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Affine-invariant quadruple systems

By

X1a0-NaN Lu*

§1. Introduction

Let t, v, k, A be positive integers satisfying v > k > t. A t-(v,k, ) design is an
ordered pair (V, B), where V is a finite set of v points, B is a collection of k-subsets of V,
say blocks, such that every t-subset of V occurs in exactly A blocks in B. In what follows
we simply write t-designs. A 3-(v,4,1) design is called a Steiner quadruple system and
denoted by SQS(v). It is known that an SQS(v) exists if and only if v = 2,4 (mod 6)
(see [9]). For A > 1, a 3-(v, 4, ) design is called a A-fold quadruple system and denoted
by A-fold QS(v) for short.

An automorphism group G of a t-design (V,B) is a permutation group defined
on V which leaves B invariant. For a fixed block B € B, the orbit of B under G is
O¢g(B) = {BY | g € G}. Thus, B can be partitioned into orbits under G, say G-orbits.
Moreover, if the cardinality of an orbit O equals to the order of G, then O is said to be
full, otherwise, short. Any block in O can be regarded as a base block of the orbit.

In particular, a t-(v, k, A)-design is said to be cyclic if it admits a cyclic group
C, of order v as its automorphism. A C,-orbit is called a cyclic orbit. Without loss
of generality, we identify the point set of a cyclic t-design with the additive group of
Z, = Z/vZ, the integers modulo v. Furthermore, a cyclic t-design is said to be strictly
cyclic, if all cyclic orbits are full. In what follows, we denote a cyclic SQS by CSQS, a
strictly cyclic SQS by sSQS. The necessary conditions for the existence of a CSQS(v)
and an sSQS(v) are v = 2,4 (mod 6) and v = 2,10 (mod 24) respectively (see [12]).

The work on sSQS by Kohler [12] established a connection between sSQS and 1-
factors of “Kohler graphs” named after him. Some approaches to Koéhler’s work by
Siemon [23] [24] checked the existence of 1-factors of “Kohler graphs” for quite a few
admissible parameters. Piotrowski [22] constructed sSQS(2p) admitting the dihedral
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group D, as automorphism. For more information on CSQS and SQS with other
specified automorphism groups, the reader may refer to Lindner and Rosa [17], Grannel
and Griggs [8], Hartman and Phelps [10], Munemasa and Sawa [21].

Let (Z,,B) be an sSQS. For any B € Band 7: z — az, a € Z), if B™ € B, then
a is called a multiplier of (Z,, B), where Z) is the multiplicative group of Z,, i.e. the
group of all units of Z,,.

Definition 1.1.  For an sSQS (Z,, B), if all the units of Z, are multipliers, then
(Z,, B) is said to be affine-invariant.

In another words, an affine-invariant sSQS (Z,, B) admits the affine group A as an
automorphism, where A is defined by A = {(i,a) | i € Z,, 0 € Z}} 2 Z, x ZY. Given
a quadruple B, denote the orbit of B under the affine group A by O4(B), say an affine
orbit.

Example 1.2.  The unique (up to isomorphism) SQS(10) is affine-invariant strictly
cyclic. Let Z1g be its point set. Let

B; ={0,1,5,9}, B;=1{0,2,58}, Bs;={0,1,3,4}

be base blocks of the cyclic orbits. We have B; x3+5 = {0,3,5,7}+5 = {5,8,0,2} = B,
over Z1o. Hence, the cyclic orbits of B; and B, are contained in the same affine orbit.
In fact, there are two affine orbits having B; (or B3) and Bj as base blocks respectively.

In general, for 3-(v,4, ) designs admitting the affine group, we also say they are
affine-invariant. Affine-invariant 3-(p, 4, \) designs were first proposed by Kohler [14]
for odd primes p and admissible A by means of some graph KG(p). Along this direction,
Brand and Sutinuntopas [4] generalized Kohler’s results to finite fields. In particular,
we denote a 2-fold quadruple system of order v by 2QS(v) for short.

Theorem 1.3 (Kohler [14]).  If the graph KG(p) has a 1-factor, then
(i) an affine-invariant 3-(p,4,2) designs exists, for p=1,5 (mod 12) and
(i) an affine-invariant 3-(p,4,4) designs ezists, for p=17,11 (mod 12).

