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1. Introduction
Water management in general is to balance the spatio-temporally uneven distribution of water
with demands. Water resources for agricultural purposes are mostly found in rural areas, where
occurrence of relevant events is dominantly stochastic (Unami et al, 2010). There have been
established traditional water management strategies throughout the world which can be
understood as stochastic controls. Operation of micro-dams or river currents for irrigation
purposes normally abides by “rule curves” prescribing water levels where restriction on intake
is imposed (Senga, 1991). While, management of groundwater sometimes involves more
complicated issues due to imperfect information to be fed-back (Rahman and Mahbub, 2012).
This article discusses how these water management issues are approached in the framework of
stochastic control. Then, few examples are presented for demonstration of applicability.

2. Formulation of stochastic control problems

We assume a single water body such as a micro-dam being used for agricultural purposes. The
dynamics of its storage volume is represented as the water balance equation

$M_{l}=Q(t,u)dt+\sqrt{2D^{X}}dB_{t}^{X}$ (1)

where $X_{t}$ is the storage volume at the time $t,$ $Q$ is the deterministic component of water
balance, which is controlled by the intake discharge $u,$ $D^{X}$ is the diffusion coefficient for
water balance, and $B_{t}^{X}$ is the standard Brownian motion. An admissible set $U=[0,u_{mu}]$

constraining $u$ is considered as well.
Occurrence of events such as drought is the major concem for most water managers. The

mean reverting process $Y_{l}$ , governed by the Langevin equation, is used to represent drought
seventy as

$dY_{t}=-b(u)Y_{p}dt+\sqrt{2D^{y}}dB_{\iota}$ (2)

where $b$ is the drift coefficient to be manipulated as a result ofimplementing water intake $u,$

$D^{y}$ is the diffusion coefficient for drought severity, and the standard Brownian motion $B_{t}$ is
assumed to be independent of $B_{t}^{X}$ . Occurrence time of an event is modelled as the first exit
time from a domain.

Agricultural products are biomass having economic values, whose dynamics is typically
considered in terms of the growth model

$M_{l}=rZ_{t}dt+oZ_{t}dB_{t}^{z}$ (3)

where $Z_{\iota}$ is the value of agricultural products whose growth rate $r$ and volatility coefficient
$\sigma$ may depend on $t,$ $u,$ $X_{t},$ $Y_{t}$ , and $Z_{t}$ itself. The standard Brownian motion $B_{t}^{z}$ is
assumed to be independent of $B_{t}^{X}$ and $B_{t}^{v}$

With the system consisting of the stochastic differential equations described above, the
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performance index $J^{u}(s,x,y,z)$ to be maximized is prescribed as an expectation

$J^{u}(s,x,y,z)= E[\int_{S}^{\dot{T}}f(s,u,x,y,z)dt+g(\hat{T},X_{\hat{T}},Y_{\hat{T}},Z_{\dot{T}})]$ (4)

where $f$ and $g$ are prescribed benefit functions, and $\hat{T}$ is the first exit time from a

predetermined x-y-z -domain $\Omega$ of $X$, , $Y_{l}$ , and, $Z$, Then, the maximum

$\Phi=\Phi(s,x,y,z)$ of $J^{u}(s,x,y,z)$ , as well as the optimal control $u$ attaining it is govemed

by the Hamilton-Jacobi-Bellman (HJB) equation

$L^{u}. \Phi+f(s,u.,x,y,z)=\sup_{u\in U}\{L^{u}\Phi+f(s,u,x,y,z)\}=0$ (5)

with terminal and boundary conditions
$\Phi(s,x,y,z)=g(s,x,y,z)$ (6)

where $L^{u}$ is the partial differential operator

$L^{u}= \frac{\partial}{\partial s}+Q(s,u)\frac{\partial}{\partial x}+D^{X}\frac{\partial^{2}}{\partial x^{2}}-b(u)y\frac{\partial}{\partial y}+D^{v}\frac{\partial^{2}}{\Phi^{2}}+rz\frac{\partial}{\partial z}+\frac{\sigma^{2}z^{2}\partial^{2}}{2\partial z^{2}}$ . (7)

This HJB equation system is analyzed with the help ofnumerical approaches, though few have
been reported in the literature (Kumar and Muthuraman, 2004; Unami et al, 2013).

