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ABSTRACT. In this note we consider a Marczewski like nonmea-
surable sets (with respect to trees) which forms m.a. $d$ . family in
Baire space. Here we show that under assumption that $\omega_{1}=b$

there is a m.a. $d$ . family in Baire space which is not $s$-measurable
(here we can replace $s$-nonmeasurable by $l$-nonmeasurable or m-
nonmeasurable). Moreover it is relatively consistent with ZFC
theory that $\omega_{1}<\mathfrak{d}\leq \mathfrak{c}$ and there is m.a. $d$ . family in Baire space
which is not measurable with respect to family of all complete
Laver trees in $\omega^{\omega}.$

1. Definitions

We adopt the standard set theoretic notation $\omega$ stands for first
infinite ordinal, $c$ is denoted as size of all reals, for any set $X,$ $|X|$ is
size of $X,$ $P(X)$ is power set of $X,$ $[X]^{\kappa}$ is denoted as set of all subsets
of $X$ of the cardinality $\kappa,$

$x<\kappa$ denotes the set of all sequences in $X$

with lenght less than $\kappa$ . We say that for $T\subseteq\omega^{<\omega}$ the partial order
$(T, \subseteq)$ is tree if for any $\tau\in T$ and $n\in dom(\tau)$ we have $\tau rn\in T$ . By
the set

$[T]=\{x\in\omega^{\omega} : (\forall n\in\omega)xrn\in T\}$

we denote envelope of $T.$

Now we turn into notion of measurability with respect to a fixed
families of trees on the Baire space.

Edward Marczewski [6] introduced notion of $s$ measurability and
$s_{0}$-ideal notion.

DEFINITION 1.1 (Marczewski ideal $s_{0}$ ). Let $X$ be any fixed uncount-
able Polish space. Then we say that $A\in \mathcal{P}(X)$ is in $s_{0}$ iff

$(\forall P\in Perf(X))(\exists Q\in Perf(X))Q\subseteq P\wedge Q\cap A=\emptyset.$

Of course every perfect set is an envelope of some perfect tree and
the above definition can be formulated in tree terms.

DEFINITION 1.2 ( $s$ measurable set). Let $X$ be any fixed uncountable
Polish space. Then we $\mathcal{S}ay$ that $A\in \mathcal{P}(X)$ is $s$-measurable iff

$(\forall P\in Perf(X))(\exists Q\in Perf(X))Q\subseteq P\wedge(Q\subseteq P\veeQ\cap A=\emptyset)$ .
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Here let us recall the notion of the Laver tree. Then we say that
tree $T\subseteq\omega^{<\omega}$ is called a Laver tree with the stem $s\in T$ if

$\bullet$ for any $t\in T$ we have $t\subset \mathcal{S}\vee s\subseteq t,$

$\bullet$ for every node $t\in T$ if $s\subseteq t$ then $t$ is infinitely spliting i.e.
$\{n\in\omega : t^{-}n\in T\}$ is an infinite.

Miller tree $T\subseteq\omega^{<\omega}$ with stem $s\in T$ is defined in the same manner
but the second condition is replaced by the following

$(\forall t\in T)(s\subseteq t)arrow(\exists r\in T)(t\subseteq r)\wedge(\{n\in\omega : r^{-}n\in T\}\in[\omega]^{\omega})$ .

The we can recall a similar definition of the ideal $l_{0}$ to the previous
one. The set of all Laver trees is denoted by the LaverTrees.

DEFINITION 1.3 (ideal $l_{0}$ ). We say that $A\in \mathcal{P}(\omega^{\omega})$ is in $l_{0}$ iff
$(\forall T\in$ LaverRees) $(\exists Q\in$ LaverRees) $Q\subseteq T\wedge[Q]\cap A=\emptyset.$

DEFINITION 1.4 ( $l$ measurable set). We say that $A\in \mathcal{P}(\omega^{\omega})$ is $l-$

measurable iff for every Laver tree $T\in$ LaverRees there is a Laver
tree $S\in$ LaverTkees such that

$(S\subseteq T\wedge[S]\subseteq A)\vee(S\subseteq T\wedge[S]\cap A=\emptyset)$ .

