\underline{M}} \cap \gamma = F_{\tau}^{M_2} \cap \gamma = F_{\tau}^{M} \cap \gamma,$
- $\bullet \ F_{\underline{\tau}}^{\underline{M}} \cap \gamma = F_{\gamma}^{M_2} \cap \gamma = F_{\gamma}^{M_2} = F_{\pi}^{M} \cap \gamma.$

Subcase 2. $\pi = \pi_2$ and $\tau = \eta_2$: Then we have

- $M_2 \in \lim(\mathcal{M})$,
- $\bullet \ \gamma \in A^{M_2},$
- $\bullet \ F_{\pi}^{M} \cap \gamma = F_{\gamma}^{M_{2}}.$

By definition, $F_{\tau}^{M} = F_{\tau}^{M_{2}} \cup \{\pi_{1}\}$. But $\gamma < \pi_{1}$. Hence,

• $F_{\tau}^M \cap \gamma = F_{\tau}^{M_2} \cap \gamma$.

Let $\underline{M} = M_2$, $\underline{\tau} = \gamma$ and $\underline{\pi} = \tau$. Then we have

- $\gamma = \underline{\tau} < \underline{\pi}$,
- $F_{\pi}^{\underline{M}} \cap \gamma = F_{\tau}^{M_2} \cap \gamma = F_{\tau}^{M} \cap \gamma$,
- $\bullet \ F_{\underline{\tau}}^{\underline{M}} \cap \gamma = F_{\gamma}^{M_2} \cap \gamma = F_{\gamma}^{M_2} = F_{\pi}^{M} \cap \gamma.$

Subcase 3. $\pi = \pi_2$ and $\tau = \pi_1$: Then we have

- $M_2 \in \lim(\mathcal{M})$,
- $M_1 \approx M_2$,
- $\bullet \ \gamma \in A^{M_1} \cap A^{M_2},$
- $F_{\pi}^M \cap \gamma = F_{\gamma}^{M_2}$
- $F_{\tau}^M \cap \gamma = F_{\gamma}^{M_1}$,
- $F_{\gamma}^{M_2} = F_{\gamma}^{M_1}$.

Let $\underline{M} = M_1$ and $\underline{\tau} = \underline{\pi} = \gamma$. Then we have

- $\gamma = \underline{\tau} = \underline{\pi}$
- $\bullet \ F_{\overline{\pi}}^{\underline{M}} \cap \gamma = F_{\gamma}^{M_1} \cap \gamma = F_{\gamma}^{M_1} = F_{\tau}^{M} \cap \gamma,$
- $\bullet \ F_{\underline{\tau}}^{\underline{M}} \cap \gamma = F_{\gamma}^{M_1} = F_{\gamma}^{M_2} = F_{\pi}^{M} \cap \gamma.$

Subcase 4. $\pi = \pi_2$ and $\tau \in A^{M_1}$: Then we have

- $M_2 \in \lim(\mathcal{M})$,
- $\bullet \ \gamma \in A^{M_1} \cap A^{M_2},$
- $\bullet \ F_{\pi}^{M} \cap \gamma = F_{\gamma}^{M_{2}} = F_{\gamma}^{M_{1}},$
- $F_{\tau}^{M} = F_{\tau}^{M_{1}}$.

Let $\underline{M} = M_1$, $\underline{\tau} = \gamma$ and $\underline{\pi} = \tau$. Then we have

- $\gamma = \underline{\tau} \leq \underline{\pi}$,
- $F_{\overline{\pi}}^{\underline{M}} \cap \gamma = F_{\tau}^{M_1} \cap \gamma = F_{\tau}^{M} \cap \gamma$,
- $\bullet \ F_{\tau}^{\underline{M}} \cap \gamma = F_{\gamma}^{M_1} \cap \gamma = F_{\gamma}^{M_1} = F_{\pi}^{M} \cap \gamma.$

