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Many point reflections at infinity
of a time changed reflecting diffusion

Masatoshi Fukushima
Osaka University

1 Introduction

The boundary problem of a Markov process X concerns all possible Markovian prolongations
of X beyond its life time ¢ whenenver ( is finite. Let Z = (Z;,Q,) be a conservative right
process on a locally compact separable metric space E and A be the point at infinity of E.
Suppose Z is transient relative to an excessive measure m: for the 0-order resolvent R of Z,
Rf(z) < 0o, m-a.e. for some strictly positive function (or equivalently, for any non-negative
function) f € L(E;m). Then

Q.(lim Z, = A)=1 forqe z€E,
t—o00

if Rf is lower semicontinuous for any non-negative Borel function f ([FTa]). The last condition
is not needed when X is m-symmetric ([CF2]).

Take any strictly positive bounded function f € L!(E;m). Then 4; = fg f(Zs)ds, t >0 is
a strictly increasing PCAF of Z with EQ[As] = Rf(z) < oo for q.e. & € E. The time changed
process X = (X;,(,P;) of Z by means of A is defined by

Xi=2,,t>0, T=A"', (=Ay, P:=Q z€E. (1.1)

Since Pz({ < 00, %inéXt = A) = P;({ < o0) = 1, the boundary problem for X at A makes
—

perfect sense. For different choices of f, the corresponding processes X have the same geometric
shapes related each other only by time changes. Thus a study of the boundary problem for X
is a good way to make a close look at a geometric picture of a conservative transient process Z
around A.

When a right process Z is m-symmetric, we can work with the associated Dirichlet form
(€,F) on L%(E;m). Let F. and F™* be its extended Dirichlet space and its reflected Dirichlet
space ([CF2]). Then F C F. C F™f and the inner product £ is extended from F to both spaces.
Define the subspace H* of F™f by

H* ={ue F*:Euw)=0 forany veF}. (1.2)

The stated boundary problem for Z is closely related to dim(H*). The process Z or the asso-
ciated Dirichlet form (&€, F) is said to satisfy a Liouville property if dim(H*) = 1. We will be
concerned with the cases where Z are the reflecting Brownian motion on an unbounded domain
of R™ and the distorded Brownian motion on the whole space R™.

We first consider the reflecting Brownian motion(RBM) Z on the closure D of a Lipschitz
domain D C R" that is a special case of the reflecting diffusion process constructed in [FTo].
Z is always conservative. Z is symmetric with respect to the Lebesgue measure on D and the
Dirichlet form £ of Z on L?(D) is given by

€= %D, D(€) = H\(D) = BL(D) N L}(D),



where

D‘(u,v) = L Vu(z) - Vu(z)dz, BL(D)={ue L} .(D): |Vu| € L*(D)}.

- BL(D) is the reflected Dirichlet space of Z.
We requires that

(A.1) Z is transient,

and accordingly it must be that n > 3 and D is unbounded. When d > 3, an infinite cone D

satisfies (A..1) but an infinite cylinder does not. Under (A.1), the extended Sobolev space H}(D)

is a Hilbert space with inner product %D so that it does not contain any non-zero constant,

while BL(D) does. Hence H}(D) is a proper subspace of BL(D) and the space H*(D) defined

by ' ,
H*(D) = {u € BL(D) : D(u,v) = 0 for every v € H}(D)},

is a non-trivial family of harmonic functions on D.

In what follows, we assume that n > 3. A domain D C R? is called a uniform domain if
there exists C' > 0 such that, for every z,y € D, there is a rectifiable curve v in D connecting z
and y with length(y) < C|z — y|, and moreover

min{|z — 2|, |z —y|} < Cdist(z, D) for every z € 7.

A typical example of a unbounded uniform domain is an infinite cone.
According to [CF1],

e a domain D containing a unbouded uniform domain satisfies (A.1).
e 7 satisfies the Liouville property dim(#*(D)) = 1 whenever D \ B,(0) is a unbounded
uniform domain, for some r > 0.

The proof used the two facts that

o for an unbouded uniform domain D, any u € BL(D) admits a bounded linear extension
to BL(R?) ([HK]).

e any harmonic function on R¢ with finite Dirichlet integral is constant, namely, the RBM
on R" satisfies the Liouville property dim(H*(R")) = 1 ([B]).