Approach on sSQS (i.e., A = 1) is less known. Yoshikawa [29] presented the follow-
ing results in his master thesis.

Theorem 1.4 (Yoshikawa [29]).  There exists an affine-invariant sSQS(2p), for
prime p = 1,5 (mod 12) and 5 < p < 200, p # 13, i.e., p € {5, 17, 29, 37, 41, 53, 61,
73, 89, 97, 101, 109, 113, 137, 149, 157, 173, 181, 193, 197}.
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§2. A family of graphs associated with PSL(2,p)

In this section, we introduce a family of graphs which play important roles in
our constructions. Suppose p is a prime with p = 1,5 (mod 12). Let F, denote the
finite field of order p. Denote the 1-dimensional projective line by 2?(FF,) which can be
identified with F, U {o0}.

Let -
1-2x
be mapping in PSL(2,p). Let z € F(F,). Denote the orbit of z under the subgroups

(0a,0B) by C(z), ie.,

ca:x—l—x, op:x——, oOoCc:TH
T

1l z-1 =z 1
— (O - il _
C(z) ={z° |o € (ca,0B)} {:v,x, ~ ’x—l’l—x’l q;}

Thus P(F,) can be partitioned into {C(z) | z € P(Fp)}. In projective geometry,
C(z) is also called the cross-ratio class with respect to z. The cardinality of C(z) is

established as follows.

3 ifze{0,1,00}U{-1,2,271};
[Clx)| =42 ifze{£1-¢h

6 otherwise,
where £ = _IL%E is a root of 2 —z + 1 =0, when p =1 (mod 3).

Definition 2.1.  Let CG(Z(F,)) be a graph (multigraph with loops) with vertex
set V ={C(z) |z € P(Fp)}. For any pair of vertices (not necessarily distinct) C,C’ €
V, let C be adjacent to C’ by r¢ ¢ edges, where r¢ ¢ = % {z |z e Cz°¢ €C'}.

Let Q, = F, \ {0,1,~-1,2,27'}. Let CG(Q,) denote the induced subgraph on
{C(z) | z € Qp} of CG(L(Fp)). In another word, by removing the vertices C'(0) and
C(2) from CG(Z(F,)), the resulting graph is CG(£),). Let CG*(£,) denote the re-
sulting graph (possibly having multiple edges) obtained by removing all loops from
CG(Q,).

Lemma 2.2 ([19],(18]). Forp > 17, in CG*(2,), all the vertices have degree 3
except the following.

(i) C(3) has degree 2;
(i) Forp=1 (mod 12), C(&) has degree 1, where { = bzg is a root of t?—x+1 = 0;

(iii) C(x) has degree 2, where x = l—t—g—__—l is a oot of 2x® — 2xr +1=0;
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w) For p = 1,29,41, mo , as degree 1, where py = is a root o
v) F 1,29,41,49 (mod 60), C(u) has degree 1, wh 3445 f
2?-3z+1=0.

Theorem 2.3 ([19],(18]). Forp=1,5 (mod 12) andp # 1,49 (mod 60), CG(£,)
has a I-factor if it has no bridge besides its pendant edge.

§3. Direct Constructions of affine-invariant sSQS(2p)

Suppose (Zyp, B) is an affine-invariant sSQS, where p = 1,5 (mod 12) is prime,
which satisfies the necessary condition for the existence of an sSQS(2p) (see [12]). Denote
the set of nonzero elements of the finite field Z,, by Z;. We identify the point set Zy, with
Zy X L3, and denote the point (z,y) by z, for convenience. Additions and multiplications

over Zy X Zy are defined as follows:
Ty + ZB;; =(z + .’L‘/)(y+y/)
Ty =(x2")(yy)
where z + z/, zz’ are addition and multiplication modulo p, and y + ¥/, yy’ are ad-

dition and multiplication modulo 2. For an sSQS (Z, x Z,B), we classify all blocks
(quadruples) in B into three types.

Type I contains all the quadruples of form {ao, bg, ¢1, d1 }, simply denoted by {a, b; ¢, d},
where a # b and ¢ # d.

Type II contains all the quadruples of form {ag, bo,co,d1} or {ai,b1,c1,dp} simply
denoted by {a,b,c;d}, where a, b, ¢ are pairwise distinct.