We say that tree $T\subseteq\omega^{<\omega}$ is called a complete Laver tree iff
every node $t\in T$ is infinitely spliting.

Then once again we can recall a similar definition of the ideal $cl_{0}$

to the previous one. The set of all complete Laver trees is denoted by

the cLaver.

DEFINITION 1.5 (ideal $cl_{0}$ ). We say that $A\in \mathcal{P}(\omega^{\omega})$ is in $cl_{0}$ iff
$(\forall T\in$ cLaver) $(\exists Q\in$ cLaver) $Q\subseteq T\wedge[Q]\cap A=\emptyset.$

DEFINITION 1.6 ( $cl$ measurable set). We say that $A\in \mathcal{P}(\omega^{\omega})$ is
$d$-measurable iff for every complete Laver tree $T\in$ cLaver there is a
complete Laver tree $S\in$ cLaver such that

$(S\subseteq T\wedge[S]\subseteq A)\vee(S\subseteq T\wedge[S]\cap A=\emptyset)$ .

As above using notion of Miller tree we can define $m$-measurability

and notion of $m_{0}$-ideal.
Next we recall the notion of almost disjoint family in Baire space.

DEFINITION 1.7. We say that family $\mathcal{A}\subseteq\omega^{\omega}$ is a.d. family in Baire
space if

$(\forall a, b\in \mathcal{A})a\neq barrow a\cap b$ is finite.
If this family is maximal with respect to inclusion in Baire space then
$\mathcal{A}$ is called m.a. $d$ . family in $\omega^{\omega}.$

Now let us reacall cardinal $\mathfrak{d}$ as smallest size of dominating family

in $\omega^{\omega}$ i.e.

$\mathfrak{d}=\min\{|\mathcal{F}|:\mathcal{F}\subseteq\omega^{\omega}\wedge(\forall g\in\omega^{\omega})(\exists f\in \mathcal{F})(\forall^{\infty}n)g(n)<f(n)\}.$
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2. Dominating MAD families in Baire space and
nonmeasurability with respect to ideals defined by trees

It is well known that every a.d. family is meager subset of the Baire
space. It is natural to ask whether one can prove in ZFC the existence a
m.a. $d$ . families that are either $\mathcal{S}$-measurable or $s$-nonmeasurable. One
can find a consistency example of $m.a.d$ . family $\mathcal{A}$ of cardinality smaller
than $c$ (see [5], for example) by construction of Cohen indestructible
m.a. $d$ . family. One can find more about tree-like forcing indestructible
m.a. $d$ . familes in [2]. It is well known that non$(s_{0})=c$ (for other
coefficients see [1, 3, 4, 7]) where non(I) is smallest size of subset in
$\omega^{\omega}$ which does not belong to a-ideal $I\subset P(\omega^{\omega})$ . It is well known that
there exists a perfect a.d. family and therefore not all m.a. $d$ . families
are in $\mathcal{S}_{0}.$

THEOREM 2.1. There exists a $s$ -nonmeasurable m.a.d. family in
Baire space. Moreover, theorem remains true if we replace s-nonmea-
surability by $l,$ $m$ or $cl$ -nonmeasurability.

PROOF. We show this theorem for $s$-nonmeasurability, for the other
notion mentioned in above theorem the proof runs in analogous way.
Let $T\subseteq\omega<\omega$ a perfect tree such that $[T]$ is a.d. in $\omega^{\omega}$ . Let us
enumerate Perf $(T)=\{T_{\alpha} : \alpha<c\}$ a family of all perfect subsets of
$T$ . By transfinite reccursion let us define

$\{(a_{\alpha}, d_{\alpha}, x_{\alpha})\in[T]^{2}\cross\omega^{\omega}:\alpha<c\}$

such thatfor any $\alpha<\mathfrak{c}$ we have:

(1) $\{a_{\xi}:\xi<\alpha\}\cap\{d_{\xi}:\xi<\alpha\}=\emptyset,$

(2) $\{a_{\xi} : \xi<\alpha\}\cup\{x_{\xi} : \xi<\alpha\}$ is a.d.,
(3) $\forall^{\infty}nx_{\alpha}(n)=d_{\alpha}(n)$ .