On the other hand, dim(#*(D)) = 2 for a domain with two symmetric cone branches ([CF2)):

n—1
D = B;(0) U {x cER™: 22 > (Zxﬁ)l/z}, n > 3.
k=1

This domain is not uniform because of the presence of a bottleneck.

2 RBM on a domain with N unbounded uniform branches

In this section, we consider a Lipschitz domain D of R", n > 3, such that

N
(A2) D\ B0 = |J ¢
j=1
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for some r > 0 and an integer N, where Cj,--- ,Cy are unbounded uniform domains whose
closures are mutually disjoint.

Obviously D has the property (A.1).

Let 0; be the point at infinity of the unbounded closed set C for each 1 < j < N. Denote
the N-pomts set {01, --,0y} by Fandput D = DUF. D can be made to be a com-
pact Hausdorff space if we employ as a local base of neighborhoods of each point 9; € F' the
neighborhoods of 8; in C; U {9;}. D" may be called the N-points compactification of D.

For the RBM Z = (Z;,Q,) on D, define the approaching probabilities p;(x) by
<pj(x)=Qz(t1§gOZt=aj), ze€D, 1<j<N.
Theorem 2.1. [t holds that
{Z;-V1¢j():1 <pj()>0 1<j<N, foreveryz€D,
dim(H*(D)) =N. H*(D)= {Z =16%5: ¢ € R}

We fix a strictly posmve f € LY(D) and let X = (Xy,(,P;) be the time changed process of
Z by the PCAF A; = fo f(Zs)ds. X is then symmetric with respect to m(dz) = f(z)dz and its
Dirichlet form (£X, FX) on L?(D;m) is given by &X' =1D, FX = HY(D) N L3(D;m).
The reflected Dirichlet space of X is still BL(D). ¢;(z) can be rewritten as

9j(x) =Pz(( < o0, X;-=9;), €D, 1<j<N.

A map II from the boundary set F' = {01, --- ,0n} onto a finite set F= {51, e ,5g} with
£ < N is called a partition of F. We let D" = DU F. We extend the map II from F to D" by
setting IIz = z, z € D, and introduce the quotient topology on D' by II, in other words,

Un={UC D I~Y(U) is an open subset of D"}

is taken to be the family of open subsets of D,

D" is a compact Hausdorff space and may be called an ¢-points compactification of D
obtained from D" by identifying the points in the set II~ 15, C Fasa single point d; for. each
1<i<¥4.

Given a partition IT of F, the approaching probabilities @; of the time changed RBM X =
(X:,¢,Py) to 8; € F are defined by

gi(x)= D @j(x), zeD, 1<i<L
jen-15;

The measure m(dr) = f(x)dz is extended from D to D by setting m(ﬁ) =0.
e {; is strictly positive on D for every 1 <i < N,
e m is a finite measure on D

e GXg = G?(fg) is lower semicontinuous for the 0-order resolvent GX (resp. GZ) of X
(resp. Z) and any non-negaitve Borel function g on D.

Thus all requirements for the unique existence of #-point extension of X from D to D—n’* in
Section 7.7 of [CF2] are fulfilled.



Theorem 2.2. There exists a unique m-symmetric rcurrent diffusion extension X of X
from D to D'*. The Diriclet form (EILx FIL*) of XTL* o L2(D'“’*;m) (= L2(D;m)) admits
the extended Dirichlet space expressed as

F'=HUD) ® {Ti_,afi : ci€R} C BL(D),
E%%(u,0) = § D(wv),  wveF,

Actually the family {X™* : II is a partition of F} exhausts all possible m-symmetric con-
servative diffusion extensions of the time changed RBM X on D as will be formulated below.
Let E be a Lusin space into which D is homeomorpically embedded as an open subset. The
measure m(dz) = f(z)dz on D is extended to E by setting m(E\ D) = 0. Let ¥ = (Y;, PY) be
an m-symmetric conservative diffusion process on E whose part process on D is identical in law
with X. The following theorem extends Theorem 3.4 in [CF1] (the case that N = 1).

Theorem 2.3. There exists a partition I of F such that E is quasi-homeomorphic with D
~and Y is a quasi-homeomorphic image of X*.

Outline of a proof of Theorem 2.3
Let £Y be the Dirichlet form of Y on L%(E;m). Since £Y is quasi-regular, we can use a quasi
homeomorphism to assume

e E is a locally compact separable metric space,
e &Y isa regular Dirichlet form on LQ(E; m),

e Y is an associated Hunt process on E,

e F:= E\ D is quasi-closed.