Type III contains all the quadruples of form {ag, bo, co,do} or {a1,b1,c1,d;}, simply
denoted by {a,b, ¢, d}, where a,b, c,d are pairwise distinct.

Similarly, the triples of form {ao, by, co} or {ai, b1, 1} are called pure triples, simply
denoted by {a,b,c}, and the triples of form {ag, bo,c1} or {a1,b1,co} are called mized
triples simply denoted by {a, b;c}. Clearly, pure triples are contained in Type II and
(or) IIT quadruples, and mixed triples are contained in Type I and (or) IT quadruples.

Construction 3.1 ([19]).  If CG(f,) has a 1-factor, let a1,az,...,a, 2 be ele-
ments in {2, such that ‘

B(F) = {{C(a1), C(a{%)}, {C(a2), C(@§)} ., {Clay 1), C(aTg, )} }

is the edge set of F.
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Let b, by, ..., be1 be elements in Z, \ {0,1,27'}, such that
{orbac(bi) |i=1,2,..., B} = {orbac(b) | b€ Z, \ {0,1,27"}},

where orbac(b) = {b,1 - b, 225, 255 }-
All base blocks of affine-invariant sSQS(2p) are shown as follows.

(i) For p=1 (mod 12),

Type I, {0,1;b;,1-b;}, fori=1,2,..., 23,
Type I', {0,1,-1;0},
Type III', {0,1,¢,€7°},
Type III, {0,1,a;,1—a;}, fori=1,2,...,2023 a; & C(£§) UC(E7°),

where £ = bZE is a root of z2 — z + 1 = 0 over Z,.
(ii) For p=5 (mod 12),

Type I, {0,1;b;,1—b;}, fori=1,2,..., 82,
TypeII’, {0711_1’0}a
Type I, {0,1,a;,1—a;}, fori=1,2,..., 22

§4. Recursive Constructions of affine-invariant sSQS(2p™)

Let p = 5 (mod 12). We begin by giving the recursive construction of an affine-
invariant sSQS over Zyp2 = Zp2 X Zg from the affine-invariant sSQS over Zgp = Zy, X Zo.

Construction 4.1 ([20]). For prime p = 5 (mod 12), the base blocks of the
affine-invariant sSQS(2p?) are

Type I {0,1; 0,5}

Type I {0,1;b; + sp,1 — (b; + sp)}, fori =1,2,..., 22, s=0,1,...,p— 1;
Type II' {0,1,—1 + sp; sp}, for s = 0,1,..., 2%,
TypeIII {O’I’ai+sp’1_ (a’i+sp)}’ for i = 1a2a"-)%, SZO,].,...,p—]_;
Type IV {0,p, s;as + 271 8p}, for s = g%, ¢*,.. .,g%%, g is a generator of Z;
Type V pB (mod p?), for all base blocks B of the affine-invariant sSQS(2p),

where a, 3 are roots of 222 — 2z + 1 = 0 over Zya.
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Furthermore, the recursive construction can be generalized to affine-invariant sSQS(2p™).

Construction 4.2 ([20]). For prime p = 5 (mod 12), if the affine-invariant
sSQS(2p) and sSQS(2p™ ') are constructed, then the base blocks of the affine-invariant
sSQS(2p™) can be obtained as follows.

Type I' {0,1;, 8}

Type I {0,1;b; +sp™ 1,1 - (b; + sp™ 1)}, fori=1,2,...,22%, s =0,1,...,p— 1;
Type II' {0,1,—1+ sp™~1; sp™~1}, for s = 0, 1,...,3’—;1;
Type III {0,1,a; + sp™~*,1 — (a; + sp™~1)}, for i = 1,2,...,”—1—{-’, s=0,1,...,p—1;

m—t
Type IV {0,p%, s;; asy+(25:—p?) "1 Bptsi}, fort = 1,2,...,m—1,5. = g%, 0%,...,9, 2 -1

g: is a generator of Z;z(m_ﬂ;
Type V pB (mod p™), for all base blocks B of the affine-invariant sSQS(2p™1),

where a, 3 are roots of 222 — 2z + 1 = 0 over L.

§5. Direct Constructions of affine-invariant 2QS(p)

We denote a 2-fold quadruple system of order v (3-(v,4,2) design) by 2QS(v) for
short. Suppose p is a prime with p = 5 (mod 12). We can again use the graph CG(£,)
to obtain the base blocks. Roughly speaking, by removing a 1-factor from CG(2,), the
resulting graph leads to the base blocks of an affine-invariant 2QS(p).

