Dominating mad families in Baire space

Robert Rałowski

ABSTRACT. In this note we consider a Marczewski like nonmeasurable sets (with respect to trees) which forms m.a.d. family in Baire space. Here we show that under assumption that $\omega_1 = \mathfrak{b}$ there is a m.a.d. family in Baire space which is not *s*-measurable (here we can replace *s*-nonmeasurable by *l*-nonmeasurable or *m*-nonmeasurable). Moreover it is relatively consistent with ZFC theory that $\omega_1 < \mathfrak{d} \leq \mathfrak{c}$ and there is m.a.d. family in Baire space which is not measurable with respect to family of all complete Laver trees in ω^{ω} .

1. Definitions

We adopt the standard set theoretic notation ω stands for first infinite ordinal, **c** is denoted as size of all reals, for any set X, |X| is size of X, P(X) is power set of X, $[X]^{\kappa}$ is denoted as set of all subsets of X of the cardinality κ , $X^{<\kappa}$ denotes the set of all sequences in Xwith lenght less than κ . We say that for $T \subseteq \omega^{<\omega}$ the partial order (T, \subseteq) is tree if for any $\tau \in T$ and $n \in dom(\tau)$ we have $\tau \upharpoonright n \in T$. By the set

$$[T] = \{ x \in \omega^{\omega} : \ (\forall n \in \omega) x \upharpoonright n \in T \}$$

we denote envelope of T.

Now we turn into notion of measurability with respect to a fixed families of trees on the Baire space.

Edward Marczewski [6] introduced notion of s measurability and s_0 -ideal notion.

DEFINITION 1.1 (Marczewski ideal s_0). Let X be any fixed uncountable Polish space. Then we say that $A \in \mathcal{P}(X)$ is in s_0 iff

 $(\forall P \in Perf(X))(\exists Q \in Perf(X)) \ Q \subseteq P \land Q \cap A = \emptyset.$

Of course every perfect set is an envelope of some perfect tree and the above definition can be formulated in tree terms.

DEFINITION 1.2 (s measurable set). Let X be any fixed uncountable Polish space. Then we say that $A \in \mathcal{P}(X)$ is s-measurable iff

 $(\forall P \in \operatorname{Perf}(X))(\exists Q \in \operatorname{Perf}(X)) Q \subseteq P \land (Q \subseteq P \lor Q \cap A = \emptyset).$

ROBERT RAŁOWSKI

Here let us recall the notion of the Laver tree. Then we say that tree $T \subseteq \omega^{<\omega}$ is called a **Laver tree** with the stem $s \in T$ if

- for any $t \in T$ we have $t \subset s \lor s \subseteq t$,
- for every node $t \in T$ if $s \subseteq t$ then t is infinitely spliting i.e. $\{n \in \omega : t \cap n \in T\}$ is an infinite.

Miller tree $T \subseteq \omega^{<\omega}$ with stem $s \in T$ is defined in the same manner but the second condition is replaced by the following

$$(\forall t \in T)(s \subseteq t) \longrightarrow (\exists r \in T)(t \subseteq r) \land (\{n \in \omega : r^{\frown} n \in T\} \in [\omega]^{\omega}).$$

The we can recall a similar definition of the ideal l_0 to the previous one. The set of all Laver trees is denoted by the LaverTrees.

DEFINITION 1.3 (ideal l_0). We say that $A \in \mathcal{P}(\omega^{\omega})$ is in l_0 iff

 $(\forall T \in \text{LaverTrees})(\exists Q \in \text{LaverTrees}) Q \subseteq T \land [Q] \cap A = \emptyset.$

DEFINITION 1.4 (*l* measurable set). We say that $A \in \mathcal{P}(\omega^{\omega})$ is *l*-measurable iff for every Laver tree $T \in$ LaverTrees there is a Laver tree $S \in$ LaverTrees such that

$$(S \subseteq T \land [S] \subseteq A) \lor (S \subseteq T \land [S] \cap A = \emptyset).$$

We say that tree $T \subseteq \omega^{<\omega}$ is called a **complete Laver tree** iff every node $t \in T$ is infinitely spliting.