Subcase 5. $\pi \in A^{M_2}$, $\tau \in A^{M_2}$ and $\eta_2 < \tau$: By definition, $F_{\pi}^M = F_{\pi}^{M_2}$ and $F_{\tau}^M = F_{\tau}^{M_2}$. Let $\underline{M} = M_2$, $\underline{\tau} = \tau$ and $\underline{\pi} = \pi$. Then we have

- $\gamma \leq \underline{\tau} < \underline{\pi}$
- $\bullet \ F_{\underline{\pi}}^{\underline{M}} \cap \gamma = F_{\pi}^{M_2} \cap \gamma = F_{\pi}^{M} \cap \gamma,$
- $F_{\tau}^{\underline{M}} \cap \gamma = F_{\tau}^{M_2} \cap \gamma = F_{\tau}^{M} \cap \gamma$.

Subcase 6. $\pi \in A^{M_2}$, $\eta_2 < \pi$ and $\tau = \eta_2$: By definition,

• $F_{\pi}^{M} = F_{\pi}^{M_2}$,

• $F_{\tau}^{M} = F_{\tau}^{M_2} \cup \{\pi_1\}.$

We also have

• $\gamma < \pi_1$.

Hence we have $F_{\tau}^{M} \cap \gamma = F_{\tau}^{M_2} \cap \gamma$. Let $\underline{M} = M_2, \underline{\tau} = \tau$ and $\underline{\pi} = \pi$. Then we have

- $\gamma < \underline{\tau} < \underline{\pi}$,
- $\bullet \ F_{\underline{\pi}}^{\underline{M}} \cap \gamma = F_{\pi}^{M_2} \cap \gamma = F_{\pi}^{M} \cap \gamma,$
- $\bullet \ F_{\underline{\tau}}^{\underline{M}} \cap \gamma = F_{\underline{\tau}}^{M_2} \cap \gamma = F_{\underline{\tau}}^M \cap \gamma.$

Subcase 7. $\pi \in A^{M_2}$, $\eta_2 < \pi$ and $\tau = \pi_1$: By definition, $F_{\pi}^M = F_{\pi}^{M_2}$. We also have

- $M_1 \in \lim(\mathcal{M})$,
- $\gamma \in A^{M_1} \cap A^{M_2}$,
- $\bullet \ F_{\tau}^M \cap \gamma = F_{\gamma}^M = F_{\gamma}^{M_1} = F_{\gamma}^{M_2}.$

Let $\underline{M} = M_2$, $\underline{\tau} = \gamma$ and $\underline{\pi} = \pi$. Then we have

- $\gamma = \underline{\tau} < \underline{\pi}$
- $F_{\pi}^{\underline{M}} \cap \gamma = F_{\pi}^{\underline{M}_2} \cap \gamma = F_{\pi}^{\underline{M}} \cap \gamma$,
- $\bullet \ F_{\tau}^{\underline{M}} \cap \gamma = F_{\gamma}^{\underline{M}_2} \cap \gamma = F_{\gamma}^{\underline{M}_2} = F_{\tau}^{\underline{M}} \cap \gamma.$

Subcase 8. $\pi \in A^{M_2}$, $\eta_2 < \pi$ and $\tau \in A^{M_1} \setminus M_2$: Let π' be the M_1 -copy of π . Then, we have

 $\bullet \ F_{\pi'}^{M_1} \cap \gamma = F_{\pi}^{M_2} \cap \gamma = F_{\pi}^M \cap \gamma.$

Hence, we have

- $\gamma < \tau, \pi'$
- $\bullet \ \{F_{\tau}^{M_1} \cap \gamma, F_{\pi'}^{M_1} \cap \gamma\} = \{F_{\tau}^M \cap \gamma, F_{\pi}^M \cap \gamma\}.$

Let $\underline{M} = M_1, \underline{\tau} = \min\{\tau, \pi'\}$ and $\underline{\pi} = \max\{\tau, \pi'\}$. Then, we have

