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1 Introduction

Let Q C R? be a bounded polygonal or polyhedral domain (d = 1,2,3), and for some integer m, let
H™(f) denote the complex L2-Sobolev space of order m on . We define the Hilbert space

H}(Q) := {u(z) € H'(Q) | u(z) =0, z € 09}

with the inner product (Vu, Vv)r2(q) and the norm ||lul| gz ) = [|Vul|L2(a), where (u,v)12(q) implies
L?-inner product on §. Let

H(A; (@) = {u(z) € HY(Q) | Au e LX(Q)}

be a Banach space with respect to the graph norm ||ul|z2(q) + ||Aullz2(q). Since Q is in a class of
the bounded domain with a Lipschitz continuous boundary, the embedding H(A; L%(Q2)) — H}(R) is
compact by the Rellich compactness theorem.

Consider the linear elliptic operator

Zu:=—-Au+b-Vu+cu (1)

for b € L>°(Q)¢, ¢ € L™(N) with norms

l1bll Lo ()2 = esssupy/[ba ()2 + - - + [ba(2)2,  ||cl| Lo () = esssup|e(z))],
zeN €N

respectively.
The aim of this paper is to propose some procedures for verifying the invertibility of an .¥ with a

computable upper bound M > 0 satisfying

lull ) < M| Lullg-1@),  Yu € Hi(Q) (2)

or
lull gy) < MIZLulla),  Vu € H(A; L) (3)

or
|Aull 20y < M| Lullr2@),  Vu € H(A;LA(Q)). (4)

*This is a joint work with Takehiko Kinoshita (Kyoto University) and Mitsuhiro T. Nakao (National Institute of
Technology, Sasebo College)



For example, when one try to find u € H}(Q) (weak sense) satisfying nonlinear problems
—-Au(z) = f(z,u,Vu), (5)

with certain properties for f and apply infinite-dimensional verification approach for u, the norm esti-
mations (2), (3), (4) are required [13, 16, 18, 19, 20]. We note that the upper bound M can also be
applied to verified computations of eigenvalue exclosures in Hilbert spaces [25].

2 Approximation subspace and notations

Let Sp be a finite dimensional approximation subspace of H}(f2) dependent on the parameter h > 0.
For example, S, is taken to be a finite element subspace with mesh size h. Let P, : H&(Q) — Sp, denote
the Hg-projection defined by

(V(¢ - Ph¢)’ Vv )LQ(Q) = 07 Vv € Sha (6)

and suppose that Py has the following approximation properties.
lv = Pavllmyo) < C(M)IAv]|2gq), Vo € H(A;L*(Q)), (M
v = Pavllza) < C)llw— Pavllmyey, Yo € HA(®), ®)

where C(h) > 0 is a positive constant which is numerically determined with the property that C(k) — 0
as h — 0. We emphasize that especially the estimate (7) is indispensable in our argument and the
compactness of the embedding H(A; L?(2)) — H'() is essential in getting the constant C(h) with
desired property. Usually the second estimation (8) for Py is derived by using a technique so called
Aubin-Nitsche’s trick [1].

These assumptions (7) and (8) hold for many finite element subspaces of H3 () [1, 9, 10, 11, 12, 15] or
function spaces of Fourier series with finite truncation [23]. For example it can be taken as C(k) = b/
and h/(27) for bilinear and biquadratic element, respectively, for the rectangular mesh on the square
domain [9], and C(h) = 0.493h for the linear and uniform triangular mesh of the convex polygonal
domain [3, 6]. Furthermore, a constructive a priori L error estimate for the projection Py can also
be obtained [7, 8]. In case of nonconvex polygonal domain, there are some useful techniques and
consideration to obtain mathematically rigorous upper bounds for the constant C(h) satisfying (7) with
adequate order for such nonconvex domains (2, 5, 14, 26, 27, 28].