Then once again we can recall a similar definition of the ideal cl_0 to the previous one. The set of all complete Laver trees is denoted by the cLaver.

DEFINITION 1.5 (ideal cl_0). We say that $A \in \mathcal{P}(\omega^{\omega})$ is in cl_0 iff

 $(\forall T \in cLaver)(\exists Q \in cLaver) Q \subseteq T \land [Q] \cap A = \emptyset.$

DEFINITION 1.6 (cl measurable set). We say that $A \in \mathcal{P}(\omega^{\omega})$ is cl-measurable iff for every complete Laver tree $T \in \text{cLaver}$ there is a complete Laver tree $S \in \text{cLaver}$ such that

 $(S \subseteq T \land [S] \subseteq A) \lor (S \subseteq T \land [S] \cap A = \emptyset).$

As above using notion of Miller tree we can define m-measurability and notion of m_0 -ideal.

Next we recall the notion of almost disjoint family in Baire space.

DEFINITION 1.7. We say that family $\mathcal{A} \subseteq \omega^{\omega}$ is a.d. family in Baire space if

 $(\forall a, b \in \mathcal{A}) \ a \neq b \longrightarrow a \cap b \ is \ finite.$

If this family is maximal with respect to inclusion in Baire space then \mathcal{A} is called **m.a.d.** family in ω^{ω} .

Now let us reacall cardinal \mathfrak{d} as smallest size of dominating family in ω^{ω} i.e.

 $\mathfrak{d} = \min\{|\mathcal{F}| : \mathcal{F} \subseteq \omega^{\omega} \land (\forall g \in \omega^{\omega}) (\exists f \in \mathcal{F}) (\forall^{\infty} n) \ g(n) < f(n)\}.$

2. Dominating MAD families in Baire space and nonmeasurability with respect to ideals defined by trees

It is well known that every **a.d.** family is meager subset of the Baire space. It is natural to ask whether one can prove in ZFC the existence a **m.a.d.** families that are either s-measurable or s-nonmeasurable. One can find a consistency example of **m.a.d.** family \mathcal{A} of cardinality smaller than **c** (see [5], for example) by construction of Cohen indestructible m.a.d. family. One can find more about tree-like forcing indestructible m.a.d. familes in [2]. It is well known that $\operatorname{non}(s_0) = \mathbf{c}$ (for other coefficients see [1, 3, 4, 7]) where $\operatorname{non}(I)$ is smallest size of subset in ω^{ω} which does not belong to σ -ideal $I \subset P(\omega^{\omega})$. It is well known that there exists a perfect **a.d.** family and therefore not all **m.a.d.** families are in s_0 .

THEOREM 2.1. There exists a s-nonmeasurable m.a.d. family in Baire space. Moreover, theorem remains true if we replace s-nonmeasurability by l, m or cl-nonmeasurability.

PROOF. We show this theorem for s-nonmeasurability, for the other notion mentioned in above theorem the proof runs in analogous way. Let $T \subseteq \omega < \omega$ a perfect tree such that [T] is a.d. in ω^{ω} . Let us enumerate $Perf(T) = \{T_{\alpha} : \alpha < \mathfrak{c}\}$ a family of all perfect subsets of T. By transfinite reccursion let us define

$$\{(a_{\alpha}, d_{\alpha}, x_{\alpha}) \in [T]^2 \times \omega^{\omega} : \alpha < \mathfrak{c}\}$$

such that for any $\alpha < \mathfrak{c}$ we have:

(1)
$$\{a_{\xi}: \xi < \alpha\} \cap \{d_{\xi}: \xi < \alpha\} = \emptyset$$
,
(2) $\{a_{\xi}: \xi < \alpha\} \cup \{x_{\xi}: \xi < \alpha\}$ is a.d.,
(3) $\forall^{\infty}n \ x_{\alpha}(n) = d_{\alpha}(n)$.

