Many point reflections at infinity of a time changed reflecting diffusion

Masatoshi Fukushima Osaka University

1 Introduction

The boundary problem of a Markov process X concerns all possible Markovian prolongations of X beyond its life time ζ whenever ζ is finite. Let $Z=(Z_t, \mathbf{Q}_z)$ be a conservative right process on a locally compact separable metric space E and Δ be the point at infinity of E. Suppose Z is transient relative to an excessive measure m: for the 0-order resolvent R of Z, $Rf(z) < \infty$, m-a.e. for some strictly positive function (or equivalently, for any non-negative function) $f \in L^1(E; m)$. Then

$$\mathbf{Q}_z(\lim_{t\to\infty} Z_t = \Delta) = 1$$
 for q.e. $x \in E$,

if Rf is lower semicontinuous for any non-negative Borel function f ([FTa]). The last condition is not needed when X is m-symmetric ([CF2]).

Take any strictly positive bounded function $f \in L^1(E; m)$. Then $A_t = \int_0^t f(Z_s) ds$, $t \ge 0$ is a strictly increasing PCAF of Z with $\mathbf{E}_z^{\mathbf{Q}}[A_\infty] = Rf(x) < \infty$ for q.e. $x \in E$. The time changed process $X = (X_t, \zeta, \mathbf{P}_x)$ of Z by means of A is defined by

$$X_t = Z_{\tau_t}, \ t \ge 0, \quad \tau = A^{-1}, \quad \zeta = A_{\infty}, \quad \mathbf{P}_x = \mathbf{Q}_x, \ x \in E.$$
 (1.1)

Since $\mathbf{P}_x(\zeta < \infty, \lim_{t \to \zeta} X_t = \Delta) = \mathbf{P}_x(\zeta < \infty) = 1$, the boundary problem for X at Δ makes perfect sense. For different choices of f, the corresponding processes X have the same geometric shapes related each other only by time changes. Thus a study of the boundary problem for X is a good way to make a close look at a geometric picture of a conservative transient process Z around Δ .

When a right process Z is m-symmetric, we can work with the associated Dirichlet form $(\mathcal{E}, \mathcal{F})$ on $L^2(E; m)$. Let \mathcal{F}_e and \mathcal{F}^{ref} be its extended Dirichlet space and its reflected Dirichlet space ([CF2]). Then $\mathcal{F} \subset \mathcal{F}_e \subset \mathcal{F}^{\text{ref}}$ and the inner product \mathcal{E} is extended from \mathcal{F} to both spaces. Define the subspace \mathcal{H}^* of \mathcal{F}^{ref} by

$$\mathcal{H}^* = \{ u \in \mathcal{F}^{\text{ref}} : \mathcal{E}(u, v) = 0 \text{ for any } v \in \mathcal{F}_e \}.$$
 (1.2)

The stated boundary problem for Z is closely related to $\dim(\mathcal{H}^*)$. The process Z or the associated Dirichlet form $(\mathcal{E}, \mathcal{F})$ is said to satisfy a *Liouville property* if $\dim(\mathcal{H}^*) = 1$. We will be concerned with the cases where Z are the reflecting Brownian motion on an unbounded domain of \mathbb{R}^n and the distorded Brownian motion on the whole space \mathbb{R}^n .

We first consider the reflecting Brownian motion(RBM) Z on the closure \overline{D} of a Lipschitz domain $D \subset \mathbb{R}^n$ that is a special case of the reflecting diffusion process constructed in [FTo]. Z is always conservative. Z is symmetric with respect to the Lebesgue measure on D and the Dirichlet form \mathcal{E} of Z on $L^2(D)$ is given by

$$\mathcal{E} = \frac{1}{2}\mathbf{D}, \quad \mathcal{D}(\mathcal{E}) = H^1(D) = \mathrm{BL}(D) \cap L^2(D),$$

where

$$\mathbf{D}(u,v) = \int_D \nabla u(x) \cdot \nabla v(x) dx, \quad \mathrm{BL}(D) = \{ u \in L^2_{\mathrm{loc}}(D) : \ |\nabla u| \in L^2(D) \}.$$

BL(D) is the reflected Dirichlet space of Z.