- $\gamma < \underline{\tau} \leq \underline{\pi}$,
- $\bullet \ \{F_{\overline{\tau}}^{\underline{M}} \cap \gamma, F_{\overline{\pi}}^{\underline{M}} \cap \gamma\} = \{F_{\tau}^{M_1} \cap \gamma, F_{\tau'}^{M_1} \cap \gamma\}.$

Subcase 9. $\pi \in A^{M_2}$, $\eta_2 < \pi$ and $\tau \in A^{M_1} \cap A^{M_2}$: By definition, $F_{\pi}^M = F_{\pi}^{M_2}$ and $F_{\tau}^M = F_{\tau}^{M_1} = F_{\tau}^{M_2}$. Let $\underline{M} = M_2$, $\underline{\tau} = \tau$ and $\underline{\pi} = \pi$. Then we have

- $\gamma \leq \underline{\tau} < \underline{\pi}$,
- $F_{\pi}^{\underline{M}} \cap \gamma = F_{\pi}^{\underline{M}_2} \cap \gamma = F_{\pi}^{\underline{M}} \cap \gamma$,
- $F_{\tau}^{\underline{M}} \cap \gamma = F_{\tau}^{M_2} \cap \gamma = F_{\tau}^{\underline{M}} \cap \gamma$.

Subcase 10. $\pi = \eta_2$ and $\tau = \pi_1$: By definition, $F_{\pi}^M = F_{\pi}^{M_2} \cup \{\pi_1\}$. We have

- $M_1 \in \lim(\mathcal{M})$,
- $\gamma \in A^{M_1} \cap A^{M_2}$,
- $\bullet \ F_{\tau}^M \cap \gamma = F_{\gamma}^{M_1} = F_{\gamma}^{M_2}.$

Let $\underline{M} = M_2$, $\underline{\tau} = \gamma$ and $\underline{\pi} = \pi$. Then we have

- $\gamma = \underline{\tau} < \underline{\pi}$,
- $F_{\pi}^{\underline{M}} \cap \gamma = F_{\pi}^{\underline{M}_2} \cap \gamma = F_{\pi}^{\underline{M}} \cap \gamma$,
- $\bullet \ F_{\underline{\tau}}^{\underline{M}} \cap \gamma = F_{\gamma}^{M_2} \cap \gamma = F_{\gamma}^{M_2} = F_{\tau}^{M} \cap \gamma.$

Subcase 11. $\pi = \eta_2$ and $\tau \in A^{M_1} \setminus M_2$: Then, we have

$$\bullet \ F_{\eta_1}^M = F_{\eta_1}^{M_1} = F_{\eta_2}^{M_2},$$

•
$$F_{\pi}^{M} = F_{\eta_{2}}^{M_{2}} \cup \{\pi_{1}\},$$

•
$$\gamma < \pi_1$$
,

•
$$F_{\tau}^{M} = F_{\tau}^{M_{1}}$$
.

Let $\underline{M} = M_1$, $\underline{\tau} = \eta_1$ and $\underline{\pi} = \tau$. Then, we have

•
$$\gamma < \underline{\tau} \leq \underline{\pi}$$
,

•
$$F_{\overline{\pi}}^{\underline{M}} \cap \gamma = F_{\tau}^{M_1} \cap \gamma = F_{\tau}^{M} \cap \gamma$$
,

•
$$F_{\underline{\tau}}^{\underline{M}} \cap \gamma = F_{\eta_1}^{M_1} \cap \gamma = F_{\eta_2}^{M_2} \cap \gamma = F_{\pi}^{M} \cap \gamma$$
.

Subcase 12. $\pi = \eta_2$ and $\tau \in A^{M_1} \cap A^{M_2}$: Then, we have

•
$$F_{\pi}^{M} = F_{\pi}^{M_2} \cup \{\pi_1\}.$$

•
$$F_{\tau}^{M} = F_{\tau}^{M_{1}} = F_{\tau}^{M_{2}}$$
.