Construction 5.1 ([18]).  Suppose CG(),) has a 1-factor, say F. For every
edge e; = {C(x),C(z°¢)} in CG(Qy) — F with C(z) # C(2°°), let a; = z, where

22T if p= 29,41 (mod 60),

p—'gg otherwise

(excluding loops) in CG(2,) — F. Then the base blocks of the affine-invariant 2QS(p)

are

t=12,...,l, and [, = denote the number of edges

TypeI {0,1,a;,1 —a;}, fori=1,2,...,1,,
Type II {0,1,a1,41,1 — ay, 41}, where a,4+1 = —1;
Type III {0,1,a;,42,1 — ai,+2}, where aj, 12 = x;
Type IV {0,1,ai,+3,1 — ai,43}, where aj,+3 = p, if p= 29,41 (mod 60),
where y = &?@ isaroot of z2—3z+1 =0and x = l:sz is a root of 22% —2z+1 = 0.
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It is remarkable that this construction can be naturally generalized to finite fields I,
for prime power ¢ = 5 (mod 12). Accordingly, the graph CG(Z(F,)) is also a natural
generalization of CG(Z2(F,)).

§6. Recursive Constructions of affine-invariant 2QS(p™)

We begin by constructing an affine-invariant 2QS(p?) from the affine-invariant
2QS(p). Let x; and X2 denote a root of 2z° — 2z + 1 = 0 over Z;, and Z,2 respec-
tively. Let y; and po denote a root of z2 — 3z + 1 = 0 over Z, and Z,> respectively.
Denote B (a) = {0,1,a + sp,1 — (a + sp)}.

Construction 6.1 ([18]). For prime p = 5 (mod 12), by using the same nota-
tion with Construction 5.1, the base blocks of the affine-invariant 2QS(p?) are

Type I Bgl)(ai), fori=1,...,lpands=0,...,p—1;
Type 11 Bgl)(—l), and s=0,1,...,p—1;
Type III B{"(x2), and s = 0,1,..., B2,
Type IV BV (us), and s =0,1,...,p— 1, if p= 29,41 (mod 60);
Type V {0,p, s, s + p}, for s = g% g%,... ,gpg_a, g is a generator of Z:Q;
Type VI pB (mod p?), for all base blocks B of the affine-invariant 2QS(p).

Construction 6.1 can be naturally generalized to construct affine-invariant 2QS(p™)
for any positive integer m. Generally, ’Z;,(m! =p(™ ! -1) and

Z;;m = me \prm—l = (ZP\ {O}) +prm—l,

where
pZym-1 = pL/p™Z = {p,2p,...,p(p™ ' — 1)}.

Let x; and p; denote a root of 202 — 2z + 1 = 0 and z2 — 3z + 1 = 0 respectively over
Z,:. Denote B (a) = {0,1,a + sp™ 1,1 — (a+ sp™1)}.

Construction 6.2 ([18]). For prime p = 5 (mod 12), by using the same nota-
tion with Construction 5.1, the base blocks of the affine-invariant 2QS(p™) are

Type 1 Bgl)(ai), fori=1,...,lpand s=0,...,p—1;
Type II B{Y(~1), and s =0,1,...,p~ 1;

Type III Bgl)(xm), ands=0,1,..., P—%—l;
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Type IV Bgl)(um), and s =0,1,...,p— 1, if p= 29,41 (mod 60);

o™t

Type V {0,p%,s¢,8: +pt}, fort=1,...,m—1and s; = ¢9,9},...,9; Z _1, where
gt is a generator of Z:;)(m_t);

Type VI pB (mod p™), for all base blocks B of the affine-invariant 2QS(p™1!).

§7. Related unsolved problems

The studies on designs admitting affine groups are less known. We present some
natural problems related to affine-invariant designs.

Problem 7.1. Does there exist affine-invariant sSQS(2n) or 2QS(n) when n is

not a prime power?

Problem 7.2. If we relax the condition of block size, does there exist affine-

invariant 3BD?

Problem 7.3. Does there exist affine-invariant t¢-(v, k, \) design with larger k

or t?
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