We requires that

(A.1) Z is transient,

and accordingly it must be that $n \geq 3$ and D is unbounded. When $d \geq 3$, an infinite cone D satisfies (A.1) but an infinite cylinder does not. Under (A.1), the extended Sobolev space $H_e^1(D)$ is a Hilbert space with inner product $\frac{1}{2}\mathbf{D}$ so that it does not contain any non-zero constant, while $\mathrm{BL}(D)$ does. Hence $H_e^1(D)$ is a proper subspace of $\mathrm{BL}(D)$ and the space $\mathcal{H}^*(D)$ defined by

$$\mathcal{H}^*(D) = \{ u \in \operatorname{BL}(D) : \ \mathbf{D}(u, v) = 0 \text{ for every } v \in H^1_e(D) \},$$

is a non-trivial family of harmonic functions on D.

In what follows, we assume that $n \geq 3$. A domain $D \subset \mathbb{R}^d$ is called a *uniform domain* if there exists C > 0 such that, for every $x, y \in D$, there is a rectifiable curve γ in D connecting x and y with length $(\gamma) \leq C|x-y|$, and moreover

$$\min\{|x-z|, |z-y|\} \le C \operatorname{dist}(z, D^c)$$
 for every $z \in \gamma$.

A typical example of a unbounded uniform domain is an infinite cone. According to [CF1],

- a domain D containing a unbouded uniform domain satisfies (A.1).
- Z satisfies the Liouville property $\dim(\mathcal{H}^*(D)) = 1$ whenever $D \setminus \overline{B_r(\mathbf{0})}$ is a unbounded uniform domain, for some r > 0.

The proof used the two facts that

- for an unbouded uniform domain D, any $u \in BL(D)$ admits a bounded linear extension to $BL(\mathbb{R}^d)$ ([HK]).
- any harmonic function on \mathbb{R}^d with finite Dirichlet integral is constant, namely, the RBM on \mathbb{R}^n satisfies the Liouville property $\dim(\mathcal{H}^*(\mathbb{R}^n)) = 1$ ([B]).

On the other hand, $\dim(\mathcal{H}^*(D)) = 2$ for a domain with two symmetric cone branches ([CF2]):

$$D = B_1(\mathbf{0}) \cup \left\{ x \in \mathbb{R}^n : x_n^2 > (\sum_{k=1}^{n-1} x_k^2)^{1/2} \right\}, \quad n \ge 3.$$

This domain is not uniform because of the presence of a bottleneck.

2 RBM on a domain with N unbounded uniform branches

In this section, we consider a Lipschitz domain D of \mathbb{R}^n , $n \geq 3$, such that

$$(\mathbf{A.2}) \quad D \setminus \overline{B_r(\mathbf{0})} = \bigcup_{j=1}^N C_j$$

for some r > 0 and an integer N, where C_1, \dots, C_N are unbounded uniform domains whose closures are mutually disjoint.

Obviously D has the property (A.1).

Let ∂_j be the point at infinity of the unbounded closed set \overline{C}_j for each $1 \leq j \leq N$. Denote the N-points set $\{\partial_1, \dots, \partial_N\}$ by F and put $\overline{D}^* = \overline{D} \cup F$. \overline{D}^* can be made to be a compact Hausdorff space if we employ as a local base of neighborhoods of each point $\partial_j \in F$ the neighborhoods of ∂_j in $\overline{C}_j \cup \{\partial_j\}$. \overline{D}^* may be called the N-points compactification of \overline{D} .

