Integration by parts formula for Feynman path integrals

By

Daisuke Fujiwara*

Abstract

The aim of this paper is to present

- 1. Review of time slicing approximation method of Feynman path integrals introduced by Feynman [4].
- 2. An integration by parts formula for Feynman path integrals under suitable assumption:

$$\begin{split} \int_{\Omega_{x,y}} DF(\gamma)[p(\gamma)] e^{i\nu S(\gamma)} \mathcal{D}(\gamma) &= -\int_{\Omega_{x,y}} F(\gamma) \mathrm{Div} \, p(\gamma) e^{i\nu S(\gamma)} \mathcal{D}(\gamma) \\ &- i\nu \int_{\Omega_{x,y}} F(\gamma) DS(\gamma)[p(\gamma)] e^{i\nu S(\gamma)} \mathcal{D}(\gamma). \end{split}$$

This formula is an analogy to Elworthy's integration by parts formula for Wiener integrals. cf. [3]

3. An application of integration by parts formula to semiclassical asymptotic formula which holds in the case of $F(\gamma^*) = 0$. Here γ^* is the stationary point of the phase $S(\gamma)$, i.e., $\delta S(\gamma^*) = 0$.

Contents

- § 1. Path integral defined by Feynman
- § 2. Some properties of classical action
- § 3. Stationary phase method for integrals over a space of large dimension
- § 4. Convergence of Feynman path integral

²⁰¹⁰ Mathematics Subject Classification(s): Primary 81S40; Secondary 35A08, 46T12, 58D30, 81O20.

Key Words: Feynman path integrals, integration by parts, quantum mechanics, Feynman propagator, Schrödinger equation, semiclassical techniques, Wiener integrals.

^{*}Department of Mathematics, Gakushuin University, 1-5-1 Mejiro Toshima-ku, Tokyo 171-8588, Japan.

- § 5. An integration by parts formula
 - § 5.1. Some operators of trace class
 - § 5.2. Admissible vector field
 - § 5.3. m-smooth functional
 - § 5.4. An integration by parts formula
- § 6. Application to semiclassical asymptotic behaviour of Feynman path integrals References

§ 1. Path integral defined by Feynman

For simplicity we restrict ourselves to the case where the configuration space is \mathbb{R}^1 . In this case Lagrangian function with potential V(t,x) is

$$L(t, \dot{x}, x) = \frac{1}{2}\dot{x}^2 - V(t, x).$$

The case where non zero magnetic potential is present is discussed in [11]. Action of path $\gamma:[s,s']\to\mathbf{R}$ is

(1.1)
$$S(\gamma) = \int_{s}^{s'} L(t, \dot{\gamma}(t), \gamma(t)) dt.$$

We assume throughout this paper the following assumption for potential V(t, x) cf. W.Pauli [14]:

Assumption 1.1. 1. V(t,x) is a real continuous function of (t,x). If t is fixed, then it is a function of class C^{∞} in x.

2. For $\forall m \geq 0$ there exists $v_m \geq 0$ such that

$$\max_{|\alpha|=m} \sup_{(t,x)\in[s,s']\times\mathbf{R}^d} \left|\partial_x^{\alpha} V(t,x)\right| \leq v_m (1+|x|)^{\max\{2-m,0\}}.$$

We write \mathcal{H} for the L^2 -Sobolev space $H^1(s,s')$ of order 1 in [s,s']. For any $x,y \in \mathbf{R}$ we write $\mathcal{H}_{x,y}$ for the closed subset $\{\gamma \in H^1(s,s'); \gamma(s) = y, \gamma(s') = x\}$ of \mathcal{H} . If x = 0 and y = 0 we write \mathcal{H}_0 for $\mathcal{H}_{0,0}$. It is clear that action $S(\gamma)$ (1.1) is well defined for $\gamma \in \mathcal{H}$ under the Assumption 1.1.

Proposition 1.2. Let $\delta_0 > 0$ be so small that

$$\frac{\delta_0^2 v_2}{8} < 1.$$

If $|s'-s| \leq \delta_0$, then for any $x,y \in \mathbf{R}$ there exists one and only path $\gamma^* \in \mathcal{H}_{x,y}$ such that

$$S(\gamma^*) = \min_{\gamma \in \mathcal{H}_{x,y}} S(\gamma).$$

 γ^* is the classical path, i.e. the first variation $\delta S(\gamma^*)$ of $S(\gamma)$ at γ^* vanishes:

$$\delta S(\gamma^*) = 0$$
, $\gamma_0(s) = y$, $\gamma_0(s') = x$.

It is of class $C^2[s, s']$ and satisfies Euler equation:

$$\frac{d^2}{dt^2}\gamma(t) + \partial_x V(t, \gamma(t)) = 0,$$

$$\gamma(s') = x, \quad \gamma(s) = y.$$

We define

$$(1.3) S(s', s, x, y) = S(\gamma^*).$$

This is called classical action.

Let Δ be an arbitrary division of the interval [s, s'] such that

(1.4)
$$\Delta : s = T_0 < T_1 < \dots < T_J < T_{J+1} = s'.$$

We set $\tau_j = T_j - T_{j-1}, j = 1, 2, ..., J + 1$ and $|\Delta| = \max_{1 \le j \le J+1} \tau_j$.

Suppose that $|\Delta| \leq \delta$. We set $x_0 = y, x_{J+1} = x$. For all $x_j \in \mathbf{R}$, j = 1, 2, ..., J, there exists one and only one piecewise classical path $\gamma_{\Delta}(t)$ which is the classical path for $T_{j-1} \leq t \leq T_j$ and satisfies

(1.5)
$$\gamma_{\Delta}(T_i) = x_i, \quad (j = 0, 1, 2, \dots, J+1).$$

 γ_{Δ} may have edges at T_j . We use the symbol $\gamma_{\Delta}(x_{J+1}, x_J, \dots, x_1, x_0)$ to express the piecewise classical path satisfying (1.5), when we want to express explicitly its dependence on $(x_{J+1}, x_J, \dots, x_1, x_0)$.