As Y is a conservative extension of the non-conservative process X, F is not EY -polar. Every
function in FY will be taken to be £¥-quasi continuous. By Theorem 7.1.6 of [CF2], one can

coclude that
{};Y CBL(D), HY :={Hu:ue FY}cCH

€Y (u,u) = 3D (u,u) + july, (F), we FY,
where Hu(x) = E{[U(Ygﬁ)], x € E. We show that
Ko@) =0 uen”. (2.1)

Take any u € HY. Theorem 2.1 and the above inclusion imply that u = Zjvzl c;jp; for some
constants c;. As u is continuous along the sample path of Y, u takes only the values {c1,- - ,cen}
on the boundary F v-almost everywhre where

v(B) = /513;/ (Yaﬁ € B, 05 < oo) m(dz), B € B(E).

Since F is a quasi-support of v, u takes only the values {ci, - ,cy} quasi-everywhere on F.

(2.1) then follows from the image measure density property of u?w due to Bouleau-Hirsch.

Define a partition IT of F by means of the values taken by functions in HY along the path
of X to obtain
(F.€Y) = (F,e™).

Both being quasi-regular, they are related by a quasi—homeoniorphism of their underlying spaces.
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Remark 2.4. Given measurable functions a;;(z), 1 <¢,j < n, on D such that

aij(z) = aji(z), AP < D ay(@)&g < AP, zeD, EeRY,

1<i,j<n

for some constant A > 1, we define a Dirichlet form (4, H'(D)) on L?(D) by

BU 1
A(u,v) / Z 6:1:1 89:1 —(x)dz, wu,v€ H(D).

1_71

If we replace the Dirichlet form (1D, H!(D)) on L?(D) and the assoicated RBM Z on D,
respectively, by (A, H(D)) and the associated reflecting diffusion process on D constructed in
[FTo], all assertions stated above remain valid with no essential change.

By this replacement, the extended Dirichlet space and the reflected Dirichlet space are still
H}(D) and BL(D), respectively, although the inner product %D is replaced by A. It suffices
to notice that any function in BL(R") is a sum of a function in H}(R™) and-a constarit ¢ and

Ale,c) = 0.

3 Liouville property of energy forms on R"

In this section, we consider a positive Borel function p on R™ that is locally bounded above and
locally uniformly bounded away from 0, and an associated form

EP(u,v) = /n Vu(z) - Vu(z)p(z)dz. (3.1)

(EP,CA(R™)) is closable on L?*(R") = L?(R", dz) and the closure (€7, F*) (called an energy
form) is a strongly local regular Dirichlet form on L2(R™). It is irreducible ([FOT, Theorem
4.6.4]). In general, an irreducible recurrent Dirichlet form enjoys the Liouville property in view
of [CF2, Lemma 6.7.3]. It therefore suffices to consider only the transient case in order to study
the Liouville property of £°. We shall examine this property when p(z) is a positive smooth
function depending only on the radial part of the variable z € R".

Theorem 3.1. For any positive smooth function n on [0,00), let p(z) = n(|z|), = € R"™. Then
EP satisfies the Liouville property when n > 2.

When n = 1, P satisfies the Liouville property in recurrent case but dim(H*) = 2 in transient
case.

Proof. According to Theorem 1.6.7 in the first edition of [FOT], £° is transient if and only if
o0
1
T / —————dr < oo.
@) wme

In what follows, we assume that 7 satisfies condition (T').
It then follows from 1/r = (r"~37(r))/?(n(r)r"~1)~1/2 and the Schwarz inequality that

/ - " 3n(r)dr = oo (3.2)
1



We use the polar coordinate

(acl =rcosbth
T9 = rsinf; cos by

z3 = rsinf sin fy cos O3

-

ZTp-1 =7rsinf;sinfy ---sinf,_o cosb,_1

(Zn =T sin@; sinfs - - -sinf,,_osinb,_1.
Then, for u,v € C}(R"),

| EP(u,v) (3.3)

Ugl U@l

. Uug., Vg Uug,,_1Y6,,
[U’rU’r“" 7"2 + 22 . nol nol

r? sin? 6; r2sin%6; - - -sin? 6,_

-/[0700)><[0,7T]"‘2>< [0,2]
xn(r)r"sin" 2 @; - - -sin b, _odrdfy - - - dby,_,.