Now assume that we are in α -th step construction and we have required sequence

$$\{(a_{\xi}, d_{\xi}, x_{\xi}) \in [T]^2 \times \omega^{\omega} : \xi < \alpha\}$$

which have size at most $\omega |\alpha| < \mathfrak{c}$ then we can choose in $[T_{\alpha}]$ (of size \mathfrak{c}) $a_{\alpha}, d_{\alpha} \in [T_{\alpha}]$ which fulfills the first condition. Then choose any $x_{\alpha} \in \omega^{\omega}$ different than d_{α} but $(\forall^{\infty}n)d_{\alpha}(n) = x_{\alpha}(n)$ then $x \in \omega^{\omega} \setminus [T]$ and

$$\{a_{\xi}:\xi<\alpha\}\cup\{x_{\xi}:\xi<\alpha\}$$

forms an a.d. family in ω^{ω} . Then α -th step construction is completed. By transfinite induction theorem we have required sequence of the length \mathfrak{c} . Now set $A_0 = \{a_\alpha : \alpha < \mathfrak{c}\} \cup \{x_\alpha : \alpha < \mathfrak{c}\}$ and let us extend it to any maximal a.d. family A. It is easy to chect that A is required *s*-nonmeasurable m.a.d. family in the Baire space ω^{ω} . \Box

Here we have obtained a consistency result but the above statement remains true in every model of ZFC theory whenever $\mathfrak{d} = \omega_1$.

ROBERT RALOWSKI

THEOREM 2.2. If $\mathfrak{d} = \omega_1$ then there exists a m.a.d. family of functions $\mathcal{A} \subseteq \omega^{\omega}$ such that \mathcal{A} is not s-measurable and there is an dominating subfamily $\mathcal{A}' \in [\mathcal{A}]^{\leq \mathfrak{d}}$ in Baire space ω^{ω} . Moreover, the words not s-measurable can be replaced by not l, m and cl-measurable.

PROOF. Now by assumption there is a dominating family $\mathcal{A} \subseteq \omega^{\omega}$ of size ω_1 . Then we can show that we can find an a.d. dominating family of size ω_1 . To do let us enumerate $\mathcal{A} = \{f_{\xi} : \xi < \omega_1\}$ and assume that we are in α -setp of construction with a.d. family $\mathcal{D}_{\alpha} = \{g_{\xi} : \xi < \alpha\}$ such that for any $\xi < \alpha$ we have $f_{\xi} \leq g_{\xi}$. Now let $\{h_n : n \in \omega\}$ be enumeration of \mathcal{D}_{α} then for any $n \in \omega$ let

$$g_{\alpha}(n) = \max\{f_{\alpha}(n), \max\{h_k(n) : k \le n\}\} + 1.$$

Then the family $\mathcal{D} = \bigcup_{\alpha < \omega_1} \mathcal{F}_{\alpha}$ is as was required almost disjoint and dominating family of size equal to ω_1 . Moreover, one can assume tha each member of \mathcal{D} has even values only. Now let us fix a perfect tree S with the porperty that each member of S has odd values only.

Then we are ready to find a m.a.d. family \mathcal{B} which is not smeasurable (in the perfect set [S]) and $\mathcal{D} \subseteq \mathcal{B}$.

Let us enumerate $Perf(S) = \{T_{\alpha} : \alpha < \mathfrak{c}\}$ a family of all perfect subsets of S. By transfinite reccursion let us define

$$\{(a_{\alpha}, d_{\alpha}, x_{\alpha}) \in [S]^2 \times \omega^{\omega} : \alpha < \mathfrak{c}\}$$

such that for any $\alpha < \mathfrak{c}$ we have:

- (1) $a_{\alpha}, d_{\alpha} \in T_{\alpha},$
- (2) $\{a_{\xi}:\xi<\alpha\}\cap\{d_{\xi}:\xi<\alpha\}=\emptyset,$
- (3) $\{a_{\xi}: \xi < \alpha\} \cup \{x_{\xi}: \xi < \alpha\}$ is a.d.,
- (4) $\forall \overset{\sim}{\sim} n \ x_{\alpha}(n) = d_{\alpha}(n)$ but $x_{\alpha} \neq d_{\alpha}$.