Define basis function of Sy by {¢;}/L; for N := dim S, and N x N matrices G, D, L, and Hermitian
matrix F by

(Glij = (V5 Vi ) L2 + (b~ Vo5 + cdj, 6 ) 120 9)
[Dli; = (V¢;,V¢i) 20, (10)
(Llij = (5,9 )r2()s (11)
(Elij = (b-Vé; +c¢j,b- Vi + cdi)2(qy, (12)

respectively. Since D and L are positive definite, they can be decomposed as D = DY2DH/2 gpd
L = LY2LH/% where H indicates the conjugate transposition. Usually DY/2 and L'/? are the lower
triangular matrices. We assume that G has the inverse and let C,, > 0 denote the Poincaré or Rayleigh-
Ritz constants which satisfies

lull 2@y < CpllVullLz), u € HH(Q). (13)

3 Estimation (2)
This section is devoted to an upper bound M safisfying
lullmg) < M ZLulla-1@),  Yue Hj(R)
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with the invertibility of .%.
It is well-known that for each £ € H~1({) there exists a unique ¥ € H}(R) satisfying

-Ay = &€ in Q,
v = 0 on Of
By define this mapping £ — ¢ by (-=A)™' : H71(Q) — H}(9), a map (-A)~ 1Im(n% L*(Q) — Hy(Q)
becomes compact because ¥ belongs to H (A L%(Q)) and the embedding H(A;L?(Q)) — HY(Q) is

compact. We define a linear compact operator F : H}(Q2) — H} () by
Fy = (—A)_1|L2(Q)(—b~Vu—cu). (14)

Then since the term —b - Vu — cu maps each bounded set of H}(f2) to a bounded set of L?(Q2), the
operator F' becomes compact on H}(2), and the following is true.

Lemma 1. [13, Theorem 2.3]
If I — F on H}(Q) is invertible then so is .2, and M > 0 of (2) can be taken as satisfying

I = F)'ullgyo) < Mllullgy), Yo € H(Q). (15)

3.1 1st estimation of (2)

Our first result for (2) is as follows.

\
Theorem 1. [17, Theorem 1] For
C1 = ||bll Lo ()e + Cpllell L= () (16)
if C,C1 < 1 then I — F is invertible and M of (2) can be taken as
M=—1 (17)
T 1-CoCy’
- _J
3.2 2nd estimation of (2)
We define
Cz = ||bl| L= ()2 + C(h)lcl| L= (0, (18)
h V b L C1), if beWwbhe(Q),
CPC2’ lf b (S L (Q) s
p:=||DT/2G™'D'?|;, (20)
where | - ||2 stands for matrix 2-norm. Note that p can be represented by
p~! = min{|)\| | Gz = \Dz, 0 # = € C"},
and its verified upper bound can be computed [22]. The below is our second estimation of (2).
~

Ve
Theorem 2. 17, Theorem 2] If
=Ch)(pC1K +Cs) <1 (21)
then I — F is invertible and M > 0 of (2) is obtained by

[p(l — C2C(h)) pK}
pC1C(h) 1

1

1—k

M=

2




3.3 3rd estimation of (2)

Defining
K = C(h) ([Ibll poo(yaC1 + llel| o= ()
Cs := C(h)[|bll Lo (e,

we have the following result.

Theorem 3. [17, Theorem 3] If % := K (pCpK + C(h)) < 1, I — F is invertible and M > 0 of (2)
is obtained by
L

pKCp+Cs 1+C3

[p(l ~ KC(h) + KC3) pK(1+Cs)

If be Who(Q), K = O(C(R)) and then & = O(C(h))2.

3.4 Numerical examples
3.4.1 One-dimensional operators

We use interval arithmetic toolbox INTLAB Version 7 (21] with MATLAB 8.0.0.783 (R2012b) on Intel
Core i7 3.4GHz. Divide the interval (0,1) by equal partition size h > 0 and take Sy as the set of
piecewise linear functions on each subinterval. We can take C'(h) = h/m and Cp = 1/7.

Table 1 and 2 show verification results. The bold letters indicate the smallest M in the theorems.