For a smooth function u on R", we denote by £7(u,;u) the value of the integral of the right hand
side of (3.3) for v = .
As in the case that p = 1, the reflected Dirichlet space of £7 is given by

Fort = {ue L @) s [ Vu(@)n(alde < oo}
IR’"

Since H* = {u € FP™ : £P(u,v) = 0 forevery v € C§P(R™)}, it follows from (3.3) that
u € H* if and only if . :

u is smooth, &£(u,u) <oco and Lu(z)=0, r€R", (3.4)
where
‘Cu(r? 617 o 7971—1) (35)
1 n—1 n(r)  n—2 n(r) : n—3
= M_—I(UT -n(r)r )r + m(uol sin 01)91 + r2 sin? 6, sin™3 05 (ug2 sin™ 92)92
n(r) , n(r) ’
+ O
r2sin% @) - - -sin? 0,3 sin b, (U, 3 5inbn-2), , + r2sin®0; - - -sin?6,,_o (Uon-1)on-
Now take any function u € H*. We claim that
ug,_, =0. (3.6)

Put w = ug, ,. Due to the expression (3.5) of £, Lw = (Lu)s,_, = 0, namely, w is £-harmonic.
For B, = {z € R™|z| < r} and the uniform probability measure II(d¢) on dB;, w therefore
admits the Poisson integral formula

w(z) = /6 Koo, ruroN@e). < e B, @

where K (z,7§) is the Poisson kernel for B, with respect to £, which is known to be continuous
in (z,¢) € B, x 8B;. We also note that K,(0,7¢) = 1 for any ¢ € dB; by the rotation invariance
of £ around the origin 0.
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Fix a > 0. It then holds For any r > a that
Kr(.'L',TEQ) = AB Ka(l', agl)Kr(aﬁl,'fo)H(dfl), TE Bq1 52 € aBl

Hence, if we let sup K,(z,at) = C, < 00, then, for z € Bg2, & € 0By,
T€B,/2.£1€0B

K. (z,m&) < C, 5 Kr(af1,762)I1(d61) = Co K (0,762) = C,,

and it follows from (3.7) that
W@ <Co [ (W), 2 €Bup 70
9By

Recall that w = ug__,. We multiply the both hand side of the above inequality by r"~37(r),
integrate in r from a to R, apply the Schwarz inequality and finally use the expression (3.3) to

get
-1/2

R
sl < 2| [T VBT, e B,

which tends to 0 as R — oo by (3.2). Since ¢ > 0 is arbitrafy, we arrive at (3.6).
It also holds that

ug, =0 forany 1<k<n-1 (3.8)

In fact, if we let & = %, 1 < i< n, & = (&, ,6n) € OBy, then O, 1 <k <n-—1,1s

an angle of two n-vectors §(k) = (0,---0,&, - ,&n), e =(0,---0,1,0,---,0). Consider the
k-1 " k-1

subspace V of R™ spanned by ¢ and e; and take a unit vector € in V orthogonal to eg. Let
O be an orthognal matrix whose (n — 1)-th and n-th column vectors are €j and €, respectively.
We make the orthogonal transformation y = !Ox. Then ) equals an angle of two vectors on
the (yn—1, yn)-plane in the new coordinate system y and (3.6) applies.

Thus u depends only on r and, in terms of a scale function ds(r) = n (0, 00), (3.3)

dr
n(ryr=1 °

and (3.6) are reduced, respectively, to

_ @/ du(r)\? 1 d du(r)
En(u,u)—dn/o (ds(r)) ds(r), Lu(r) = r"‘lﬂ.ds(r)'

By (3.4), Lu = 0 so that u(r) = C; + Cy s(r), r > 0, for some constant C;, Cs. Since
EN(s,8) = o, -5(0, 00) is finite if and only if n = 1, we get the desired conclusions from (3.4). O

It is conjectured that the energy form £ satisfies the Liouville property for any p prescribed
in the above of (3.1) when n > 2.

The diffusion process Z on R™ associated with £ is called the distorted Brownian motion.
Let X be its time changed process defined as (1.1) by means of m(dz) = f(z)dz for a strictly
positive bounded function f € L}(R™). Let R® U {A} be the one point compactification of R™.
If £° satisfies the Liouville property, then it can be shown as [CF1, Theorem 3.4] that any m-
symmetric proper diffusion extension of X shares the same finite dimensional distribution with
the one-point reflection of X at A. See [F2] for more details on these points.
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