•
$$\gamma < \pi_1$$

Let $\underline{M} = M_2$, $\underline{\tau} = \tau$ and $\underline{\pi} = \pi$. Then, we have

$$\bullet \ F_{\underline{\pi}}^{\underline{M}} \cap \gamma = F_{\pi}^{M_2} \cap \gamma = F_{\pi}^{M} \cap \gamma.$$

•
$$F_{\tau}^{\underline{M}} \cap \gamma = F_{\tau}^{M_2} \cap \gamma = F_{\tau}^{M} \cap \gamma$$
.

Subcase 13. $\pi = \pi_1$: Then $\tau \in A^{M_1}$. We have

•
$$M_1 \in \lim(\mathcal{M})$$
,

•
$$\gamma \in A^{M_1}$$
,

$$\bullet \ F_{\pi}^{M} \cap \gamma = F_{\gamma}^{M} = F_{\gamma}^{M_{1}},$$

$$\bullet \ F_{\tau}^{M} = F_{\tau}^{M_{1}}.$$

Let $\underline{M} = M_1$, $\underline{\tau} = \gamma$ and $\underline{\pi} = \tau$. Then, we have

•
$$\gamma = \underline{\tau} \leq \underline{\pi}$$
,

•
$$F_{\overline{\pi}}^{\underline{M}} \cap \gamma = F_{\tau}^{\underline{M}_1} \cap \gamma = F_{\tau}^{\underline{M}} \cap \gamma$$
,

$$\bullet \ F_{\underline{\tau}}^{\underline{M}} \cap \gamma = F_{\gamma}^{M_1} \cap \gamma = F_{\gamma}^{M_1} = F_{\pi}^{M} \cap \gamma.$$

Subcase 14. $\pi \in A^{M_1}$: Then $\tau \in A^{M_1}$. By definition, $F_{\pi}^M = F_{\pi}^{M_1}$ and $F_{\tau}^M = F_{\tau}^{M_1}$. Let $\underline{M} = M_1$, $\underline{\tau} = \tau$ and $\underline{\pi} = \pi$. Then, we have

•
$$\gamma \leq \underline{\tau} < \underline{\pi}$$
,

•
$$F_{\pi}^{\underline{M}} \cap \gamma = F_{\pi}^{M_1} \cap \gamma = F_{\pi}^{M} \cap \gamma$$
,

$$\bullet \ F_{\underline{\tau}}^{\underline{M}} \cap \gamma = F_{\tau}^{M_1} \cap \gamma = F_{\tau}^{M} \cap \gamma.$$

We continue our investigation of A^M 's and F_{τ}^M 's to show \square_{ω_2} .

2.7 Definition. Let $A = \{\sup(M \cap \omega_3) \mid M \in \mathcal{M}\}$. For each $\tau \in A$, let $F_{\tau} = \bigcup \{F_{\tau}^M \mid \tau \in A^M, M \in \mathcal{M}\}$. It is clear that $A = \bigcup \{A^M \mid M \in \mathcal{M}\}$ and that o.t. $(A) = \omega_3$.

Claim 1. Let $\tau \in A$. Then we have

- (1) If $M \in \mathcal{M}$ and $\tau \in A^M$, then $F_{\tau}^M \subseteq_{\text{end}} F_{\tau}$.
- (2) $\operatorname{ssup}(F_{\tau}) = \operatorname{ssup}(A \cap \tau)$.

- (3) o.t. $(F_{\tau}) \leq \omega_2$.
- (4) If $\operatorname{o.t.}(F_{\tau}) = \omega_2$, then $A \cap \tau$ is a bounded subset of τ and $\operatorname{cf}(\operatorname{o.t.}(A \cap \tau)) = \omega_2$.

Claim 2. Let $\tau, \pi \in A$ and γ be a limit ordinal with $\gamma \leq \tau < \pi$. If $\sup(F_{\pi} \cap \gamma) = \sup(F_{\tau} \cap \gamma) = \gamma$, then $F_{\pi} \cap \gamma = F_{\tau} \cap \gamma$.