Now assume that we are in α -th step construction and we have required sequence

$$\{(a_{\xi}, d_{\xi}, x_{\xi}) \in [S]^2 \times \omega^{\omega} : \xi < \alpha\}$$

which have size at most $\omega |\alpha| < \mathfrak{c}$ then we can choose in $[T_{\alpha}]$ (of size \mathfrak{c}) $a_{\alpha}, d_{\alpha} \in [T_{\alpha}]$ which fulfills the first condition. Then choose any $x_{\alpha} \in \omega^{\omega}$ different than d_{α} but $(\forall^{\infty} n) d_{\alpha}(n) = x_{\alpha}(n)$ then $x_{\alpha} \in \omega^{\omega} \setminus [S]$ and

$$\{a_{\xi}:\xi\leq\alpha\}\cup\{x_{\xi}:\xi\leq\alpha\}$$

forms an a.d. family in ω^{ω} . Then α -th step construction is completed. By transfinite induction theorem we have required sequence of the length \mathfrak{c} . Now set $A_0 = \mathcal{D} \cup \{a_\alpha : \alpha < \mathfrak{c}\} \cup \{x_\alpha : \alpha < \mathfrak{c}\}$ and let us extend it to any maximal a.d. family A. It is easy to check that A is required *s*-nonmeasurable m.a.d. family in the Baire space ω^{ω} . \Box

In contrast of the previously proven result, we show the consistency for $\omega_1 < \mathfrak{d}$ and existing a dominating *cl*-nonmeasurable **m.a.d.**-family of size \mathfrak{d} .

THEOREM 2.3. It is relatively consistent with ZFC theory that $\omega_1 < \omega_1$ **c** and there exists a **m.a.d.** family of functions $\mathcal{A} \subseteq \omega^{\omega}$ such that \mathcal{A} is not cl-measurable. Moreover, there is a dominating subfamily $\mathcal{A}' \in [\mathcal{A}]^{\mathfrak{d}}$ and $\omega_1 < \mathfrak{d} \leq \mathfrak{c}$.

PROOF. Let us consider the ground model V of GCH. We first choose any complete Laver tree $T \subseteq \omega^{<\omega}$ in V such that [T] forms an a.d. family. Now, let us define a forcing notion (Q_T, \leq) as follows: $p = (x_p, s_p^g, s_p^b, \mathcal{F}_p) \in Q_T$ iff

- $x_p \in \omega^{<\omega}$ and
- $s_p^g, s_p^b \in [T]^{<\omega}$ are finite trees and $\mathcal{F}_p \in [\omega^{\omega}]^{<\omega}$,

The order is defined as follows: for every $p = (x_p, s_p^g, s_p^b, \mathcal{F}_p) \in Q_T$ and $q = (x_q, s_q^g, s_q^b, \mathcal{F}_q) \in Q_T$ we have $p \leq q$ iff