Now assume that we are in $\alpha$-th step construction and we have required
sequence

$\{(a_{\xi}, d_{\xi}, x_{\xi})\in[T]^{2}\cross\omega^{\omega}:\xi<\alpha\}$

which have size at most $\omega|\alpha|<c$ then we can choose in $[T_{\alpha}]$ (of size c)
$a_{\alpha},$

$d_{\alpha}\in[T_{\alpha}]$ which fulfills the first condition. Then choose any $x_{\alpha}\in\omega^{\omega}$

different than $d_{\alpha}$ but $(\forall^{\infty}n)d_{\alpha}(n)=x_{\alpha}(n)$ then $x\in\omega^{\omega}\backslash [T]$ and

$\{a_{\xi}:\xi<\alpha\}\cup\{x_{\xi}:\xi<\alpha\}$

forms an a.d. family in $\omega^{\omega}$ . Then $\alpha$-th step construction is com-
pleted. By transfinite induction theorem we have required sequence of
the length $\mathfrak{c}$ . Now set $A_{0}=\{a_{\alpha} : \alpha<c\}\cup\{x_{\alpha} : \alpha<c\}$ and let us
extend it to any maximal a.d. family $A$ . It is easy to chect that $A$ is
required $s$-nonmeasurable m.a. $d$ . family in the Baire space $\omega^{\omega}.$ $\square$

Here we have obtained a consistency result but the above statement
remains true in every model of ZFC theory whenever $\mathfrak{d}=\omega_{1}.$
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THEOREM 2.2. It $\mathfrak{d}=\omega_{1}$ then there exists a $m.a.d$. family of func-
tions $\mathcal{A}\subseteq\omega^{\omega}$ such that $\mathcal{A}$ is not $s-mea\mathcal{S}$urable and there is an domi-
nating subfamily $\mathcal{A}’\in[\mathcal{A}]^{\leq \mathfrak{d}}$ in Baire space $\omega^{\omega}$ . Moreover, the words
not $s$ -measurable can be replaced by not $l,$ $m$ and $d$ -measurable.

PROOF. Now by assumption there is a dominating family $\mathcal{A}\subseteq\omega^{\omega}$

of size $\omega_{1}$ . Then we can show that we can find an a.d. dominating
family of size $\omega_{1}$ . To do let us enumerate $\mathcal{A}=\{f_{\xi} : \xi<\omega_{1}\}$ and assume
that we are in $\alpha$-setp of construction with $a.d$ . family $\mathcal{D}_{\alpha}=\{g_{\xi} : \xi<\alpha\}$

such that for any $\xi<$ a we have $f_{\xi}\leq g_{\xi}$ . Now let $\{h_{n} : n\in\omega\}$ be
enumeration of $\mathcal{D}_{\alpha}$ then for any $n\in\omega$ let

$g_{\alpha}(n)= \max\{f_{\alpha}(n), \max\{h_{k}(n) : k\leq n\}\}+1.$

Then the family $\mathcal{D}=\bigcup_{\alpha<\omega_{1}}\mathcal{F}_{\alpha}$ is as was required almost disjoint and
dominating family of size equal to $\omega_{1}$ . Moreover, one can assume tha
each member of $\mathcal{D}$ has even values only. Now let us fix a perfect tree
$S$ with the porperty that each member of $S$ has odd values only.

Then we are ready to find a m.a. $d$ . family $\mathcal{B}$ which is not s-
measurable (in the perfect set $[S]$ ) and $\mathcal{D}\subseteq \mathcal{B}.$

Let us enumerate Perf $(S)=\{T_{\alpha} : \alpha<\mathfrak{c}\}$ a family of all perfect
subsets of $S$ . By transfinite reccursion let us define

$\{(a_{\alpha}, d_{\alpha}, x_{\alpha})\in[S]^{2}\cross\omega^{\omega}:\alpha<c\}$

such that for any $\alpha<c$ we have:

(1) $a_{\alpha},$
$d_{\alpha}\in T_{\alpha},$

(2) $\{a_{\xi}:\xi<\alpha\}\cap\{d_{\xi}:\xi<\alpha\}=\emptyset,$

(3) $\{a_{\xi} : \xi<\alpha\}\cup\{x_{\xi} : \xi<\alpha\}$ is a.d.,
(4) $\forall^{\infty}nx_{\alpha}(n)=d_{\alpha}(n)$ but $x_{\alpha}\neq d_{\alpha}.$

Now assume that we are in $\alpha$-th step construction and we have required
sequence

$\{(a_{\xi}, d_{\xi}, x_{\xi})\in[S]^{2}\cross\omega^{\omega}:\xi<\alpha\}$

which have size at most $\omega|\alpha|<c$ then we can choose in $[T_{\alpha}]$ (of size c)
$a_{\alpha},$

$d_{\alpha}\in[T_{\alpha}]$ which fulfills the first condition. Then choose any $x_{\alpha}\in\omega^{\omega}$

different than $d_{\alpha}$ but $(\forall^{\infty}n)d_{\alpha}(n)=x_{\alpha}(n)$ then $x_{\alpha}\in\omega^{\omega}\backslash [S]$ and

$\{a_{\xi}:\xi\leq\alpha\}\cup\{x_{\xi}:\xi\leq\alpha\}$

forms an a.d. family in $\omega^{\omega}$ . Then $\alpha$-th step construction is com-
pleted. By transfinite induction theorem we have required sequence of
the length $c$ . Now set $A_{0}=\mathcal{D}\cup\{a_{\alpha} : \alpha<c\}\cup\{x_{\alpha} : \alpha<c\}$ and let us
extend it to any maximal a.d. family $A$ . It is easy to check that $A$ is
required $s$-nonmeasurable m.a. $d$ . family in the Baire space $\omega^{\omega}.$ $\square$

In contrast of the previously proven result, we show the consistency

for $\omega_{1}<\mathfrak{d}$ and existing a dominating $d$-nonmeasurable m.a. $d$ . -family

of size $\mathfrak{d}.$
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THEOREM 2.3. It is relatively consistent with $ZFC$ theory that $\omega_{1}<$

$c$ and there exists $a$ m.a. $d$ . family of functions $\mathcal{A}\subseteq\omega^{\omega}$ such that $\mathcal{A}$ is
not $cl$ -measurable. Moreover, there is a dominating subfamily $\mathcal{A}’\in[\mathcal{A}]^{\mathfrak{d}}$

and $\omega_{1}<\mathfrak{d}\leq c.$

PROOF. Let us consider the ground model $V$ of $GCH$ . We first
choose any complete Laver tree $T\subseteq\omega^{<\omega}$ in $V$ such that $[T]$ forms
an a.d. family. Now, let us define a forcing notion $(Q_{T}, \leq)$ as follows:
$p=(x_{p}, s_{p}^{g}, s_{p}^{b}, \mathcal{F}_{p})\in Q_{T}$ iff

$\bullet$ $x_{p}\in\omega^{<\omega}$ and
$\bullet$

$s_{p}^{g},$ $s_{p}^{b}\in[T]^{<\omega}$ are finite trees and
$\bullet \mathcal{F}_{p}\in[\omega^{\omega}]^{<\omega},$

The order is defined as follows: for every $p=(x_{p}, s_{p}^{g}, s_{p}^{b}, \mathcal{F}_{p})\in QT$

and $q=(xq, s_{q}^{g}, s_{q}^{b},\overline{J\Gamma}q)\in Q_{T}$ we have $p\leq q$ iff

(1) $x_{q}\subset x_{p}\wedge s_{q}^{g}\subseteq s_{p}^{g}\wedge s_{q}^{b}\subseteq s_{p}^{b}\wedge \mathcal{F}_{q}\subseteq \mathcal{F}_{p},$

(2) $(\forall t\in \mathcal{S}_{p}^{g})(\forall k)x_{p}(k)=t(k)arrow tr_{k+1}\in s_{q}^{g}\wedge x_{p}r_{k+1}\subseteq x_{q},$