If Δ and x, y are given then we write $\Gamma_{x,y}(\Delta)$ for the totality of all piecewise classical path $\gamma_{\Delta} \in \mathcal{H}_{x,y}$. We write $\Gamma_0(\Delta)$ for $\Gamma_{0,0}(\Delta)$. By the map

(1.6)
$$\Gamma(\Delta) \ni \gamma_{\Delta}(x_{J+1}, x_{J}, \dots, x_{1}, x_{0}) \to (x_{J+1}, x_{J}, \dots, x_{1}, x_{0}) \in \mathbf{R}^{J+2}$$

we can identify $\Gamma(\Delta)$ and \mathbf{R}^{J+2} . Similarly $\Gamma_{x,y}(\Delta)$ is identified with \mathbf{R}^{J} .

Given a functional $F(\gamma)$, we often abbreviate $F(\gamma_{\Delta})$ as F_{Δ} . Once Δ is fixed, it is a function of $(x_{J+1}, x_J, \ldots, x_1, x_0)$ and we denote the dependence of $F(\gamma_{\Delta})$ on $(x_{J+1}, x_J, \ldots, x_1, x_0)$ by writing $F(\gamma_{\Delta}) = F_{\Delta}(x_{J+1}, x_J, \ldots, x_1, x_0)$.

Feynman's formulation of path integral. Let $\nu = 2\pi h^{-1}$, where h is Planck's constant. And let Ω_{xy} be the space¹ of paths starting y at time s and reaching x at time s'. Given a functional $F(\gamma)$ of $\gamma \in \Omega_{xy}$, Feynman [4] considered the following integral on finite dimensional space:

$$(1.7) I[F_{\Delta}](\Delta; \nu, s', s, x, y)$$

$$= \prod_{j=1}^{J+1} \left(\frac{\nu}{2\pi i \tau_j}\right)^{1/2} \int_{\mathbf{R}^J} F(\gamma_{\Delta})(x, x_J, \dots, x_1, y) \times e^{i\nu S(\gamma_{\Delta})(x, x_J, \dots, x_1, y)} \prod_{j=1}^J dx_j.$$

¹In this note Ω is a symbol which expresses vaguely notion of path space.

Feynman defined his path integral by the formula:

(1.8)
$$\int_{\Omega_{xy}} F(\gamma) e^{i\nu S(\gamma)} \mathcal{D}[\gamma] = \lim_{|\Delta| \to 0} I[F_{\Delta}](\Delta; \nu, s', s, x, y).$$

The integral $I[F_{\Delta}](\Delta; \nu, s', s, x, y)$ of (1.7) ² is called time slicing approximation of Feynman path integral (1.8). We say $F(\gamma)$ is "F-integrable", if the limit on the right hand side of (1.8) exists.

The main aim of Feynman's paper [4] is the statement that the path integral (1.8) with $F \equiv 1$ and s' replaced by t is the fundamental solution of Schrödinger's equation

(1.9)
$$\frac{i}{\nu}\partial_t u(t,x) = H(t)u(t,x) \quad (t \in (s,s')),$$

where $H(t) = \frac{1}{2}(-\frac{i}{\nu}\partial_x)^2 + V(t,x)$ is the Hamiltonian operator.

§ 2. Some properties of classical action

From now on we always assume

$$(2.1) |s'-s| \le \delta_0.$$

Calculation shows:

Proposition 2.1. If $|s'-s| \leq \delta$, S(s',s,x,y) is of the following form:

$$S(s', s, x, y) = \frac{|x - y|^2}{2(s' - s)} + (s' - s)\phi(s', s, x, y).$$

The function $\phi(s', s, x, y)$ is a function of (s', s, x, y) of class C^1 and $\exists C > 0$ such that

$$|\phi(s', s, x, y)| \le C(1 + |x|^2 + |y|^2).$$

Moreover, if s' and s are fixed, $\phi(s', s, x, y)$ is a C^{∞} function of (x, y) and for $\forall m \geq 2$ we have

$$\max_{2 \le |\alpha| + |\beta| \le m} \sup_{(x,y) \in \mathbf{R}^2} \left| \partial_x^{\alpha} \partial_y^{\beta} \phi(s', s, x, y) \right| = \kappa_m < \infty.$$

In particular,

$$\kappa_2 \le \frac{v_2}{2} \left(1 - \frac{v_2 \delta_0^2}{8} \right)^{-1}.$$

Let Δ be the division of time interval [s, s'] as (1.4). We discuss time slicing approximation of path integral.

(2.2)
$$I[F_{\Delta}](\Delta; \nu, s', s, x, y) = \prod_{j=1}^{J+1} \left(\frac{\nu}{2\pi i \tau_j}\right)^{1/2} \int_{\mathbf{R}^J} F_{\Delta}(x_{J+1}, x_J, \dots, x_1, x_0) e^{i\nu S_{\Delta}(x_{J+1}, x_J, \dots, x_1, x_0)} \prod_{j=1}^J dx_j.$$

For fixed Δ the integral (1.7) does not converge absolutely even in the case $F(\gamma) \equiv 1$. We regard (1.7) as an oscillatory integral.

Here $S_{\Delta}(x_{J+1}, x_J, \dots, x_1, x_0)$ is an abbreviation of $S(\gamma_{\Delta})(x_{J+1}, x_J, \dots, x_1, x_0)$. We also abbreviate $S(T_j, T_{j-1}, x_j, x_{j-1})$ to $S_j(x_j, x_{j-1})$ and $\phi(T_j, T_{j-1}, x_j, x_{j-1})$ to $\phi_j(x_j, x_{j-1})$. Thus

$$S_{\Delta}(x_{J+1},x_{J},\ldots,x_{1},x_{0}) = \sum_{j=1}^{J+1} S_{j}(x_{j},x_{j-1}) = \sum_{j=1}^{J+1} \left(\frac{|x_{j}-x_{j-1}|^{2}}{2\tau_{j}} + \tau_{j}\phi_{j}(x_{j},x_{j-1}) \right).$$

Consider $J \times J$ matrix Ψ whose (j, k) element is

$$\Psi_{jk} = \partial_{x_j} \partial_{x_k} S_{\Delta}(x_{J+1}, x_J, \dots, x_1, x_0) \qquad (j, k = 1, 2, \dots, J).$$

Then we divide the matrix Ψ into two parts.