For the RBM $Z = (Z_t, \mathbf{Q}_z)$ on \overline{D} , define the approaching probabilities $\varphi_i(x)$ by

$$\varphi_j(x) = \mathbf{Q}_x \left(\lim_{t \to \infty} Z_t = \partial_j \right), \quad x \in \overline{D}, \quad 1 \le j \le N.$$

Theorem 2.1. It holds that

$$\begin{cases} \sum_{j=1}^{N} \varphi_j(x) = 1, & \varphi_j(x) > 0, \quad 1 \leq j \leq N, \quad \text{for every } x \in \overline{D}, \\ \dim(\mathcal{H}^*(D)) = N, & \mathcal{H}^*(D) = \{ \sum_{j=1}^{N} c_j \varphi_j : c_j \in \mathbb{R} \}. \end{cases}$$

We fix a strictly positive $f \in L^1(D)$ and let $X = (X_t, \zeta, \mathbf{P}_x)$ be the time changed process of Z by the PCAF $A_t = \int_0^t f(Z_s) ds$. X is then symmetric with respect to m(dx) = f(x) dx and its Dirichlet form $(\mathcal{E}^X, \mathcal{F}^X)$ on $L^2(D; m)$ is given by $\mathcal{E}^X = \frac{1}{2}\mathbf{D}$, $\mathcal{F}^X = H^1_e(D) \cap L^2(D; m)$. The reflected Dirichlet space of X is still $\mathrm{BL}(D)$. $\varphi_j(x)$ can be rewritten as

$$\varphi_j(x) = \mathbf{P}_x(\zeta < \infty, \ X_{\zeta -} = \partial_j), \quad x \in \overline{D}, \quad 1 \le j \le N.$$

A map Π from the boundary set $F = \{\partial_1, \cdots, \partial_N\}$ onto a finite set $\widehat{F} = \{\widehat{\partial}_1, \cdots, \widehat{\partial}_\ell\}$ with $\ell \leq N$ is called a partition of F. We let $\overline{D}^{\Pi,*} = \overline{D} \cup \widehat{F}$. We extend the map Π from F to \overline{D}^* by setting $\Pi x = x, \ x \in \overline{D}$, and introduce the quotient topology on $\overline{D}^{\Pi,*}$ by Π , in other words,

$$\mathcal{U}_\Pi = \{U \subset \overline{D}^{\Pi, \star}: \Pi^{-1}(U) \text{ is an open subset of } \overline{D}^{\star}\}$$

is taken to be the family of open subsets of $\overline{D}^{\Pi,*}$.

 $\overline{D}^{\Pi,*}$ is a compact Hausdorff space and may be called an ℓ -points compactification of \overline{D} obtained from \overline{D}^* by identifying the points in the set $\Pi^{-1}\widehat{\partial}_i \subset F$ as a single point $\widehat{\partial}_i$ for each $1 \leq i \leq \ell$.

Given a partition Π of F, the approaching probabilities $\widehat{\varphi}_i$ of the time changed RBM $X = (X_t, \zeta, \mathbf{P}_x)$ to $\widehat{\partial}_i \in \widehat{F}$ are defined by

$$\widehat{\varphi}_i(x) = \sum_{j \in \Pi^{-1} \widehat{\partial}_i} \varphi_j(x), \quad x \in \overline{D}, \quad 1 \le i \le \ell.$$

The measure m(dx)=f(x)dx is extended from \overline{D} to $\overline{D}^{\Pi,*}$ by setting $m(\widehat{F})=0$.

- $\widehat{\varphi}_i$ is strictly positive on \overline{D} for every $1 \leq i \leq N$,
- m is a finite measure on \overline{D}
- $G^Xg = G^Z(fg)$ is lower semicontinuous for the 0-order resolvent G^X (resp. G^Z) of X (resp. Z) and any non-negative Borel function g on \overline{D} .

Thus all requirements for the unique existence of ℓ -point extension of X from \overline{D} to $\overline{D}^{\Pi,*}$ in Section 7.7 of [CF2] are fulfilled.