(3) $(\forall h\in\sqrt{}q)(\forall k)h(k)\geq x_{p}(k)arrow x_{p}r_{k+1}\subseteq x_{q},$

(4) $(\forall h\in \mathcal{F}_{q})(\forall t\in s_{p}^{b})(\forall k)h(k)=t(k)arrowtr_{k+1}\in s_{q}^{b},$

(5) $(\forall h\in\overline{J^{-}}_{q})(\forall t\in s_{p}^{9})(\forall k)h(k)=t(k)arrow tr_{k+1}\in s_{q}^{g}.$

CLAIM 2.4. $Q_{T}$ is a-centered (and so is c.c.c.) forcing notion.

PROOF. Let $I=\{(x, s^{g}, s^{b}) : x\in\omega^{<\omega}\wedge s^{g}, s^{b}\in[T]^{<\omega}\}$ . For every
$v=(x, s^{g}, s^{b})\in I$ the set $Q_{v}=\{p\in QT : (x_{p}, s_{p}^{g}, s_{p}^{b})=(X, \mathcal{S}^{9}, \mathcal{S}^{b})\}$

is a centered subset of $Q_{T}$ , because for any $p,$ $q\in Q_{v}$ the condition
$r=(x, s^{g}, s^{b}, \mathcal{F}_{p}\cup \mathcal{F}_{q})$ from $Q_{v}$ is a common extension of $p$ and $q.$

Since $I$ is countable $Q_{T}$ is a-centered and hence it satisfies c.c.c. $\square$

Let $G\subseteq Q_{T}$ be a generic filter over $V$ and in $V[G]$ let

$x_{G}=\cup\{x_{p}:p\in G\},$

$S_{G}^{g}=\{t\in T:(\exists p\in G)(\exists s\in s_{p}^{g})t\subseteq s\},$

$S_{G}^{b}=\{t\in T:(\exists p\in G)(\exists s\in s_{p}^{b})t\subseteq s\}.$

It follows that $x_{G}\in\omega^{\omega}$ because the sets $D_{n}=\{p\in Q_{T}:|x_{p}|\geq n\}$ for
$n\in\omega$ are dense.

CLAIM 2.5. $\emptyset\neq[S_{G}^{g}]\subseteq[T]$ and $\emptyset\neq[S_{G}^{b}]\subseteq[T],$

PROOF. Fix $n\in\omega$ , condition $p\in Gs\in s_{p}^{g}$ then the set $D_{s,n}=$

$\{r\in Q_{T} : (\exists t\in \mathcal{S}_{r}^{g})n\leq|t|\wedge s\subseteq t\}$ is dense in the poset $Q_{T}$ under
$p$ . To see it, let $q\leq p$ be any forcing condition. Then $s_{p}^{9}\subseteq s_{q}^{g}$ of
course. Then because tree $T$ is a complete Laver tree then one can find
a sequence $t\in T$ such that $s\subseteq t,$ $n\leq|t|,$ $t\cap x_{q}=s\cap x_{q}$ and for every
$h\in \mathcal{F}_{q}h\cap t=h\cap s$ . Then the condition $r=(x_{q}, s_{q}^{9}\cup\{t\}, s_{q}^{b},\overline{ノ_{}q^{-}/})$ is
stronger than $q$ and $r\in D_{n,s}$ what shows that $D_{n,s}$ is dense under $p.$
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Now by the above paragraph we can define recursively the following
two sequences $\{s_{n} : n\in\omega\}$ and $\{p_{n} : n\in\omega\}$ such that for every $n\in\omega$

we have
$\bullet$ $p_{0}=p$ and $p_{n+1}\leq p_{n}$ and $p_{n}\in G,$

$\bullet$ $s_{0}=s,$ $s_{n}\in s_{p_{n}}^{g},$ $n\leq|s_{n}|$ and $s_{n}\subseteq s_{n+1}.$