2.8 Definition. Let $\Phi: A \longrightarrow \omega_3$ be the transitive collapse. For each limit ordinal $i < \omega_3$ with, say, $\Phi(\pi) = i$, let

$$C_i = \overline{\Phi[F_\pi]} \setminus \{i\},$$

where \overline{X} denote the closure of X in ω_3 .

We know o.t. $(X) = \text{o.t.}(\overline{X} \setminus \{\sup(X)\})$ for X with no last elements. The sequence of these clubs C_i 's satisfies \square_{ω_2} .

Claim 3. Let i be a limit ordinal with $i < \omega_3$. Then we have

- (1) C_i is closed and cofinal subset of i with $\text{o.t.}(C_i) \leq \omega_2$.
- (2) If $cf(i) < \omega_2$, then $o.t.(C_i) < \omega_2$.
- (3) If j is a limit ordinal with $j \in \overline{C_i} \cap i$, then $C_i = C_i \cap j$.

Proof of Claim 1. For (1): Let y < x with $y \in F_{\tau}$ and $x \in F_{\tau}^{M}$. Pick $M' \in \mathcal{M}$ with $y \in F_{\tau}^{M'}$. Pick $M'' \in \mathcal{M}$ with $M, M' \in M''$. Then we have $y \in F_{\tau}^{M''}$ and $F_{\tau}^{M} \subseteq_{\mathrm{end}} F_{\tau}^{M''}$. Hence, $y \in F_{\tau}^{M}$.

For (2): Since $F_{\tau} \subseteq A \cap \tau$, we have $\sup(F_{\tau}) \leq \sup(A \cap \tau)$. To show the converse, let $x \in A \cap \tau$. Pick $M \in \mathcal{M}$ with $\tau \in A^M$ and $x \in A^M \cap \tau$. Then $x < \sup(A^M \cap \tau) = \sup(F_{\tau}^M) \leq \sup(F_{\tau})$. Hence $\sup(A \cap \tau) \leq \sup(F_{\tau})$.

For (3): We have o.t. $(F_{\tau}^{M}) \leq$ o.t. $(A^{M} \cap \tau) <$ o.t. $(M \cap \omega_{3}) < \omega_{2}$ and $F_{\tau}^{M} \subseteq_{\text{end}} F_{\tau}$. Hence, o.t. $(F_{\tau}) \leq \omega_{2}$.

For (4): Suppose $\text{o.t.}(F_{\tau}) = \omega_2$. Then F_{τ} has no last elements and is a cofinal subset of $A \cap \tau$. Hence, $\text{cf}(\text{o.t.}(A \cap \tau)) = \omega_2$. Since $\tau = \sup(M \cap \omega_3)$ for some $M \in \mathcal{M}$, $\text{cf}(\tau) \leq \omega_1$ and so $A \cap \tau$ must be bounded below τ .

Proof of Claim 2. This is like case $M \in \lim(\mathcal{M})$ in the proof of 2.5 Lemma. Pick $M \in \mathcal{M}$ with $\pi, \tau \in A^M$. Then we have $\tau \in A^M \cap \pi$, $\gamma \leq \tau < \sup(A^M \cap \pi) = \sup(F_\pi^M)$ and $F_\pi^M \subseteq_{\mathrm{end}} F_\pi$. Since $F_\pi^M \cap \sup(A^M \cap \pi) = F_\pi \cap \sup(A^M \cap \pi)$, we have $F_\pi^M \cap \gamma = F_\pi \cap \gamma$ and so $\gamma \leq \sup(A^M \cap \tau) = \sup(F_\tau^M)$. Since $F_\tau^M \subseteq_{\mathrm{end}} F_\tau$, we have $F_\tau^M \cap \gamma = F_\tau \cap \gamma$. But by 2.5 Lemma, we have $F_\pi^M \cap \gamma = F_\tau^M \cap \gamma$. Hence, we have $F_\pi \cap \gamma = F_\tau \cap \gamma$.