 $\begin{array}{ll} (1) \ x_q \subset x_p \wedge s_q^g \subseteq s_p^g \wedge s_q^b \subseteq s_p^b \wedge \mathcal{F}_q \subseteq \mathcal{F}_p, \\ (2) \ (\forall t \in s_p^g) (\forall k) x_p(k) = t(k) \longrightarrow t \ \restriction_{k+1} \in s_q^g \wedge x_p \ \restriction_{k+1} \subseteq x_q, \end{array}$ $\begin{array}{l} (3) \quad (\forall h \in \mathcal{F}_q)(\forall k)h(k) \geq x_p(k) \longrightarrow x_p \mid_{k+1} \subseteq x_q, \\ (4) \quad (\forall h \in \mathcal{F}_q)(\forall t \in s_p^b)(\forall k) \quad h(k) = t(k) \longrightarrow t \mid_{k+1} \in s_q^b, \\ (5) \quad (\forall h \in \mathcal{F}_q)(\forall t \in s_p^g)(\forall k) \quad h(k) = t(k) \longrightarrow t \mid_{k+1} \in s_q^g. \end{array}$

CLAIM 2.4. Q_T is σ -centered (and so is c.c.c.) forcing notion.

PROOF. Let $I = \{(x, s^g, s^b) : x \in \omega^{<\omega} \land s^g, s^b \in [T]^{<\omega}\}$. For every $v = (x, s^g, s^b) \in I$ the set $Q_v = \{p \in Q_T : (x_p, s_p^g, s_p^b) = (x, s^g, s^b)\}$ is a centered subset of Q_T , because for any $p,q \in Q_v$ the condition $r = (x, s^g, s^b, \mathcal{F}_p \cup \mathcal{F}_q)$ from Q_v is a common extension of p and q. Since I is countable Q_T is σ -centered and hence it satisfies c.c.c. \Box

Let $G \subseteq Q_T$ be a generic filter over V and in V[G] let

$$x_G = \bigcup \{ x_p : p \in G \},$$

$$S_G^g = \{ t \in T : (\exists p \in G) (\exists s \in s_p^g) \ t \subseteq s \},$$

$$S_G^b = \{ t \in T : (\exists p \in G) (\exists s \in s_p^b) \ t \subseteq s \}.$$

It follows that $x_G \in \omega^{\omega}$ because the sets $D_n = \{p \in Q_T : |x_p| \ge n\}$ for $n \in \omega$ are dense.

CLAIM 2.5. $\emptyset \neq [S_G^g] \subseteq [T]$ and $\emptyset \neq [S_G^b] \subseteq [T]$,

PROOF. Fix $n \in \omega$, condition $p \in G$ $s \in S_p^g$ then the set $D_{s,n} =$ $\{r \in Q_T : (\exists t \in s_r^g) n \le |t| \land s \subseteq t\}$ is dense in the poset Q_T under p. To see it, let $q \leq p$ be any forcing condition. Then $s_p^g \subseteq s_q^g$ of course. Then because tree T is a complete Laver tree then one can find a sequence $t \in T$ such that $s \subseteq t, n \leq |t|, t \cap x_q = s \cap x_q$ and for every $h \in \mathcal{F}_q$ $h \cap t = h \cap s$. Then the condition $r = (x_q, s_q^g \cup \{t\}, s_q^b, \mathcal{F}_q)$ is stronger than q and $r \in D_{n,s}$ what shows that $D_{n,s}$ is dense under p.

Now by the above paragraph we can define recursively the following two sequences $\{s_n : n \in \omega\}$ and $\{p_n : n \in \omega\}$ such that for every $n \in \omega$ we have

• $p_0 = p$ and $p_{n+1} \le p_n$ and $p_n \in G$,

• $s_0 = s$, $s_n \in s_{p_n}^g$, $n \le |s_n|$ and $s_n \subseteq s_{n+1}$.

Then $z = \bigcup \{s_n : n \in \omega\}$ is an element of $[S_G^g]$. Then $[S_G^g]$ is nonempty. It is easy to see that every element of $[S_G^g]$ belongs to [T] by the definition of the set $[S_G^g]$. The proof for $\emptyset \neq [S_G^b] \subseteq [T]$ is the same. \Box

Let us denote by cLaver(T) the collection of all complete Laver subtrees of the tree T.