$$\Psi = H_{\Delta} + W_{\Delta},$$

where

$$H_{\Delta} = \begin{pmatrix} \frac{1}{\tau_{1}} + \frac{1}{\tau_{2}} & -\frac{1}{\tau_{2}} & 0 & 0 & \cdots & 0 & 0\\ -\frac{1}{\tau_{2}} & \frac{1}{\tau_{2}} + \frac{1}{\tau_{3}} & -\frac{1}{\tau_{3}} & 0 & \cdots & 0 & 0\\ 0 & -\frac{1}{\tau_{3}} & \cdots & \cdots & \cdots & 0\\ \vdots & \vdots & \ddots & \ddots & \vdots & -\frac{1}{\tau_{J}}\\ 0 & 0 & 0 & \cdots & 0 & -\frac{1}{\tau_{J}} & \frac{1}{\tau_{J}} + \frac{1}{\tau_{J+1}} \end{pmatrix}$$

and W_{Δ} is the matrix whose (j, k) element is

(2.3)
$$w_{jk} = \begin{cases} \partial_{x_j}^2 (\tau_j \phi_j + \tau_{j+1} \phi_{j+1}) & \text{if} \quad j = k \\ \partial_{x_k} \partial_{x_j} \tau_j \phi_j & \text{if} \quad k = j-1 \\ \partial_{x_k} \partial_{x_j} \tau_{j+1} \phi_{j+1} & \text{if} \quad k = j+1 \\ 0 & \text{if} \quad |j-k| \ge 2. \end{cases}$$

The matrix H_{Δ} is a positive definite constant matrix with determinant

$$\det H_{\Delta} = \frac{\tau_1 + \tau_2 + \dots + \tau_{J+1}}{\tau_1 \tau_2 \dots \tau_{J+1}} = \frac{(s'-s)}{\tau_1 \tau_2 \dots \tau_{J+1}}.$$

It has its inverse H_{Δ}^{-1} . Regarding W_{Δ} as an perturbation, we write

$$\Psi = H_{\Delta}(I + H_{\Delta}^{-1}W_{\Delta}).$$

Proposition 2.2. Let $0 < \delta_1$ be so small that $\delta_1 \le \delta_0$ and $\kappa_2 \delta_1^2 < 1$. Let $|s' - s| \le \delta_1$. Then $\forall (x_{J+1}, x_J, \dots, x_1, x_0) \in \mathbf{R}^{J+2}$

$$(1 - \kappa_2 \delta_1^2)^J \le \det(I + H_{\Delta}^{-1} W_{\Delta}) \le (1 + \kappa_2 \delta_1^2)^J,$$

and

$$(1 - \kappa_2 \delta_1^2)^J \frac{(s' - s)}{\tau_1 \tau_2 \dots \tau_{J+1}} \le \det \Psi = \det(H_\Delta + W_\Delta) \le (1 + \kappa_2 \delta_1^2)^J \frac{(s' - s)}{\tau_1 \tau_2 \dots \tau_{J+1}}.$$

Assume $|s'-s| \leq \delta_1$. Let γ^* be the unique classical path in $\mathcal{H}_{x,y}$ and let $x_j^* = \gamma^*(T_j)$ for $j=0,1,2,\ldots,J+1$ and $W_{\Delta}^* = W_{\Delta}\Big|_{x_j=x_z^*,1\leq j\leq J}$. We set

$$D(\Delta; s', s, x, y) = \det(I + H_{\Delta}^{-1} W_{\Delta}^{*})$$

$$= \left(\frac{\tau_{1} \tau_{2} \dots \tau_{J+1}}{s' - s}\right) \det Hess_{x_{J}^{*}, x_{J-1}^{*}, \dots, x_{1}^{*}} S_{\Delta}(x_{J+1}, x_{J}, \dots, x_{1}, x_{0}).$$

Here $Hess_{x_J^*,...x_1^*}S_{\Delta}(x_{J+1},x_J,...,x_1,x_0)$ is the Hessian matrix at $(x_J^*,...x_1^*)$ of S_{Δ} .

Proposition 2.3. Suppose that $0 < |s' - s| \le \delta_1$. Define $d(\Delta; s', s, x, y)$ by

(2.4)
$$D(\Delta; s', s, x, y) = 1 + (s' - s)^2 d(\Delta; s', s, x, y).$$

Then for any k > 0

(2.5)
$$\sup_{|s'-s| \le \delta_1} \sup_{\Delta} \max_{|\alpha|+|\beta| \le k} \sup_{(x,y) \in \mathbf{R}^2} |\partial_x^{\alpha} \partial_y^{\beta} d(\Delta; s', s, x, y)| < \infty.$$

Proposition 2.4. If $|t-s| \leq \delta_1$, then there exists the limit

(2.6)
$$\lim_{|\Delta| \to 0} D(\Delta; t, s, x, y) = D(t, s, x, y).$$

Define

(2.7)
$$e(t, s, x, y) = \left(\frac{1}{2\pi(t-s)}\right)^{1/2} D(t, s, x, y)^{-1/2}.$$

Then this satisfies the transport equation cf. [2]:

$$\partial_t e(t, s, x, y) + \partial_x S(t, s, x, y) \partial_x e(t, s, x, y) + \frac{1}{2} \partial_x^2 S(t, s, x, y) e(t, s, x, y) = 0.$$

Let $(-\frac{d^2}{dt^2})^{-1}$ be the Green operator of Dirichlet boundary problem. Then D(t, s, x, y) equals the following infinite dimensional determinant:

(2.8)
$$D(t,s,x,y) = \det\left(-\frac{d^2}{dt^2} - \partial_x^2 V(t,\gamma^*)\right) \left(-\frac{d^2}{dt^2}\right)^{-1}.$$

§ 3. Stationary phase method for integrals over a space of large dimension

Let $f(x_{J+1}, x_J, \ldots, x_1, x_0)$ be a function of $(x_{J+1}, x_J, \ldots, x_1, x_0) \in \mathbf{R}^{J+2}$. Let Δ be a division of interval [s, s'] as (1.4). Then we can regard the function f as a function defined on $\Gamma(\Delta)$, because \mathbf{R}^{J+2} is identified with $\Gamma(\Delta)$. Let $0 = j_0 < j_1 < \cdots < j_p < j_{p+1} = J+1$ be a subsequence of $\{0, 1, \ldots, J, J+1\}$. Then

(3.1)
$$\Delta' : s = T_{j_0} < T_{j_1} < \dots < T_{j_p} < T_{j_{p+1}} = s'$$

is a division of the interval [s,s'] of which Δ is a refinement. We call a division Δ' of the interval [s,s'] coarser than the division Δ if Δ is a refinement of Δ' . There exists a natural embedding map $\Gamma(\Delta') \subset \Gamma(\Delta)$ and $\Gamma_{x,y}(\Delta') \subset \Gamma_{x,y}(\Delta)$. We shall write $\iota_{\Delta}^{\Delta} f : \Gamma(\Delta') \to \mathbf{C}$ for the pull back of a function $f : \Gamma(\Delta) \to \mathbf{C}$ by this embedding. If f is a function defined on

 \mathbf{R}^{J+2} , we can define a function $\iota_{\Delta'}^{\Delta} f$ defined on \mathbf{R}^{p+2} using the identifications $\mathbf{R}^{J+2} \cong \Gamma(\Delta)$ and $\mathbf{R}^{p+2} \cong \Gamma(\Delta')$.