3. Demonstrative examples

3.1 Optimal operation ofrainwater storage tanks
A typical problem is to obtain a rule curve for a rainwater storage tank (RWST) during an

irrigation period $t\in[O,T]$ , where dry spells with evaporation loss $E$ prevail. Unami et al

(2015) discusses the model
$M_{t}=-(E+u)dt$ (8)

$dY=-Y_{t}dt+\sqrt{2}dB^{y}$ (9)

$oe_{t}=0$ (10)

with $\Omega=(0,V_{mu})x(-K,K)x\square$ , where $V_{mu}$ is the maximum storage volume of the RWST

and $K$ is a model parameter. The time domain is appropriately scaled. A substantial recharge

event of the RWST is assumed to take place if $|Y_{t}|>K$ . A target value for the intake discharge

$u$ is set as $Q$ and then $f=-s|u-Q|$ with an weight $\epsilon$ and $g=0$ except for

$g(s,0,y)=-(T-s)Q$ are prescribed, considering water deficit instead of explicitly including

the dynamics of the value of agricultural products. When the maximum storage volume $V_{mu}$

of the RWST is large enough, trivial rule curves for the cases of $\epsilon=0$ and $\epsilon=\infty$ are known

as $E(T-s)$ and the constant $0$ , respectively. Rule curves for finite positive values of $\epsilon$ are

consistently obtained from numerical solutions to the HJB equation system. The results for

model parameters $V_{mu}=4,000m^{3},$ $T=120$ days, $E=9.6m^{3}/day$, and $Q$ $=23.8m^{3}/day$

are shown in Fig. 1. From this figure it is concluded that $V_{mu}=1,000m^{3}$ is sufficient, and

actual rainwater harvesting system including such a RWST with an intake structure has been
developed in an arid environment, as shown in Photo 1 (Sharifi et al, 2015). The rule curves
will be revised using an improved model, before commencing operation of the RWST in
September 2015.
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Fig. 1 The rule curves for different $\epsilon$ values (Unami et al. 2015)

Photo 1 Rainwater harvesting system developed in an arid environment

3.2 Groundwater liftingfor irrigation
Another example explicitly includes growth of agricultural products but droughts are dealt with
as depletion of the water body. Kuwano et al (2014) considers groundwater stored in a
Bangladeshi aquifer as the water body, from which water is lifted for dry season irrigation using
pumps. The model including parameters $0_{\chi},$

$\alpha$ , and $C$ is set as

$M_{l}=-udt+\sigma_{X}(X_{0}-X_{t})\exp(\sqrt{u})W_{t}^{X}$ (11)

$dY_{t}=0$ (12)

$M_{t}=\alpha u(C-Z_{t})Z_{t}dt+oZ_{t}W_{t}^{Z}$ (13)

with a constant $\sigma$ . Different cases of $f=0,$ $f=-u$ , and $f=-u/x$ are tested, while $g$

is set identical to $z$ . Numerical solutions to the HJB equation system in terms of $\Phi$ and $u^{t}$

for the three cases at $t=0$, 30, 60, and 90 for $T=100$ are shown in Figs. 2, 3, 4, and 5,
respectively. Different restriction ofpumping, which varies with time, is well represented.
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Fig. 2 Computed $\Phi$ and $u$ for different benefit functions at $t=0$

Fig. 3 Computed $\Phi$ and $u$ for different benefit functions at $t=30$
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Fig. 4 Computed $\Phi$ and $u^{*}$ for different benefit functions at $t=60$

Fig. 5 Computed $\Phi$ and $u^{*}$ for different benefit functions at $t=90$
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4. Conclusions
The basic principles ofstochastic control have been applied to practical problems in agricultural
water management. The demonstrated optimal management strategies are in good agreement
with the authors’ field studies. This approach is also being used for developing pilot projects
under uncertainty of hydro-environment. Further researches are needed for efficient numerical
schemes solving HJB equations ofhigher dimensions.
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