CLAIM 2.6. For every $T_1 \in \text{cLaver}(T) \cap V$ there is $z \in [S_G^b] \cap [T_1]$ such that $z \cap x_G$ and $\{m \in \omega : z(m) \neq x_G(m)\}$ are infinite sets,

PROOF. Let us choose $p \in G$ and any ground model complete Laver subtree $T_1 \subseteq T$. Then we will find three sequences $\{p_n : n \in \omega\}$, $\{y_n : n \in \omega\}$ and $\{s_n : n \in \omega\}$ such that for every $n \in \omega$ we have:

- $p_0 = p, p_{n+1} \le p_n$ and $p_{n+1} \in G$,
- $s_n \in s_{p_n}^b$ and $s_n \subseteq s_{n+1} \in T_1$,
- $y_n = x_{p_n}$,
- there is m > n such that $y_{n+1}(m) = s_{n+1}(m)$,
- there is m' > n such that $y_{n+1}(m') \neq s_{n+1}(m')$.

Assume that we have three finite sequences $\{p_k : k \leq n\}, \{y_k : k \leq n\}$ and $\{s_n : k \leq n\}$ such that for every k < n we have:

- $p_{k+1} \leq p_k$ and $p_{k+1} \in G$,
- $s_k \in s_{p_k}^b$ and $s_k \subseteq s_{k+1} \in T_1$,
- $y_k = x_{p_k}$,
- there is m > k such that $y_{k+1}(m) = s_{k+1}(m)$,
- there is m' > k such that $y_{k+1}(m') \neq s_{k+1}(m')$.

Then in particular we have $p_n \in G$, $y_n = x_{p_n}$ and $s_n \in s_{p_n}^b \cap T_1$. Now let us denote by the symbols D and E the following sets:

$$\{r \in Q_T : n+1 < |x_r| \land (\exists s \in s_r^b \cap T_1) (\exists m > n+1) s_n \subseteq s \land s(m) = x_r(m)\},$$

and

$$\{r \in Q_T : n+1 < |x_r| \land (\exists s \in s_r^b \cap T_1) (\exists m > n+1) s_n \subseteq s \land s(m) \neq x_r(m)\}$$

respectively.

We show that D is dense set in Q_T under the condition p_n . To do, fix any forcing condition $q \in Q_T$ such that $q \leq p_n$. We know that $s_n \in s_q^b$ because $q \leq p_n$ and $s_n \in T_1$. Moreover T_1 is a complete Laver tree then $\{n \in \omega : s \cap n \in T_1\}$ is infinite and the sets s_q^g and \mathcal{F}_q are finite. Then there is $x \in T$ and $s \in T_1$ such that $x_q \subseteq x$, $s_n \subseteq s$, x(m) = s(m) for a some m > n+1 and for every $h \in \mathcal{F}_q x \cap h = x_q \cap h$, for every $t \in s_q^g x \cap t = x_q \cap t$. Then $r = (x, s_q^g, s_q^b \cup \{s\}, \mathcal{F}_q)$ is a stronger forcing condition than q and belongs to the set D and then D is dense under p_n . The subtree T_1 is from ground model then D belongs to ground model V. The similar argument shows that the set E is a dense in Q_T by replacing x(m) = s(m) for a some m > n + 1 by the $x(m) \neq s(m)$ for a some m > n + 1 in the above paragraph and E is in the ground model V of course. Then $r \in D \cap E \cap G \neq \emptyset$ for a some r and one can find a condition $p_{n+1} \in G$ which is a stronger than p_n and r. Then there exists $s \in s_{p_{n+1}}^b$ such that $s_n \subseteq s \in T_1$ such that $x_{p_{n+1}}(m) = s(m)$ for a some m > n + 1. Then let $s_{n+1} = s$ and $y_n = x_{p_{n+1}}$. Then by induction hypothesis the sequences $\{p_n : n \in \omega\}$, $\{s_n : n \in \omega\}$, $\{y_n : n \in \omega\}$ with the above conditions exists.