For integers $1 \le k < l \le J+1$ we define

$$(3.2) S_{l,j}(x_l,\ldots,x_{j-1}) = S_l(x_l,x_{l-1}) + S_{l-1}(x_{l-1},x_{l-2}) + \cdots + S_j(x_j,x_{j-1}).$$

Note that $S_{J+1,1}(x_{J+1},\ldots,x_0)=S(x_{J+1},\ldots,x_0)$. We understand that $S_{j,j}(x_j,x_{j-1})=S_j(x_j,x_{j-1})$. Suppose $1 \leq k < l \leq J+1$. For any fixed $(x_l,x_{j-1}) \in \mathbf{R}^2$ let $(x_{l-1}^*,x_{l-2}^*,\ldots,x_j^*)$ be the stationary point of the function $S_{l,j}(x_l,\ldots,x_{j-1})$ of (3.2). We shall write $x_k^*(x_l,x_{j-1})$ for x_k^* when we wish to express that x_k^* depends on (x_l,x_{j-1}) .

Suppose Δ' is the division given by (3.1) coarser than Δ . Then for any $f(x_{J+1}, x_J, \ldots, x_0) \in \Gamma_{x,y}(\Delta)$ it is clear by definition of $\iota_{\Delta'}^{\Delta}$ that

$$\iota_{\Delta'}^{\Delta} f(x_{J+1}, x_{j_p}, \dots, x_{j_1}, x_0) = f(x_{J+1}, x_J, \dots, x_1, x_0) \Big|_{\substack{x_k = x_k^*(x_{j_n}, x_{j_{n-1}}), \\ j_{n-1} < k < j_n, n = 1, 2, \dots, p+1}}.$$

We write $S_{l,j}^*(x_l, x_{j-1})$ for the stationary value of $S_{l,j}(x_l, \ldots, x_{j-1})$. i.e.,

$$S_{l,j}^{*}(x_{l}, x_{j-1}) = S_{l}(x_{l}, x_{l-1}^{*}(x_{l}, x_{j-1})) + \sum_{k=j+1}^{l-1} S_{k}(x_{k}^{*}(x_{l}, x_{j-1}), x_{k-1}^{*}(x_{l}, x_{j-1})) + S_{j}(x_{j}^{*}(x_{l}, x_{j-1}), x_{j-1}).$$

As $S_j(x_j, x_{j-1}) = S(T_j, T_{j-1}, x_j, x_{j-1})$ is a classical action, it turns out that

$$(3.3) S_{l,j}^*(x_l, x_{j-1}) = S_{l,j}(x_l, x_j).$$

Thus

$$\iota_{\Delta'}^{\Delta} S_{\Delta}(x_{J+1}, x_{j_p}, \dots, x_{j_1}, x_0) = \sum_{n=1}^{p+1} S_{j_n, j_{n-1}+1}(x_{j_n}, x_{j_{n-1}}).$$

The interval [s, s'] itself is a particular division of [s, s'], which we write $\Delta(J+1)$. Then $\iota_{\Delta(J+1)}^{\Delta} S_{\Delta}(x_{J+1}, x_0) = S(s', s, x, y)$.

Given a function $a_{\lambda}(x_{J+1}, x_{J}, \dots, x_{1}, x_{0})$ of $(x_{J+1}, x_{J}, \dots, x_{1}, x_{0}) \in \mathbf{R}^{J+2}$ with parameter λ and a fixed division Δ , we discuss

(3.4)
$$I(\Delta, S_{\Delta}, a_{\lambda}, \nu)(x_{J+1}, x_{0}) = \prod_{j=1}^{J+1} \left(\frac{\nu}{2\pi i \tau_{j}}\right)^{1/2} \int_{\mathbf{R}^{J}} a_{\lambda}(x_{J+1}, x_{J}, \dots, x_{1}, x_{0}) e^{i\nu S_{\Delta}(x_{J+1}, x_{J}, \dots, x_{1}, x_{0})} \prod_{j=1}^{J} dx_{j}.$$

Assumption for the amplitude $a_{\lambda}(x_{J+1}, x_{J}, \dots, x_{1}, x_{0})$ is the following:

Assumption 3.1. Let $m \geq 0$ be a constant. The amplitude $a_{\lambda}(x_{J+1}, x_{J}, \dots, x_{1}, x_{0})$ is defined on \mathbf{R}^{J+2} and may depend on a parameter λ . For any integer $K \geq 0$ there exist constants $A_{K} > 0$ and $X_{K} \geq 1$ such that

1. If
$$|\alpha_j| \leq K$$
 for all $j = 0, 1, ..., J + 1$, then $\forall (x_{J+1}, x_J, ..., x_1, x_0) \in \mathbf{R}^{J+2}$

$$\left| \left(\prod_{j=0}^{J+1} \partial_{x_j}^{\alpha_j} \right) a_{\lambda}(x_{J+1}, x_J, \dots, x_1, x_0) \right| \leq A_K X_K^{J+2} (1 + |\lambda| + |x_{J+1}| + |x_J| + \dots + |x_1| + |x_0|)^m,$$