Then $z=\cup\{s_{n} : n\in\omega\}$ is an element of $[S_{G}^{g}]$ . Then $[S_{G}^{g}]$ is nonempty.
It is easy to see that every element of $[S_{G}^{g}]$ belongs to $[T]$ by the defi-
nition of the set $[S_{G}^{g}]$ . The proof for $\emptyset\neq[S_{G}^{b}]\subseteq[T]$ is the same. $\square$

Let us denote by cLaver(T) the collection of all complete Laver
subtrees of the tree $T.$

CLAIM 2.6. For every $T_{1}\in cLaver(T)\cap V$ there is $z\in[S_{G}^{b}]\cap[T_{1}]$

such that $z\cap x_{G}$ and $\{m\in\omega : z(m)\neq x_{G}(m)\}$ are infinite sets,

PROOF. Let us choose $p\in G$ and any ground model complete Laver
subtree $T_{1}\subseteq T$ . Then we will find three sequences $\{p_{n} : n\in\omega\},$

$\{y_{n}:n\in\omega\}$ and $\{s_{n}:n\in\omega\}$ such that for every $n\in\omega$ we have:
$\bullet$ $p_{0}=p,$ $p_{n+1}\leq p_{n}$ and $p_{n+1}\in G,$

$\bullet$ $s_{n}\in s_{Pn}^{b}$ and $s_{n}\subseteq s_{n+1}\in T_{1},$

$\bullet y_{n}=x_{p_{n}},$

$\bullet$ there is $m>n$ such that $y_{n+1}(m)=s_{n+1}(m)$ ,
$\bullet$ there is $m’>n$ such that $y_{n+1}(m’)\neq s_{n+1}(m’)$ .

Assume that we have three finite sequences $\{p_{k} : k\leq n\},$ $\{y_{k} : k\leq n\}$

and $\{s_{n} : k\leq n\}$ such that for every $k<n$ we have:
$\bullet$ $p_{k+1}\leq p_{k}$ and $p_{k+1}\in G,$

$\bullet$ $s_{k}\in s_{p}^{b_{k}}$ and $s_{k}\subseteq s_{k+1}\in T_{1},$

$\bullet y_{k}=x_{p_{k}},$

$\bullet$ there is $m>k$ such that $y_{k+1}(m)=s_{k+1}(m)$ ,
$\bullet$ there is $m’>k$ such that $y_{k+1}(m’)\neq s_{k+1}(m’)$ .

Then in particular we have $p_{n}\in G,$ $y_{n}=x_{p_{n}}$ and $s_{n}\in s_{p_{n}}^{b}\cap T_{1}$ . Now
let us denote by the symbols $D$ and $E$ the following sets:

$\{r\in Q_{T}:n+1<|x_{r}|\wedge(\exists s\in s_{r}^{b}\cap T_{1})(\exists m>n+1)s_{n}\subseteq s\wedge s(m)=x_{r}(m)\},$

and

$\{r\in Q_{T}:n+1<|x_{r}|\wedge(\exists s\in s_{r}^{b}\cap T_{1})(\exists m>n+1)s_{n}\subseteq s\wedge s(m)\neq x_{r}(m)\}$

respectively.
We show that $D$ is dense set in $Q_{T}$ under the condition $p_{n}$ . To

do, fix any forcing condition $q\in Q_{T}$ such that $q\leq p_{n}$ . We know that
$\mathcal{S}_{n}\in s_{q}^{b}$ because $q\leq p_{n}$ and $s_{n}\in T_{1}$ . Moreover $T_{1}$ is a complete Laver
tree then $\{n\in\omega : s^{-}n\in T_{1}\}$ is infinite and the sets $s_{q}^{g}$ and $\overline{ノ,_{q}}$ are
finite. Then there is $x\in T$ and $s\in T_{1}$ such that $x_{q}\subseteq x,$ $s_{n}\subseteq s,$