It is easy to see that $z = \bigcup \{s_n : n \in \omega\} \in S_G^b \cap [T_1] \text{ and } z \cap x_G \text{ is infinite and we have } x_G = \bigcup \{y_n : n \in \omega\} = \bigcup \{x_{p_n} : n \in \omega\}.$

CLAIM 2.7. For every $T_1 \in \operatorname{cLaver}(T) \cap V$ we have $[S_G^g] \cap [T_1] \neq \emptyset$.

PROOF. Proof is similar to the previous one.

CLAIM 2.8. The following familes $\{x_G\} \cup [S_G^g] \cup (\omega^{\omega} \cap V)$ and $[S_G^b] \cup (\omega^{\omega} \cap V)$ are almost disjoint.

PROOF. By standard argument, the order conditions (3) and (5) guaranties that $x_G \cap h$ and $z \cap h$ for any $z \in [S_G^g]$ are finite, where $h \in \omega^{\omega} \cap V$ is an any old real. To see that for any $z \in [S_G^g]$ the intersection $x_G \cap z$ is finite, let $\{s_n : n \in \omega\}$ and $\{p_n : n \in \omega\}$ are sequences witnessing that $z \in S_G^g$. If for any $n \in \omega$ the intersection $s_n \cap x_{p_n}$ is empty then $z \cap x_G = \emptyset$ also. Then let assume that $n_0 \in \omega$ be a first positive integer such that intersection $x_{p_{n_0}} \cap s_{n_0}$ is nonempty. Let us choose an any integer n greater than n_0 such that there are no $s \in s_{p_{n_0}}^g$ such that $s_n \subset s$. Then by the point (2) of the definition of order between p_n and p_{n_0} we have $x_{p_n} \cap s_n \subseteq x_{p_{n_0}} \cap s_{n_0}$, (here $s_{n_0} \in s_{p_{n_0}}^g$ and $s_n \in s_{p_n}^g$). Then $x_G \cap z \subseteq x_{p_{n_0}} \cap s_{n_0}$ but $x_{p_{n_0}} \cap s_{n_0}$ is finite.

By the second condition we have $[S_G^g] \subseteq [T]$ but our complete Laver tree $T \in V$ is almost disjoint i.e. collection of all branches in T are almost disjoint in the ground model but

$$(\forall x)(\forall y)(\forall n \in \omega)(x \neq y \land x \restriction n \in T \land y \restriction n \in T) \longrightarrow (\exists m \in \omega)(|x \cap y| < m)$$

is \prod_{1}^{1} formula and then is absolute between transitive ZF models of the set theory. Then our tree T consists almost disjoint branches in the generic extension V[G] and then $[S_{G}^{g}]$ forms almost disjoint family also. Then $\{x_{G}\} \cup [S_{G}^{g}] \cup (\omega^{\omega} \cap V)$ forms almost disjoint family.

The similar argument shows that $[S_G^b] \cup (\omega^{\omega} \cap V)$ forms almost disjoint family.

CLAIM 2.9. x_G is dominating in $\omega^{\omega} \cap V$.

PROOF. Let us consider any $y \in \omega^{\omega} \cap V$ then we can find a generic condition $p \in G$ such that $y \in \mathcal{F}_p$. Let $m = dom x_p$ (here $x_p \subseteq x_G$) and for any $n \in \omega$ with m < n then by 3) condition of order the set

$$D_{y,n} = \{ p \in Q_T : y(n) < x_p(n) \} \in V$$

ROBERT RALOWSKI

is dense in under p because each node of T is ω -splitting one.