2. Let Δ' be any division defined by (3.1) coarser than Δ and let $\{\alpha_{j_k}\}$ be a sequence of indices each of which satisfies $|\alpha_{j_k}| \leq K$ for $k = 0, 1, \ldots, p + 1$. Then for any $(x_0, x_{j_1}, \ldots, x_{j_p}, x_{J+1}) \in \mathbf{R}^{p+2}$

$$\begin{aligned} \left| \partial_{x_0}^{\alpha_0} \partial_{x_{J+1}}^{\alpha_{J+1}} \left(\prod_{k=1}^p \partial_{x_{j_k}}^{\alpha_{j_k}} \right) (\iota_{\Delta'}^{\Delta} a_{\lambda}) (x_{J+1}, x_{j_p}, \dots, x_{j_1}, x_0) \right| \\ & \leq A_K X_K^{p+2} (1 + |\lambda| + |x_{J+1}| + |x_{j_p}| + \dots + |x_{j_1}| + |x_0|)^m. \end{aligned}$$

Let $(x_{l-1}^*, \ldots, x_j^*)$ be the critical point of (3.2). And let *Hess* mean the Hessian of $S_{l,j}$ at the critical point. We define

$$(3.5) \ D_{x_{l-1}^*, \dots, x_j^*}(S_{l,j}; x_l, x_{j-1}) = \left(\frac{\tau_l + \dots + \tau_j}{\tau_l \dots \tau_j}\right) \det Hess(\sum_{k=j}^l S_k(x_k, x_{k-1})) \Big|_{x_k = x_k^*, j \le k \le l-1}.$$

For any k = 1, 2, ..., J + 1 we define the division

(3.6)
$$\Delta(k): s = T_0 < T_k < T_{k+1} < \dots < T_{J+1} = s'.$$

 $\Delta(1) = \Delta$ and $\Delta(J+1)$ is the interval itself without any intermediate dividing point. The following theorem is known [7], [10].

Theorem 3.2. Suppose that $|s'-s| \leq \delta_1$ and $a_{\lambda}(x_{J+1}, x_J, \ldots, x_1, x_0)$ satisfies Assumption 3.1. We further assume that $|\Delta||s'-s| \leq 1$. Then

(3.7)
$$I(\Delta; S_{\Delta}, a_{\lambda}, \nu)(x_{J+1}, x_0) = \left(\frac{\nu}{2\pi i T}\right)^{1/2} e^{i\nu S(s', s, x_{J+1}, x_0)} k(\Delta; a_{\lambda}, \nu, s', s, x_{J+1}, x_0)$$
with

$$(3.8) \quad k(\Delta; a_{\lambda}, \nu, s', s, x_{J+1}, x_{0})$$

$$= D_{x_{J}^{*}, \dots, x_{1}^{*}} (S_{J+1,1}; x_{J+1}, x_{0})^{-1/2} \left(\iota_{\Delta(J+1)}^{\Delta} a_{\lambda}(x_{J+1}, x_{0}) + \nu^{-1} (s'-s) p(\Delta, x_{J+1}, x_{0}) \right)$$

$$+ \nu^{-1} (s'-s)^{2} |\Delta| q(\Delta, x_{J+1}, x_{0}) + \nu^{-2} (s'-s)^{2} r(\Delta, \nu, x_{J+1}, x_{0}).$$

Here

$$(3.9) p(\Delta, x_{J+1}, x_0)$$

$$= -\frac{i}{2(s'-s)} \sum_{j=1}^{J} \frac{(T_j - s)\tau_{j+1}}{(T_{j+1} - s)} (\iota_{\Delta(J+1)}^{\Delta(j)} \Big[D_{x_{j-1}^{\star}, \dots, x_1^{\star}} (S_{j,1}; x_j, x_0)^{1/2} \\ \times \partial_{x_j}^2 (D_{x_{j-1}^{\star}, \dots, x_1^{\star}} (S_{j,1}, x_j, x_0)^{-1/2} \iota_{\Delta(j)}^{\Delta} a_{\lambda})) \Big] (x_{J+1}, x_0).$$

 $q(\Delta, x_{J+1}, x_0)$ is independent of ν . And functions $q(\Delta, x_{J+1}, x_0)$ and $r(\Delta, \nu, x_{J+1}, x_0)$ satisfies the following estimate. For any $K \geq 0$ there exists an integer $M(K) \geq 0$ and a constant $C_K > 0$ independent of Δ such that

$$(3.10) (1+|\lambda|+|x_{J+1}|+|x_0|)^{-m}|\partial_{x_{J+1}}^{\alpha_{J+1}}\partial_{x_0}^{\alpha_0}q(\Delta,x_{J+1},x_0)| \le C_K A_{M(K)}X_{M(K)}^2$$

$$(3.11) (1+|\lambda|+|x_{J+1}|+|x_0|)^{-m}|\partial_{x_{J+1}}^{\alpha_{J+1}}\partial_{x_0}^{\alpha_0}r(\Delta,\nu,x_{J+1},x_0)| \le C_K A_{M(K)} X_{M(K)}^2,$$

if multi-indices α_0, α_{J+1} satisfies $|\alpha_0| \leq K$ and $|\alpha_{J+1}| \leq K$.

Since

$$(s'-s)^{-1}\sum_{j=1}^{J}\frac{(T_j-s)\tau_{j+1}}{(T_{j+1}-s)}\leq 1,$$

we have from Theorem 3.2

Corollary 3.3. If $|\alpha_{J+1}| \leq K$ and $|\alpha_0| \leq K$, then

$$(3.12) \quad (1+|\lambda|+|x_{J+1}|+|x_0|)^{-m}|\partial_{x_{J+1}}^{\alpha_{J+1}}\partial_{x_0}^{\alpha_0}k(\Delta;a_\lambda,\nu,s',s,x_{J+1},x_0)| \leq C_K X_{M(K)}^2 A_{M(K)}.$$

Remark 3.4. Tsuchida [16] treated the case of non-zero vector potential.

Definition 3.5. Let $p \ge 0$ and $k \ge 0$ be integers. For any function $f: \mathbf{R}^n \ni x \to \mathbf{C}$ we define a norm

$$||f||_{\{p,k\}} = \sum_{|\alpha| \le k} \sup_{x \in \mathbb{R}^n} (1 + |x|)^{-p} |\partial_x^{\alpha} f(x)|.$$

We write

$$\mathcal{B}_p(\mathbf{R}^n) = \{ f \in C^{\infty}(\mathbf{R}^n) : ||f||_{\{p,k\}} < \infty, \quad \forall k \ge 0 \}.$$

 $\mathcal{B}_p(\mathbf{R}^n)$ is a Fréchet space. If p=0, we abbreviate $\mathcal{B}_0(\mathbf{R}^n)$ to $\mathcal{B}(\mathbf{R}^n)$.