Theorem 2.2. There exists a unique m-symmetric reurrent diffusion extension $X^{\Pi,*}$ of X from \overline{D} to $\overline{D}^{\Pi,*}$. The Diriclet form $(\mathcal{E}^{\Pi,*}, \mathcal{F}^{\Pi,*})$ of $X^{\Pi,*}$ on $L^2(\overline{D}^{\Pi,*}; m)$ $(= L^2(D; m))$ admits the extended Dirichlet space expressed as

$$\begin{cases} \mathcal{F}_e^{\Pi,*} = H_e^1(D) \oplus \{ \sum_{i=1}^{\ell} c_i \widehat{\varphi}_i : c_i \in \mathbb{R} \} \subset BL(D), \\ \mathcal{E}^{\Pi,*}(u,v) = \frac{1}{2} \mathbf{D}(u,v), \quad u,v \in \mathcal{F}_e^{\Pi,*}. \end{cases}$$

Actually the family $\{X^{\Pi,*}:\Pi \text{ is a partition of } F\}$ exhausts all possible m-symmetric conservative diffusion extensions of the time changed RBM X on \overline{D} as will be formulated below. Let E be a Lusin space into which \overline{D} is homeomorpically embedded as an open subset. The measure m(dx)=f(x)dx on \overline{D} is extended to E by setting $m(E\setminus \overline{D})=0$. Let $Y=(Y_t,\mathbf{P}_x^Y)$ be an m-symmetric conservative diffusion process on E whose part process on \overline{D} is identical in law with X. The following theorem extends Theorem 3.4 in [CF1] (the case that N=1).

Theorem 2.3. There exists a partition Π of F such that E is quasi-homeomorphic with $\overline{D}^{\Pi,*}$ and Y is a quasi-homeomorphic image of $X^{\Pi,*}$.

Outline of a proof of Theorem 2.3

Let \mathcal{E}^Y be the Dirichlet form of Y on $L^2(E; m)$. Since \mathcal{E}^Y is quasi-regular, we can use a quasi-homeomorphism to assume

- E is a locally compact separable metric space,
- \mathcal{E}^Y is a regular Dirichlet form on $L^2(E; m)$,
- Y is an associated Hunt process on E,
- $\widetilde{F} := E \setminus \overline{D}$ is quasi-closed.

As Y is a conservative extension of the non-conservative process X, \widetilde{F} is not \mathcal{E}^Y -polar. Every function in \mathcal{F}_e^Y will be taken to be \mathcal{E}^Y -quasi continuous. By Theorem 7.1.6 of [CF2], one can coclude that

$$\begin{cases} \mathcal{F}_e^Y \subset \mathrm{BL}(D), & \mathcal{H}^Y := \{ \mathbf{H}u : u \in \mathcal{F}_e^Y \} \subset \mathcal{H}^*, \\ \mathcal{E}^Y(u, u) = \frac{1}{2} \mathbf{D}(u, u) + \frac{1}{2} \mu_{\langle \mathbf{H}u \rangle}^c(\widetilde{F}), & u \in \mathcal{F}_e^Y, \end{cases}$$

where $\mathbf{H}u(x) = \mathbf{E}_x^Y[u(Y_{\sigma_{\widetilde{E}}})], \ x \in E$. We show that

$$\mu_{\langle u \rangle}^c(\widetilde{F}) = 0 \qquad u \in \mathcal{H}^Y.$$
 (2.1)

Take any $u \in \mathcal{H}^Y$. Theorem 2.1 and the above inclusion imply that $u = \sum_{j=1}^N c_j \varphi_j$ for some constants c_j . As u is continuous along the sample path of Y, u takes only the values $\{c_1, \dots, c_N\}$ on the boundary \widetilde{F} ν -almost everywhre where

$$\nu(B) = \int_{\overline{D}} \mathbf{P}_x^Y \left(Y_{\sigma_{\widetilde{F}}} \in B, \ \sigma_{\widetilde{F}} < \infty \right) m(dx), \ B \in \mathcal{B}(E).$$

Since \widetilde{F} is a quasi-support of ν , u takes only the values $\{c_1, \dots, c_N\}$ quasi-everywhere on \widetilde{F} . (2.1) then follows from the image measure density property of $\mu^c_{\langle u \rangle}$ due to Bouleau-Hirsch.