Proof of Claim 3. For (1): Let i be a limit ordinal with $i < \omega_3$. Let $\pi \in A$ with $i = \Phi(\pi)$. Since i is limit, $A \cap \pi$ has no last elemenets and so F_{π} is cofinal in $A \cap \pi$. Then $\Phi[F_{\pi}]$ is a cofinal subset of i and so C_i is a closed and cofinal subset of i. We know that $o.t.(C_i) = o.t.(\overline{\Phi[F_{\pi}]} \setminus \{i\}) = o.t.(\Phi[F_{\pi}]) = o.t.(F_{\pi}) \le \omega_2$.

For (2): Suppose o.t. $(C_i) = \omega_2$. Then $cf(i) = \omega_2$.

For (3): Let $\Phi(\pi) = i$ and $\Phi(\tau) = j$. Hence, $\tau < \pi$ in A. We observe that $F_{\pi} \cap \tau$ is a cofinal subset of $A \cap \tau$. To do so let, $x \in A \cap \tau$. Then $\Phi(x) < \Phi(\tau) = j \in \overline{C_i} \cap i$. Then $\Phi(x) < \Phi(y) \in \Phi[F_{\pi}] \cap j$ and so $x < y < \tau$ for some $y \in F_{\pi}$. Hence, $A \cap \tau$ has no last elements and both F_{τ} and $F_{\pi} \cap \tau$ are cofinal subsets of $A \cap \tau$. Hence, $F_{\tau} = F_{\pi} \cap \tau$. Hence,

$$\Phi[F_{\tau}] = \Phi[F_{\pi}] \cap \Phi(\tau) = \Phi[F_{\pi}] \cap j.$$

Hence,

$$C_j = \overline{\Phi[F_\tau]} \setminus \{j\} = \overline{\Phi[F_\pi] \cap j} \setminus \{j\} = \overline{\Phi[F_\pi]} \cap j = C_i \cap j.$$

References

- [A-M] D. Aspero, M. Mota, A generalization of Martin's Axiom, preprint, 2012. http://arxiv.org/pdf/1206.6724.pdf
- [B-S] J. Baumgartner, S. Shelah, Remarks on superatomic Boolean algebras, *Annals of Pure and Applied Logic*, 33 (1987) pp.109–129.
- [K] P. Koszmider, Semimorasses and nonreflection at singular cardinals, Annals of Pure and Applied Logic, vol.72 (1995) pp.1–23.
- [M1] T. Miyamoto, Matrices of isomorphic models and morass-like structures, a note 2013.
- http://www.kurims.kyoto-u.ac.jp/kyodo/kokyuroku/contents/pdf/1895-09.pdf
- [M2] ——, Forcing a quagmire via matrices of models, a note 2013.
- [M3] ———, Matrices of isomorphic models with coherent sequences, a note 2014.
- [T1] S. Todorcevic, A note on the proper forcing axiom, *Contemporary Mathematics*, vol.31 (1984) pp.209–218.
- [T2] ——, Directed sets and cofinal types, Transactions of the American Mathematical Society, vol.290 (1985) no.2, pp.711-723.
- [V1] D. Velleman, Morasses, diamond, and forcing, $Annals\ of\ Mathematical\ Logic,\ vol. 23\ (1983),\ pp. 199-281.$
- [V2] ———, Simplified morasses, Journal of Symbolic Logic, vol.49 (1984) no.1, pp.257–271.
- [V3] ———, Simplified Morasses with Linear Limits, *Journal of Symbolic Logic*, vol.49 (1984) no.4, pp.1001–1021.

miyamoto@nanzan-u.ac.jp

Mathematics Nanzan University 18 Yamazato-cho, Showa-ku, Nagoya 466-8673 Japan

南山大学 数学 宮元忠敏