Definition 3.6. Let $m \geq 0$ be a constant. Let $\{f_{\lambda}(x)\}_{\lambda}$ be a family of functions in $\mathcal{B}_{p}(\mathbf{R}^{n})$. If this is a bounded set in $\mathcal{B}_{p}(\mathbf{R}^{n})$, we write

$$f_{\lambda} = \mathcal{O}_{\mathcal{B}_n(\mathbf{R}^n)}(1).$$

And we write $f_{\lambda} = \mathcal{O}_{\mathcal{B}_{p}(\mathbf{R}^{n})}(g)$ if $f_{\lambda}/g = \mathcal{O}_{\mathcal{B}_{p}(\mathbf{R}^{n})}(1)$.

Remark 3.7. It follows from Theorem 3.2 that

(3.13)
$$k(\Delta; a_{\lambda}, \nu, s', s, x_{J+1}, x_{0})$$

$$= D_{x_{J}^{*}, \dots, x_{1}^{*}} (S_{J+1,1}; x_{J+1}, x_{0})^{-1/2}$$

$$\times \left(\iota_{\Delta(J+1)}^{\Delta} a_{\lambda}(x_{J+1}, x_{0}) + \nu^{-1} (s'-s) p(\Delta, x_{J+1}, x_{0}) + \nu^{-1} \mathcal{O}_{\mathcal{B}_{m}(\mathbf{R}^{2})} ((s'-s)^{2} |\Delta|) + \nu^{-2} \mathcal{O}_{\mathcal{B}_{m}(\mathbf{R}^{2})} ((s'-s)^{2}) \right).$$

Assumption 3.8 (N.Kumano-go's assumption). Suppose $a_{\lambda}(x_{J+1}, x_{J}, \ldots, x_{1}, x_{0})$ satisfies Assumption 3.1. Moreover, there exists a bounded Borel measure $\rho \geq 0$ on [s, s'] such that as far as $|\alpha_{k}| \leq K$ for $k = 0, 1, 2, \ldots, J+1$

$$\left| \left(\prod_{k=0}^{J+1} \partial_{x_k}^{\alpha_k} \right) \partial_{x_j} a_{\lambda}(x_{J+1}, x_J, \dots, x_1, x_0) \right| \\
\leq A_K X_K^{J+2} \rho([T_{j-1}, T_{j+1}]) (1 + |\lambda| + |x_{J+1}| + |x_J| + \dots + |x_1| + |x_0|)^m \quad (0 \leq \forall j \leq J+1)$$

and that as far as $|\alpha_{j_k}| \leq K$ for k = 0, 1, ..., p + 1

$$\begin{aligned} \left| \partial_{x_0}^{\alpha_0} \partial_{x_{J+1}}^{\alpha_{J+1}} \left(\prod_{k=1}^p \partial_{x_{j_k}}^{\alpha_{j_k}} \right) \partial_{x_{j_k}} (\iota_{\Delta'}^{\Delta} a_{\lambda}) (x_{J+1}, x_{j_p}, \dots, x_{j_1}, x_0) \right| \\ & \leq A_K X_K^{p+2} \rho([T_{j_{k-1}}, T_{j_{k+1}}]) (1 + |\lambda| + |x_{J+1}| + |x_{j_p}| + \dots + |x_{j_1}| + |x_0|)^m \quad (0 \leq \forall k \leq p+1). \end{aligned}$$

Proposition 3.9. Suppose $a_{\lambda}(x_{J+1}, x_{J}, \dots, x_{1}, x_{0})$ satisfies Kumano-go's assumption. Then the function $k(\Delta; a_{\lambda}, \nu, s', s, x_{J+1}, x_{0})$ of (3.7) is of the form

$$(3.14) k(\Delta; a_{\lambda}, \nu, s', s, x_{J+1}, x_{0})$$

$$= D_{x_{J}^{*}, \dots, x_{1}^{*}} (S_{J+1,1}; x_{J+1}, x_{0})^{-1/2} \left(\iota_{\Delta(J+1)}^{\Delta} a_{\lambda}(x_{J+1}, x_{0}) + \nu^{-1} R(\Delta, x_{J+1}, x_{0}) \right).$$

And for any integer $K \geq 0$ there exist C_K and M(K) independent of Δ and ν such that as far as $|\alpha| \leq K, \beta \leq K$

$$(1+|\lambda|+|x_{J+1}|+|x_0|)^{-m}|\partial_{x_{J+1}}^{\alpha_{J+1}}\partial_{x_0}^{\alpha_0}R(\Delta,x_{J+1},x_0)| \leq C_K A_{M(K)}|s'-s|(|s'-s|+\rho([s,s'])).$$

(3.15)
$$R(\Delta, x_{J+1}, x_0) = \mathcal{O}_{\mathcal{B}_m(\mathbf{R}^2)}(|s' - s|(|s' - s| + \rho([s, s']))).$$

§ 4. Convergence of Feynman path integral

We discuss convergence of Feynman path integral. Our discussion is valid only for those $F(\gamma)$ that have rather restrictive properties.

Assumption 4.1 (N.Kumano-go's condition). Let m be a non-negative constant and ρ be a bounded Borel measure $\rho \geq 0$ on [s, s']. Suppose $F(\gamma)$ is a functional defined for all piecewise classical path $\gamma \in \bigcup_{\Delta} \Gamma(\Delta)$. For any integer $K \geq 0$ there exist constants $A_K > 0$ and $X_K \geq 1$ such that for any division Δ defined by (1.4) and for any indices α_j , $j = 0, 1, 2, \ldots, J + 1$ satisfying $|\alpha_j| \leq K$ there hold the following inequalities:

$$\left| \left(\prod_{j=0}^{J+1} \partial_{x_{j}}^{\alpha_{j}} \right) F(\gamma_{\Delta}(x_{J+1}, x_{J}, \dots, x_{1}, x_{0})) \right| \leq A_{K} X_{K}^{J+2} (1 + |x_{J+1}| + |x_{J}| + \dots + |x_{1}| + |x_{0}|)^{m},$$

$$\left| \left(\prod_{j=0}^{J+1} \partial_{x_{j}}^{\alpha_{j}} \right) \partial_{x_{k}} F(\gamma_{\Delta}(x_{J+1}, \dots, x_{k+1}, x_{k}, x_{k-1}, \dots, x_{0}) \right|$$

$$\leq A_{K} X_{K}^{J+2} \rho([T_{k-1}, T_{k+1}]) (1 + |x_{J+1}| + |x_{J}| + \dots + |x_{1}| + |x_{0}|)^{m}.$$

Remark 4.2. $F(\gamma) \equiv 1$ clearly satisfies this assumption.