Define a partition Π of F by means of the values taken by functions in \mathcal{H}^Y along the path of X to obtain

$$(\mathcal{F}_e^Y, \mathcal{E}^Y) = (\mathcal{F}_e^{\Pi,*}, \mathcal{E}^{\Pi,*}).$$

Both being quasi-regular, they are related by a quasi-homeomorphism of their underlying spaces.

Remark 2.4. Given measurable functions $a_{ij}(x)$, $1 \le i, j \le n$, on D such that

$$a_{ij}(x) = a_{ji}(x), \quad \Lambda^{-1}|\xi|^2 \le \sum_{1 \le i,j \le n} a_{ij}(x)\xi_i\xi_j \le \Lambda|\xi|^2, \quad x \in D, \ \xi \in \mathbb{R}^n,$$

for some constant $\Lambda \geq 1$, we define a Dirichlet form $(\mathcal{A}, H^1(D))$ on $L^2(D)$ by

$$\mathcal{A}(u,v) = \int_{D} \sum_{i,j=1}^{n} a_{ij}(x) \frac{\partial u}{\partial x_i}(x) \frac{\partial v}{\partial x_j}(x) dx, \quad u,v \in H^1(D).$$

If we replace the Dirichlet form $(\frac{1}{2}\mathbf{D}, H^1(D))$ on $L^2(D)$ and the associated RBM Z on \overline{D} , respectively, by $(\mathcal{A}, H^1(D))$ and the associated reflecting diffusion process on \overline{D} constructed in [FTo], all assertions stated above remain valid with no essential change.

By this replacement, the extended Dirichlet space and the reflected Dirichlet space are still $H_e^1(D)$ and $\mathrm{BL}(D)$, respectively, although the inner product $\frac{1}{2}\mathbf{D}$ is replaced by \mathcal{A} . It suffices to notice that any function in $\mathrm{BL}(\mathbb{R}^n)$ is a sum of a function in $H_e^1(\mathbb{R}^n)$ and a constant c and $\mathcal{A}(c,c)=0$.

3 Liouville property of energy forms on \mathbb{R}^n

In this section, we consider a positive Borel function ρ on \mathbb{R}^n that is locally bounded above and locally uniformly bounded away from 0, and an associated form

$$\mathcal{E}^{\rho}(u,v) = \int_{\mathbb{R}^n} \nabla u(x) \cdot \nabla v(x) \rho(x) dx. \tag{3.1}$$

 $(\mathcal{E}^{\rho}, C_0^1(\mathbb{R}^n))$ is closable on $L^2(\mathbb{R}^n) = L^2(\mathbb{R}^n, dx)$ and the closure $(\mathcal{E}^{\rho}, \mathcal{F}^{\rho})$ (called an *energy form*) is a strongly local regular Dirichlet form on $L^2(\mathbb{R}^n)$. It is irreducible ([FOT, Theorem 4.6.4]). In general, an irreducible recurrent Dirichlet form enjoys the Liouville property in view of [CF2, Lemma 6.7.3]. It therefore suffices to consider only the transient case in order to study the Liouville property of \mathcal{E}^{ρ} . We shall examine this property when $\rho(x)$ is a positive smooth function depending only on the radial part of the variable $x \in \mathbb{R}^n$.

Theorem 3.1. For any positive smooth function η on $[0, \infty)$, let $\rho(x) = \eta(|x|)$, $x \in \mathbb{R}^n$. Then \mathcal{E}^{ρ} satisfies the Liouville property when $n \geq 2$.

When n = 1, \mathcal{E}^{ρ} satisfies the Liouville property in recurrent case but $\dim(\mathcal{H}^*) = 2$ in transient case.

Proof. According to Theorem 1.6.7 in the first edition of [FOT], \mathcal{E}^{ρ} is transient if and only if

$$\mathbf{(T)} \qquad \int_{1}^{\infty} \frac{1}{\eta(r)r^{n-1}} dr < \infty.$$

In what follows, we assume that η satisfies condition (T).