Table 1: Verification results for b = sin(nz), ¢ =1, p = 1.0035 (1/h = 32)

Theorem 1 Theorem 2 Theorem 3

1/ C1C, M K M K M
4 04197 1.7231 0.1057 1.2507 0.0258 1.2186
8 0.4197 1.7231 0.0464 1.1106 0.0065 1.0976
16 0.4197 1.7231 0.0216 1.0521 0.0016 1.0461
32 04197 1.7231 0.0104 1.0258 0.0004 1.0229

Table 2: Verification results for b = — sin(rz), ¢ = -5, p = 2.0001 (1/h = 32)

Theorem 1 Theorem 2 Theorem 3

1/h  C1Cy M K M R M
4 0.8250 5.7116 0.2248 25155 0.1539 2.4918
8 0.8250 5.7116 0.0770 2.1125 0.0393 2.1122
16 0.8250 5.7116 0.0293 2.0280 0.0099 2.0285
32 0.8250 5.7116 0.0123 2.0082 0.0025 2.0084

3.4.2 Two-dimensional non-self-adjoint operators

Consider the case for

_plyt1/2 -
b—R{z—l/Z , ceC, Q=(0,1) x (0,1) (22)
We take linear and uniform triangular meshes on Q with the element side length h > 0 for a given finite
element mesh. We can take C(h) = 0.493h and C, = 1/(nv/2). Table 3, 4, and 5 show verification
results.
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Table 3: Verification results for R =4, ¢ =0, p = 1.0001 (1/h = 10)

Theorem 1 Theorem 2 Theorem 3
1/h  C1Cy M K M K M
2 0.6367 2.7521 1.1835 — 0.7956 12.5322

5 0.6367 2.7521 0.3567 1.8230 0.1273 1.7994
10 0.6367 2.7521 0.1589 1.2914 0.0319 1.3180

Table 4: Verification results for R = 6.75, ¢ = —1 — 1.5¢, p = 1.0487 (1/h = 10)

Theorem 1 Theorem 2 Theorem 3

1/h CiCp, M K M K M
4 1.1658 — 1.0408 — 0.8028 23.7783
5 1.16568 — 0.7608 5.6411 0.5721 5.1856
10 1.1658 — 0.3081 1.7124 0.1433 1.8585

3.5 Report for estimation (2)

We consider three computer-assisted procedures to verify the invertibility of second order linear elliptic
operators with a bound for the norm of its inverse. Although it has the limitation, the method of Theorem
1 does not need the computation of p (2-norm). The method based on Theorem 3 has the second order
for C(h) when b € W1°°(£2) and some verification results show that it could be an alternative of Theorem
2, especially, some confirmation of the only invertibility for .# are quite essential. We still conclude our
second approach of Theorem 2 is robust and reliable than other two approaches.

4 Estimation (3)

Now we consider an upper bound M safisfying
lull gz < Ml ZullLa@) Yu € H(A; LH(Q)).

We have three approaches.

4.1 1st estimation of (3)

Our first result is a direct application of Theorem 2.

Theorem 4. [13, Theorem 2.3] If kK = C(h)(pC1K + C3) < 1 then & is invertible and M > 0 of
(3) is obtained by
Cp

1—&

[p(l — C3C(h)) pK]

pClc‘(h) 1 2 ’

In Theorem 4, it is expected that M — Cp max{p,1}.

4.2 2nd estimation of (3)

For
p:=|IDHGILY2,, (23)

we obtained the second estimation.
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Table 5: Verification results for R =5, ¢ = —15, p = 4.0804 (1/h = 20)

Theorem 1 Theorem 2 : Theorem 3

1/h Ci1Cp, M K M R M
5 1.5558 — 1.9949 —  2.3104 —
10 1.5558 — 0.6596 11.0853 0.6723 13.9871
20 1.5558 — 0.2148 4.9111 0.1761 5.1964

Theorem 5. [24, Theorem 4.2] If
R:=Ch)C: (pC1+1) < 1 (24)
then Z is invertible and M > 0 of (3) is obtained by

y — VPP +CRP(A+HC1)?
\_ ) E | J
In Theorem 5, it is expected that M — 5.

4.3 3rd estimation of (3)

We also present the following estimate based on a fixed-point formulation.

Theorem 6. [4, Theorem 3] If x = C(h)(p C1K + C3) < 1 then & is invertible and M > 0 of (3)
is obtained by

M= VP Cp + C(W)(K — Cp(2))2 + C(h)2(1 + pCpCl)z_
11—k

In Theorem 6, it is expected that M — Cj, p.

Comparing three theorems for (3), Theorem 5 could converge to the exact operator norm for £
Because of it holds that p < Cy, p, when p ~ Cpp, Theorem 6 would apply suffient “good” M with low
computational cost. From the actual computational point of view, since the criterion # < 1 is sometimes
harder than k < 1 for fixed h experimentally, Theorem 4 and 6 have a room to be effective.