$x(m)=s(m)$ for a some $m>n+1$ and for every $h\in \mathcal{F}_{q}x\cap h=x_{q}\cap h,$

for every $t\in s_{q}^{g}x\cap t=x_{q}\cap t$ . Then $r=(x, s_{q}^{g}, s_{q}^{b}\cup\{s\},\overline{f}_{q})$ is a
stronger forcing condition than $q$ and belongs to the set $D$ and then
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$D$ is dense under $p_{n}$ . The subtree $T_{1}$ is from ground model then $D$

belongs to ground model $V$ . The similar argument shows that the set
$E$ is a dense in QT by replacing $x(m)=s(m)$ for a some $m>n+1$
by the $x(m)\neq s(m)$ for a some $m>n+1$ in the above paragraph and
$E$ is in the ground model $V$ of course. Then $r\in D\cap E\cap G\neq\emptyset$ for
a some $r$ and one can find a condition $p_{n+1}\in G$ which is a stronger
than $p_{n}$ and $r$ . Then there exists $s\in s_{p_{n+1}}^{b}$ such that $s_{n}\subseteq s\in T_{1}$ such
that $x_{p_{n+1}}(m)=s(m)$ for a some $m>n+1$ . Then let $s_{n+1}=s$ and
$y_{n}=x_{p_{n+1}}$ . Then by induction hypothesis the sequences $\{p_{n} : n\in\omega\},$

$\{s_{n}:n\in\omega\},$ $\{y_{n} : n\in\omega\}$ with the above conditions exists.
It is easy to see that $z=\cup\{s_{n} : n\in\omega\}\in S_{G}^{b}\cap[T_{1}]$ and $z\cap x_{G}$ is

infinite and we have $x_{G}=\cup\{y_{n}:n\in\omega\}=\cup\{x_{Pn} : n\in\omega\}.$ $\square$

CLAIM 2.7. For every $T_{1}\in cLaver(T)\cap V$ we have $[S_{G}^{g}]\cap[T_{1}]\neq\emptyset.$

PROOF. Proof is similar to the previous one. $\square$

CLAIM 2.8. The following familes $\{x_{G}\}\cup[S_{G}^{g}]\cup(\omega^{\omega}\cap V)$ and $[S_{G}^{b}]\cup$

$(\omega^{\omega}\cap V)$ are almost disjoint.

PROOF. By standard argument, the order conditions (3) and (5)
guaranties that $x_{G}\cap h$ and $z\cap h$ for any $z\in[S_{G}^{g}]$ are finite, where
$h\in\omega^{\omega}\cap V$ is an any old real. To see that for any $z\in[S_{G}^{9}]$ the
intersection $x_{G}\cap z$ is finite, let $\{s_{n} : n\in\omega\}$ and $\{p_{n} : n\in\omega\}$ are
sequences witnessing that $z\in S_{G}^{g}$ . If for any $n\in\omega$ the intersection
$s_{n}\cap x_{p_{n}}$ is empty then $z\cap x_{G}=\emptyset$ also. Then let assume that $n_{0}\in\omega$

be a first positive integer such that intersection $x_{p_{n}}0\cap s_{n0}$ is nonempty.
Let us choose an any integer $n$ greater than $n_{0}$ such that there are no
$s\in \mathcal{S}_{p_{n}0}^{g}$ such that $s_{n}\subset s$ . Then by the point (2) of the definition of
order between $p_{n}$ and $p_{n_{0}}$ we have $x_{p_{n}}\cap s_{n}\subseteq x_{p_{n}0}\cap s_{n0)}$ (here $s_{n0}\in \mathcal{S}_{p_{n}0}^{g}$

and $s_{n}\in s_{p_{n}}^{g})$ . Then $x_{G}\cap z\subseteq x_{p_{n}0}\cap s_{n_{0}}$ but $x_{p_{n}0}\cap s_{n_{0}}$ is finite.
By the second condition we have $[S_{G}^{g}]\subseteq[T]$ but our complete Laver

tree $T\in V$ is almost disjoint i.e. collection of all branches in $T$ are
almost disjoint in the ground model but

$(\forall x)(\forall y)(\forall n\in\omega)(x\neq y\wedge xrn\in T\wedge yrn\in T)arrow(\exists m\in\omega)(|x\cap y|<m)$

is $\prod_{1}^{1}$ formula and then is absolute between transitive ZF models of
the set theory. Then our tree $T$ consists almost disjoint branches in
the generic extension $V[G]$ and then $[S_{G}^{g}]$ forms almost disjoint family
also. Then $\{x_{G}\}\cup[S_{G}^{g}]\cup(\omega^{\omega}\cap V)$ forms almost disjoint family.