Example 4.3. Let $\rho(t)$ be a function of bounded-variation on [s, s'] and f(t, x) be a continuous function of $(t, x) \in [s, s'] \times \mathbf{R}$ and infinitely differentiable in x. Suppose that for any α there exists a positive constant C_{α} such that

$$|\partial_x^{\alpha} f(t,x)| \le C_{\alpha} (1+|x|)^m$$

with some $m \geq 0$ independent of α and (t, x). Then the following functional satisfies Assumptions 4.1.

$$F(\gamma) = \int_{s}^{s'} f(t, \gamma(t)) \, d\rho(t).$$

The next theorem was proved by N.Kumano-go [12], while the case $F(\gamma) \equiv 1$ had been known. [8], [11] and [6].

Theorem 4.4. Suppose that $F(\gamma)$ satisfies Assumption 4.1 above and $|s'-s| \leq \delta_1$. Let $I[F_{\Delta}](\Delta; \nu, s', s, x, y)$ be the time slicing approximation defined by (2.2). We write

(4.1)
$$I[F_{\Delta}](\Delta; \nu, s', s, x, y) = \left(\frac{\nu}{2\pi i (s'-s)}\right)^{1/2} e^{i\nu S(s', s, x, y)} k(\Delta; F_{\Delta}, \nu, s', s, x, y).$$

Then $k(F; \nu, s', s, x, y) = \lim_{|\Delta| \to 0} k(\Delta; F_{\Delta}, \nu, s', s, x, y)$ exists in the space $\mathcal{B}_m(\mathbf{R}^2)$. More precisely, for any $K \geq 0$ there exists $C_K > 0$ such that if $|\alpha| \leq K$ and $|\beta| \leq K$

(4.2)
$$\sup_{(x,y)\in\mathbf{R}^{2}} (1+|x|+|y|)^{-m} |\partial_{x}^{\alpha}\partial_{y}^{\beta}(k(\Delta; F_{\Delta}, \nu, s', s, x, y) - k(F; \nu, s', s, x, y))|$$

$$\leq C_{K} A_{M(K)} X_{M(K)}^{4} |\Delta| (\rho([s, s']) + |s' - s|).$$

 $k(F; \nu, s', s, x, y)$ can be written as

(4.3)
$$k(F; \nu, s', s, x, y) = D(s', s, x, y)^{-1/2} \left(F(\gamma^*) + \nu^{-1} R[F](\nu, s', s, x, y) \right)$$

and for $|\alpha| \leq K$ and $|\beta| \leq K$

$$(4.4) |\partial_x^{\alpha} \partial_y^{\beta} R[F](\nu, s', s, x, y)| \le C_K A_{M(K)} |s - s'| (|s - s'| + \rho([s, s'])) (1 + |x| + |y|)^m.$$

Set

(4.5)
$$K[F](\nu, s', s, x, y) = \left(\frac{\nu}{2\pi i(s'-s)}\right)^{1/2} e^{i\nu S(s', s, x, y)} k(F; \nu, s', s, x, y).$$

Then

(4.6)
$$K[F](\nu, s', s, x, y) = \lim_{|\Delta| \to 0} I[F_{\Delta}](\Delta; \nu, s', s, x, y).$$

Remark 4.5. In short, $F(\gamma)$ is "F-integrable" if F satisfies Assumption 4.1. We may write

(4.7)
$$\int_{\Omega} e^{i\nu S(\gamma)} F(\gamma) \mathcal{D}[\gamma] = K[F](\nu, s', s, x, y).$$

Remark 4.6. Equality (4.3) together with (4.4) imply semiclassical asymptotic formula.

Theorem 4.4 follows from the next proposition.

Proposition 4.7. Let Δ^* be an arbitrary refinement of Δ . For any integer $K \geq 0$ there exist a constant C_K and an integer M(K) independent of Δ , Δ^* and ν such that

$$|\partial_{x}^{\alpha}\partial_{y}^{\beta}(k(\Delta^{*}; F_{\Delta^{*}}, \nu, s', s, x, y) - k(\Delta; F_{\Delta}, \nu, s', s, x, y))|$$

$$\leq C_{k}A_{M(K)}X_{M(K)}^{4}|\Delta|(\rho([s, s']) + |\Delta|)(1 + |x| + |y|)^{m}$$
(4.8)

if $|\alpha| \leq k, |\beta| \leq k$.

We indicate the idea to prove Proposition 4.7. The division points of Δ^* that lies in the first subinterval $[T_0, T_1]$ of Δ make a division δ of $[T_0, T_1]$

$$\delta: s = T_0 = T_{1,0} < T_{1,1} < \dots < T_{1,p_1+1} = T_1.$$

Let Δ_1 be the division of [s, s'] defined by all division points of Δ and division points of Δ^* that lies in $[T_0, T_1]$. In other words

$$(4.10) \quad \Delta_1: s = T_0 = T_{1,0} < T_{1,1} < \dots < T_{1,p_1+1} = T_1 < T_2 < T_3 < \dots < T_J < T_{J+1} = s'.$$

 Δ_1 is a refinement of Δ . Let $(x,y) \in \mathbf{R}^2$. For arbitrary $(y_1,\ldots,y_{p_1}) \in \mathbf{R}^{p_1}$ and (x_1,\ldots,x_J) there exists one and only one piecewise classical path $\gamma_{\Delta_1} \in \Gamma_{x,y}(\Delta_1)$ such that

$$y_k = \gamma_{\Delta_1}(T_{1,k}), \quad \text{for} \quad 0 \le k \le p_1 + 1,$$

 $x_j = \gamma_{\Delta_1}(T_j), \quad \text{for} \quad 0 \le j \le J + 1,$

where we set $y_0 = x_0$ and $y_{p_1+1} = x_1$ as well as $x_{J+1} = x$, $x_0 = y$.