4.4 Numerical examples

Our numerical environment and S;, for one- or two-dimensional operators are same as the previous
section.

4.4.1 One-dimensional operators

Table 6, 7, 8, and 9 show verification results for some b(z) = rsin(rz) and ¢ € R in Q = (0,1).

4.4.2 Two-dimensional non-self-adjoint operators

Consider the case for (22). Table 10 and 11 show verification results.

4.4.3 Two-dimensional operators

We now report on a case for b = 0. Consider an operator: . = —A — 1 — 2uy, + 3aufL which is the
linearized the equation

-Au = 1+u+u?-au® in (0,1) x(0,1),
u = 0 on 09,

|



Table 6: Verification results for b = 2.5sin(rz), ¢ = —10

Theorem 4 Theorem 5 Theorem 6
1/h p p K M K M K M
10 12.6637 3.6970 0.6865 12.4285 1.9761 — 0.6865 12.2786
30 129669 3.8003 0.0956 4.4655 0.6249 10.1500 0.0956  4.4598
50 12,9916 3.8084 0.0409 4.2504 0.3696 6.0452 0.0409  4.2485
100 13.0020 3.8119 0.0142 4.1667 0.1827 4.6645 0.0142 4.1663
200 13.0047 3.8128 0.0056 4.1465 0.0908 4.1936 0.0056 4.1464
500 13.0054 3.8130 0.0019 4.1409 0.0362 3.9561 0.0019 4.1409
1000 13.0055 3.8131 0.0009 4.1401 0.0181 3.8832 0.0009 4.1401
Table 7: Verification results for b = —20sin(7z), ¢ = —20.
Theorem 4 Theorem 5 Theorem 6
1/h p b K M R M K M
10 2.6420 0.3552 3.9293 —  6.8074 —  3.9293 —
30 2.5044 0.3542 0.5592 1.8684 2.2167 — 0.5592 1.5439
50 2.4950 0.3542 0.2518 1.0293 1.3246 — 0.2518 0.9502
100 2.4911 0.3542 0.0948 0.8417 0.6603 1.0469 0.0948 0.8249
200 2.4911 0.3542 0.0396 0.8040 0.3296 0.5289 0.0396  0.8002
500 2.4899 0.3542 0.0140 0.7943 0.1318 0.4080 0.0140 0.7938
1000 2.4899 0.3542 0.0067 0.7930 0.0659 0.3792 0.0067 0.7929

at two finite element approximate solutions u, whose named “lower” and “upper.”
Table 12 and 13 show verification results.

4.5 Report for estimation (3)

110

The computer-assisted procedure (Theorem 6) is our latest approach to compute a verified bound of the
norm for second order linear elliptic operators .#. The criterion for the invertibility of .# is the same as
Theorem 4, however, it has no limitation such that the lower bound of M is not less than 1. Although
the proposed procedure would not converge to its exact operator norm, some verification examples show
that it has a better bound than the approach in Theorem 5. We conclude that our proposed method
should be a bridge the gap between the two previous approaches, and one may choice an appropriate
procedure taking into consideration given problem or computational cost, and so on.

5 Estimation (4)

Finally we consider an upper bound M safisfying

We have two approaches.

5.1 1st estimation of (4)
Redefining pyo := ||[DH/2G~1L'/?||; and defining pgo := || L¥/2G~1L/?| 3, we have the first estimation.

|Aull 2y < M| ZLul 12y,

Yu € H(A; L2(Q)).



Table 8: Verification results for b = sin(7z), ¢ = 100.

Theorem 4 Theorem 5 Theorem 6
1/h o p K M I3 M K M
10 0.9183 0.0500 1.1665 — 0.3516 0.1508 1.1665 —

30 0.9911 0.0499 0.1458 0.4977 0.0577 0.0608 0.1458 0.3920
50 0.9969 0.0499 0.0553 0.4060 0.0275 0.0542 0.0553 0.3426
100 0.9992 0.0499 0.0155 0.3568 0.0111 0.0512 0.0155 0.3242
200 0.9998 0.0499 0.0047 0.3365 0.0049 0.0504 0.0047 0.3198
500 1.0000 0.0499 0.0012 0.3254 0.0018 0.0501 0.0012 0.3186
1000 1.0000 . 0.0499 0.0005 0.3218 0.0009 0.0500 0.0005 0.3184

Table 9: Verification results for b = sin(wz), ¢ = —10.