Now let us consider any cardinal κ greater than ω_1 with a uncountable cofinality and finite support iteration $((P_{\alpha} : \alpha \leq \kappa), (\dot{Q}_{\beta} : \beta < \kappa))$ such that for every $\beta < \kappa$ we have $\Vdash_{P_{\beta}} \dot{Q}_{\beta} = \hat{Q}_T$. Assume that $G_{\beta} = \{p \in P_{\beta} : i_{\beta\kappa}(p) \in G\}$ where $G \supset P_{\kappa}$ generic filter over V and $\beta < \kappa$. Then there exists $H \subseteq \dot{Q}_{\beta G_{\beta}}$ generic over universe $V[G_{\beta}]$ such that $G_{\beta+1} = G_{\beta} * H$. Now let us define the following family $\mathcal{A}_{\beta} = \{x_{G_{\beta+1}}\} \cup [S^g_{G_{\beta+1}}]$ and then $\mathcal{A} = \bigcup \{\mathcal{A}_{\beta} : \beta < \kappa\}$. In V[G] we show that \mathcal{A} forms a.d. and for every \mathcal{B} m.a.d. family containing \mathcal{A} . Let us consider any two different reals $x, y \in \mathcal{A}$. Then there are $\alpha, \beta < \kappa$ such that $x \in \mathcal{A}_{\alpha}$ and $y \in \mathcal{A}_{\beta}$. We can assume that $\alpha \leq \beta$ (for the other case the proof is the same). First assume that $\alpha < \beta$ then $x \in \omega^{\omega} \cap V[G_{\alpha}]$ and if $y = y_{G_{\beta+1}}$ or $y \in [S^g_{G_{\beta+1}}]$ then by the Claim 2.8 we have that $x \cap y$ is finite. If $\alpha = \beta$ then we can assume that $x \in N$ is finite too.

Now let us choose in V[G] any complete Laver tree $T_1 \subseteq T$ which is a subtree of the tree T. Then by choosing a nice name for T_1 there is a some $\beta < \kappa$ such that $T_1 \in V[G_\beta]$. Then by the Claim 2.6 there is a some real $z \in [S^b_{G_{\beta+1}}] \subseteq T$ such that $z \in T_1$ and $z \cap x_{G_{\beta+1}}$ is infinite. Moreover, let observe that $z \notin \mathcal{B}$ because in other case $x_{G_{\beta+1}}, z \in \mathcal{B}$ what witness that \mathcal{B} is not an a.d. family, contradiction. By the Claim 2.7 we have $[S^g_{G_{\beta+1}}] \cap [T_1] \neq \emptyset$. Then we have showed that \mathcal{B} is a *cl*-nonmeasurable set in the generic extension V[G]. \Box

References

- Bartoszyński T., Judah H., Set Theory, On the Structure of the Real Line, A K Peters Wellesley, Massachusetts, (1995).
- [2] Brendle J., Yatabe S., Forcing indestructibility of MAD families, Annals of Pure and Applied Logic 132 (2005) 271-312.
- [3] Goldstern M., Repický M., Shelah S., Spinas O., On Tree Ideals, Proc. of the Amer. Math. Soc. vol. 123 no. 5, (1995). pp. 1573-1581. Springer-Verlag, (2003).
- [4] Judah H., Miller A., Shelah S., Sacks forcing, Laver forcing and Martin's Axiom, Archive for Math Logic 31 (1992) 145-161.
- [5] Kunen, K., Set Theory. An Introduction to Independence Proofs, North Holland, Amsterdamm, New York, Oxford 1980.
- [6] Marczewski (Szpilrajn) E., Sur une classe de fonctions de W. Sierpiński et la classe correspondante d'ensembles, Fund. Math. 24 (1935), 17–34.
- [7] Yorioka T., Forcings with the countable chain condition and the covering number of the Marczewski ideal, Arch. Math. Logic 42 (2003), 695–710.

DEPARTMENT OF COMPUTER SCIENCE, FACULTY OF FUNDAMENTAL PROB-LEMS OF TECHNOLOGY, WROCŁAW UNIVERSITY OF TECHNOLOGY, WYBRZEŻE WYSPIAŃSKIEGO 27, 50-370 WROCŁAW, POLAND.

E-mail address, Robert Rałowski: robert.ralowski@pwr.edu.pl