It then follows from $1/r = (r^{n-3}\eta(r))^{1/2}(\eta(r)r^{n-1})^{-1/2}$ and the Schwarz inequality that

$$\int_{1}^{\infty} r^{n-3} \eta(r) dr = \infty. \tag{3.2}$$

We use the polar coordinate

$$\begin{cases} x_1 = r \cos \theta_1 \\ x_2 = r \sin \theta_1 \cos \theta_2 \\ x_3 = r \sin \theta_1 \sin \theta_2 \cos \theta_3 \\ \dots \\ x_{n-1} = r \sin \theta_1 \sin \theta_2 \dots \sin \theta_{n-2} \cos \theta_{n-1} \\ x_n = r \sin \theta_1 \sin \theta_2 \dots \sin \theta_{n-2} \sin \theta_{n-1}. \end{cases}$$

Then, for $u, v \in C_0^1(\mathbb{R}^n)$,

$$\mathcal{E}^{\rho}(u,v) = \int_{[0,\infty)\times[0,\pi]^{n-2}\times[0,2\pi]} \left[u_r v_r + \frac{u_{\theta_1} v_{\theta_1}}{r^2} + \frac{u_{\theta_2} v_{\theta_2}}{r^2 \sin^2 \theta_1} + \dots + \frac{u_{\theta_{n-1}} v_{\theta_{n-1}}}{r^2 \sin^2 \theta_1 \cdots \sin^2 \theta_{n-2}} \right] \times \eta(r) r^{n-1} \sin^{n-2} \theta_1 \cdots \sin \theta_{n-2} dr d\theta_1 \cdots d\theta_{n-1}.$$
(3.3)

For a smooth function u on \mathbb{R}^n , we denote by $\mathcal{E}^{\eta}(u,u)$ the value of the integral of the right hand side of (3.3) for v=u.

As in the case that $\rho = 1$, the reflected Dirichlet space of \mathcal{E}^{ρ} is given by

$$\mathcal{F}^{\rho,\mathrm{ref}} = \{ u \in L^2_{\mathrm{loc}}(\mathbb{R}^n) : \int_{\mathbb{R}^n} |\nabla u(x)|^2 \eta(|x|) dx < \infty \}.$$

Since $\mathcal{H}^* = \{u \in \mathcal{F}^{\rho,\text{ref}} : \mathcal{E}^{\rho}(u,v) = 0 \text{ for every } v \in C_0^{\infty}(\mathbb{R}^n)\}$, it follows from (3.3) that $u \in \mathcal{H}^*$ if and only if

$$u \text{ is smooth,} \quad \mathcal{E}^{\eta}(u, u) < \infty \quad \text{and} \quad \mathcal{L}u(x) = 0, \ x \in \mathbb{R}^n,$$
 (3.4)

where

$$\mathcal{L}u(r,\theta_{1},\dots,\theta_{n-1}) = \frac{1}{r^{n-1}}(u_{r}\cdot\eta(r)r^{n-1})_{r} + \frac{\eta(r)}{r^{2}\sin^{n-2}\theta_{1}}(u_{\theta_{1}}\sin^{n-2}\theta_{1})_{\theta_{1}} + \frac{\eta(r)}{r^{2}\sin^{2}\theta_{1}\sin^{n-3}\theta_{2}}(u_{\theta_{2}}\sin^{n-3}\theta_{2})_{\theta_{2}} + \dots + \frac{\eta(r)}{r^{2}\sin^{2}\theta_{1}\cdot\sin^{2}\theta_{n-3}\sin\theta_{n-2}}(u_{\theta_{n-2}}\sin\theta_{n-2})_{\theta_{n-2}} + \frac{\eta(r)}{r^{2}\sin^{2}\theta_{1}\cdot\sin^{2}\theta_{n-2}}(u_{\theta_{n-1}})_{\theta_{n-1}}$$
(3.5)