The similar argument shows that $[S_{G}^{b}]\cup(\omega^{\omega}\cap V)$ forms almost
disjoint family. $\square$

CLAIM 2.9. $x_{G}$ is dominating in $\omega^{\omega}\cap V.$

PROOF. Let us consider any $y\in\omega^{\omega}\cap V$ then we can find a generic
condition $p\in G$ such that $y\in \mathcal{F}_{p}$ . Let $m=domx_{p}$ (here $x_{p}\subseteq x_{G}$ ) and
for any $n\in\omega$ with $m<n$ then by 3) condition of order the set

$D_{y,n}=\{p\in Q_{T}:y(n)<x_{p}(n)\}\in V$
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is dense in under $p$ because each node of $T$ is $\omega$-splitting one.

Now let us consider any cardinal $\kappa$ greater than $\omega_{1}$ with a uncount-
able cofinality and finite support iteration $((P_{\alpha} : \alpha\leq\kappa), (\dot{Q}_{\beta} : \beta<\kappa))$

such that for every $\beta<\kappa$ we have $|\vdash_{P_{\beta}}$
$\dot{Q}_{\beta}=\hat{Q}_{T}$ . Assume that

$G_{\beta}=\{p\in P_{\beta} : i_{\beta\kappa}(p)\in G\}$ where $G\supset P_{\kappa}$ generic filter over $V$

and $\beta<\kappa$ . Then there exists $H\subseteq\dot{Q}_{\beta_{G_{\beta}}}$ generic over universe $V[G_{\beta}]$

such that $G_{\beta+1}=G_{\beta}*H$ . Now let us define the following family
$\mathcal{A}_{\beta}=\{x_{G_{\beta+1}}\}\cup[S_{G_{\beta+1}}^{g}]$ and then $\mathcal{A}=\cup\{\mathcal{A}_{\beta} : \beta<\kappa\}$ . In $V[G]$

we show that $\mathcal{A}$ forms a.d. and for every $\mathcal{B}$ m.a.d. family containing
$\mathcal{A}$ . Let us consider any two different reals $x,$ $y\in \mathcal{A}$ . Then there are
$\alpha,$ $\beta<\kappa$ such that $x\in \mathcal{A}_{\alpha}$ and $y\in \mathcal{A}_{\beta}$ . We can assume that $\alpha\leq\beta$

(for the other case the proof is the same). First assume that $\alpha<\beta$

then $x\in\omega^{\omega}\cap V[G_{\alpha}]$ and if $y=y_{G_{\beta+1}}$ or $y\in[S_{G_{\beta+1}}^{9}]$ then by the
Claim 2.8 we have that $x\cap y$ is finite. If $\alpha=\beta$ then we can assume
that $x=x_{G_{\beta+1}}$ and $y\in[S_{G_{\beta+1}}^{g}]$ and once again by the Claim 2.8 the
intersection $x\cap y$ is finite too.

Now let us choose in $V[G]$ any complete Laver tree $T_{1}\subseteq T$ which
is a subtree of the tree $T$ . Then by choosing a nice name for $T_{1}$ there
is a some $\beta<\kappa$ such that $T_{1}\in V[G_{\beta}]$ . Then by the Claim 2.6 there is
a some real $z\in[S_{G_{\beta+1}}^{b}]\subseteq T$ such that $z\in T_{1}$ and $z\cap x_{G_{\beta+1}}$ is infinite.
Moreover, let observe that $z\not\in \mathcal{B}$ because in other case $x_{G_{\beta+1}},$

$z\in \mathcal{B}$

what witness that $\mathcal{B}$ is not an a.d. family, contradiction. By the
Claim 2.7 we have $[S_{G_{\beta+1}}^{g}]\cap[T_{1}]\neq\emptyset$ . Then we have showed that $\mathcal{B}$ is

a $cl$-nonmeasurable set in the generic extension $V[G].$ $\square$
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