Theorem 4 Theorem 5 Theorem 6

1/h 0 b K M k M K M
10 94.9621 29.6261 2.1281 —  5.2424 —  2.1281 —
30 231.4257 72.4346 0.5767 172.3900 3.5678 — 0.5767 172.4427
50 261.5470 81.8835 0.2366 108.4156 2.3262 — 0.2366 108.4277
100 276.7469 86.6517  0.0641  93.8348 1.1938 — 0.0641 93.8375

200 280.8268 87.9316 0.0171  90.7977 0.5964 217.8445 0.0171  90.7983
500 281.9909 88.2967 0.0032 89.9844 0.2373 115.7653 0.0032  89.9846
1000 282.1580 88.3491 0.0010 89.8696 0.1184 100.2071 0.0010  89.8697

M=1+ ”bHLoo(Q)d A+ ||C||Leo(Q) Ao,

where

_ oo+ C(R)*(1 + p1oCh) A= V%% + ChY2(1 + proC1)2

A
0 1—x7 1— Ky

-

4 N
Theorem 7. If k7 := C(h)C2(p10 C1 +1) < 1 then & is invertible and M > 0 of (4) is obtained by

5.2 2nd estimation of (4)

Our second result is somewhat constructive than the previous approach.

Theorem 8. For

My == /|G LV HEG-1 L),

if it holds that
Kg 1= C(h)Cz(l + Mh) <1
then .Z is invertible and a bound M > 0 of (4) can be taken as

14+ My

M= .
1—I€8

.

Note that if E is positive definite, by using E = EYV2EH/2 it is true that

Mh. — “EH/2G—1L1/2“ .
2

111



112

Table 10: Verification results for R = 10, ¢ = —10 — 54.

Theorem 4 Theorem 5 Theorem 6

1/h p p K M K M K M
5 1.7039 0.3656 2.3287 —  3.6305 —  2.3287 —
10 1.7751 0.3946 0.7724 1.8734 1.7974 — 0.7724 1.6510

20 1.7941 0.4025 0.2814 0.5384 0.8798 3.4926 0.2814 0.5033
50 1.7995 0.4047 0.0869 0.4222 0.3456 0.6227 0.0869 0.4174
100 1.8001 0.4050 0.0392 0.4092 0.1716 0.4897 0.0392 0.4082
130 1.8004 0.4051 0.0294 0.4076 0.1318 0.4670 0.0294 0.4070

Table 11: Verification results for R = 10, ¢ = 15.

Theorem 4 Theorem 5 Theorem 6

1/h p P K M 3 M K M
5 0.9732 0.1270 1.8758 — 1.9610 — 1.8758 —
8 0.9903 0.1276 0.9032 3.3368 1.1493 — 0.9032 2.6387

10 0.9939 0.1277 0.6488 0.8671 0.8987 1.6951 0.6488 0.6589
20 0.9986 0.1279 0.2497 0.3543 0.4284 0.2453 0.2497  0.2760
50 0.9999 0.1279 0.0818 0.2632 0.1663 0.1559 0.0818 0.2316
100 1.0001 0.1279 0.0379 0.2426 0.0823 0.1400 0.0379  0.2267

5.3 Numerical examples

Consider the case for two-dimensional non-self-adjoint operators (22). Our numerical environment and
S}, is same as the previous section. Table 14 and 15 show verification results.

5.4 Report for estimation (4)

We propose two computer-assisted procedures to compute a verified bound M > 0 satisfying (4). Some
verification examples show that Theorem 8 has a better bound than the approach in ‘Theorem 7. If we

are indifferent to computational costs, instead of an estimation
b Vun + cunll2(n) < Ma(C(h)CallAullr2() + | fll 2@)
in the proof of the Theorem 8, it can be possible to use a bound such that
b Vun + cun + fllza@) < Mallfllz2@)

with numerically determined Mj, > 0 directly (more constructive).
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