Now take any function $u \in \mathcal{H}^*$. We claim that

$$u_{\theta_{n-1}} = 0. (3.6)$$

Put $w = u_{\theta_{n-1}}$. Due to the expression (3.5) of \mathcal{L} , $\mathcal{L}w = (\mathcal{L}u)_{\theta_{n-1}} = 0$, namely, w is \mathcal{L} -harmonic. For $B_r = \{x \in \mathbb{R}^n; |x| < r\}$ and the uniform probability measure $\Pi(d\xi)$ on ∂B_1 , w therefore admits the Poisson integral formula

$$w(x) = \int_{\partial B_1} K_r(x, r\xi) w(r\xi) \Pi(d\xi). \quad x \in B_r,$$
(3.7)

where $K_r(x, r\xi)$ is the Poisson kernel for B_r with respect to \mathcal{L} , which is known to be continuous in $(x, \xi) \in B_r \times \partial B_1$. We also note that $K_r(0, r\xi) = 1$ for any $\xi \in \partial B_1$ by the rotation invariance of \mathcal{L} around the origin 0.

Fix a > 0. It then holds For any r > a that

$$K_r(x, r\xi_2) = \int_{\partial B_a} K_a(x, a\xi_1) K_r(a\xi_1, r\xi_2) \Pi(d\xi_1), \quad x \in B_q, \ \xi_2 \in \partial B_1.$$

Hence, if we let $\sup_{x\in B_{a/2}, \xi_1\in\partial B_1} K_a(x, a\xi_1) = C_a < \infty$, then, for $x\in B_{a/2},\ \xi_2\in\partial B_1$,

$$K_r(x, r\xi_2) \le C_a \int_{\partial B_1} K_r(a\xi_1, r\xi_2) \Pi(d\xi_1) = C_a K_r(0, r\xi_2) = C_a,$$

and it follows from (3.7) that

$$|w(x)| \le C_a \int_{\partial B_1} |w(r\xi)| \Pi(d\xi), \quad x \in B_{a/2}, \quad r > a.$$

Recall that $w = u_{\theta_{n-1}}$. We multiply the both hand side of the above inequality by $r^{n-3}\eta(r)$, integrate in r from a to R, apply the Schwarz inequality and finally use the expression (3.3) to get

$$|u_{\theta_{n-1}}(x)| \leq \frac{C_a}{\sqrt{\sigma_n}} \left[\int_a^R r^{n-3} \eta(r) dr \right]^{-1/2} \cdot \sqrt{\mathcal{E}^{\eta}(u, u)}, \quad x \in B_{a/2},$$

which tends to 0 as $R \to \infty$ by (3.2). Since a > 0 is arbitrary, we arrive at (3.6).

It also holds that

$$u_{\theta_k} = 0 \quad \text{for any} \quad 1 \le k \le n - 1. \tag{3.8}$$

In fact, if we let $\xi_i = \frac{x_i}{r}$, $1 \le i \le n$, $\xi = (\xi_1, \dots, \xi_n) \in \partial B_1$, then θ_k , $1 \le k \le n-1$, is an angle of two *n*-vectors $\xi^{(k)} = (\underbrace{0, \dots, \xi_n}_{k-1})$, $\mathbf{e}_k = (\underbrace{0, \dots, \xi_n}_{k-1})$, $\mathbf{e}_k = (\underbrace{0, \dots, \xi_n}_{k-1})$. Consider the

subspace V of \mathbb{R}^n spanned by ξ^k and \mathbf{e}_k and take a unit vector $\hat{\mathbf{e}}$ in V orthogonal to \mathbf{e}_k . Let O be an orthogonal matrix whose (n-1)-th and n-th column vectors are \mathbf{e}_k and $\hat{\mathbf{e}}$, respectively. We make the orthogonal transformation $\mathbf{y} = {}^tO\mathbf{x}$. Then θ_k equals an angle of two vectors on the (y_{n-1}, y_n) -plane in the new coordinate system \mathbf{y} and (3.6) applies.

Thus u depends only on r and, in terms of a scale function $ds(r) = \frac{dr}{\eta(r)r^{n-1}}$ on $(0, \infty)$, (3.3) and (3.6) are reduced, respectively, to

$$\mathcal{E}^{\eta}(u,u) = \sigma_n \int_0^{\infty} \left(\frac{du(r)}{ds(r)}\right)^2 ds(r), \qquad \mathcal{L}u(r) = \frac{1}{r^{n-1}} \frac{d}{dr} \cdot \frac{du(r)}{ds(r)}.$$

By (3.4), $\mathcal{L}u=0$ so that $u(r)=C_1+C_2$ $s(r),\ r>0$, for some constant $C_1,\ C_2$. Since $\mathcal{E}^{\eta}(s,s)=\sigma_n\cdot s(0,\infty)$ is finite if and only if n=1, we get the desired conclusions from (3.4). \square

It is conjectured that the energy form \mathcal{E}^{ρ} satisfies the Liouville property for any ρ prescribed in the above of (3.1) when $n \geq 2$.

The diffusion process Z on \mathbb{R}^n associated with \mathcal{E}^ρ is called the distorted Brownian motion. Let X be its time changed process defined as (1.1) by means of m(dx) = f(x)dx for a strictly positive bounded function $f \in L^1(\mathbb{R}^n)$. Let $\mathbb{R}^n \cup \{\Delta\}$ be the one point compactification of \mathbb{R}^n . If \mathcal{E}^ρ satisfies the Liouville property, then it can be shown as [CF1, Theorem 3.4] that any m-symmetric proper diffusion extension of X shares the same finite dimensional distribution with the one-point reflection of X at Δ . See [F2] for more details on these points.

References

- [B] M. Brelot, Étude et extensions du principe de Dirichlet, Ann. Inst. Fourier 3(1953/54), 371-419
- [CF1] Z.-Q. Chen and M. Fukushima, On unique extension of time changed reflecting Brownian motions, Ann. Inst. Henri Poincaré Probab. Statist. 45 (2009), 864-875
- [CF2] Z.-Q. Chen and M. Fukushima, Symmetric Markov Processes, Time Change and Boundary Theory, Princeton University Press, 2011
- [CF3] Z.-Q. Chen and M. Fukushima, One-point reflections, Stochastic Process Appl. 125(2015), 1368-1393 f Dirichlet forms, Nagoya Math. J 136(1994), 1-15
- [F1] M. Fukushima, From one dimensional diffusions to symmetric Markov processes, Stochastic Process Appl. 120(2010), 590-604
- [F2] M. Fukushima, A note on Liouville property of harmonic functions of finite energy, at Workshop on Probability at Kansai University, January 31, 2015
- [FOT] M. Fukushima, Y. Oshima and M. Takeda, Dirichlet forms and symmetric Markov processes, de Gruyter, 1994, 2nd revised Edition, 2010
- [FTa] M. Fukushima and M. Takeda, Markov Processes (in Japanese), Baifukan, Tokyo, 2008, Chinese translation by P.He, ed. by J. Ying, Science Press, Beijing, 2011
- [FTo] M. Fukushima and M. Tomisaki, Construction and decomposition of reflecting diffusions on Lipschitz domains with Hölder cusps, Probab. Theory Relat. Fields 106(1996), 521-557
- [HK] D.A. Herron and P. Koskela, Uniform Sobolev extension and quasiconformal circle domains, J. Anal. Math. 57(1991), 172-202
- [MR] Z.-M. Ma and M. Röckner, Introduction to the Theory of (non-symmetric) Dirichlet forms, Springer, 1992
- [P] Ross G. Pinsky, Transience/recurence for normally reflected Brownian motion in unbounded domains, Ann. Probab. 37(2009), 676-686

Osaka University

E-mail address: fuku2@mx5.canvas.ne.jp

大阪大学 福島 正俊