Proposition 4.8.

$$k(\Delta_1; F_{\Delta_1}, \nu, s', s, x_{J+1}, x_0) - k(\Delta; F_{\Delta}, \nu, s', s, x_{J+1}, x_0)$$

= $\mathcal{O}_{\mathcal{B}_m(\mathbf{R}^2)}(\tau_1^2) + \nu^{-1}\mathcal{O}_{\mathcal{B}_m(\mathbf{R}^2)}(\tau_1^2 + \tau_1\rho([T_0, T_1])).$

Admitting this proposition as true for the moment, we proceed in the following way. We add to dividing points of division Δ_1 all the division points of Δ^* that lie in $[T_1, T_2]$. Then we obtain a new division Δ_2 of [s, s']. Δ_2 is the same as Δ^* in $[T_0, T_2]$ and it is the same as Δ in $[T_2, T_{J+1}]$. We have in this case, corresponding to Proposition 4.8,

(4.11)
$$k(\Delta_2; F_{\Delta_2}, \nu, s', s, x, y) - k(\Delta_1; F_{\Delta_1}, \nu, s', s, x, y) = \mathcal{O}_{\mathcal{B}_m(\mathbf{R}^2)}(\tau_2^2) + \nu^{-1}\mathcal{O}_{\mathcal{B}_m(\mathbf{R}^2)}(\tau_2^2 + \tau_2\rho([T_1, T_2])).$$

Similarly, we make Δ_3 from Δ_2 . Continuing this process J+1 times, we finally obtain $\Delta_{J+1} = \Delta^*$. Therefore,

$$(4.12) k(\Delta^*; F_{\Delta^*}, \nu, s', s, x, y) - k(\Delta; F_{\Delta}, \nu, s', s, x, y)$$

$$= \sum_{j=1}^{J+1} \left(k(\Delta_j; F_{\Delta_j}, \nu, s', s, x, y) - k(\Delta_{j-1}; F_{\Delta_{j-1}}, \nu, s', s, x, y) \right)$$

$$= \sum_{j=1}^{J+1} \mathcal{O}_{\mathcal{B}_{m}(\mathbf{R}^2)}(\tau_j^2) + \nu^{-1} \mathcal{O}_{\mathcal{B}_{m}(\mathbf{R}^2)}(\tau_j^2 + \tau_j \rho([T_{j-1}, T_j]))$$

$$= \mathcal{O}_{\mathcal{B}_{m}(\mathbf{R}^2)}(|\Delta|(s'-s)) + \nu^{-1} \mathcal{O}_{\mathcal{B}_{m}(\mathbf{R}^2)}(|\Delta|(s'-s) + |\Delta|\rho([s, s'])).$$

This proves Proposition 4.7.

We suggest how to prove Proposition 4.8. We define

$$S_{\delta}(x_1, y_{p_n}, \dots, y_1, x_0) = \sum_{k=1}^{p_1+1} S(T_{1,k}, T_{1,k-1}; y_k, y_{k-1}).$$

Then

$$S_{\Delta_1}(x_{J+1},\ldots,x_1,y_{p_1},\ldots,y_1,x_0) = \left(\sum_{j=2}^{J+1} S_j(x_j,x_{j-1})\right) + S_{\delta}(x_1,y_{p_n},\ldots,y_1,x_0).$$

By definition

(4.13)

$$\begin{split} I[F_{\Delta_1}](\Delta_1;\nu,s',s,x,y) \\ &= \prod_{j=2}^{J+1} \left(\frac{\nu}{2\pi i \tau_j}\right)^{1/2} \int_{\mathbf{R}^J} e^{i\nu \sum_{j=2}^{J+1} S_j(x_j,x_{j-1})} \prod_{j=1}^J dx_j \\ &\times \prod_{k=1}^{p_1+1} \left(\frac{\nu}{2i\pi\sigma_k}\right)^{1/2} \int_{\mathbf{R}^{p_1}} e^{i\nu S_\delta(x_1,y_{p_1},\ldots,y_1,x_0)} F_{\Delta_1}(x_{J+1},\ldots,x_1,y_{p_1},\ldots,y_1,x_0) \prod_{k=1}^{p_1} dy_k. \end{split}$$

We perform integration by the variables (y_{p_1}, \ldots, y_1) prior to integration by variables (x_J, \ldots, x_1) . Set

$$\left(\frac{\nu}{2\pi i \tau_1}\right)^{1/2} e^{i\nu S_1(x_1,x_0)} F_{\Delta/\Delta_1}(x_{J+1},x_J,\ldots,x_1,x_0)$$

$$= \prod_{k=1}^{p_1+1} \left(\frac{\nu}{2i\pi\sigma_k}\right)^{1/2} \int_{\mathbf{R}^{p_1}} e^{i\nu S_\delta(x_1,y_{p_1},\ldots,y_1,x_0)} F_{\Delta_1}(x_{J+1},\ldots,x_1,y_{p_1},\ldots,y_1,x_0) \prod_{k=1}^{p_1} dy_k.$$

Then (4.13) means that

(4.15)
$$I[F_{\Delta_1}](\Delta_1; \nu, s', s, x, y) = I[F_{\Delta/\Delta_1}](\Delta; \nu, s', s, x, y).$$

We apply Proposition 3.9 to the integration by (y_{p_1}, \ldots, y_1) in (4.14). Then

$$(4.16) \quad F_{\Delta/\Delta_1}(x_{J+1}, x_J, \dots, x_1, x_0) = D(\delta; x_1, x_0)^{-1/2} \Big(F_{\Delta}(x_{J+1}, x_J, \dots, x_1, x_0) + \nu^{-1} R_{\delta}[F_{\Delta_1}](\nu, x_{J+1}, x_J, \dots, x_1, x_0) \Big),$$

here

(4.17)
$$R_{\delta}[F_{\Delta_1}](\nu, x_{J+1}, x_J, \dots, x_1, x_0) = \mathcal{O}_{\mathcal{B}_m(\mathbf{R}^{J+1})}(\tau_1^2 + \tau_1 \rho([T_0, T_1])).$$

On the other hand, it follows from Proposition 2.3 that $D(\delta; x_1, x_0)^{-1/2} = 1 + \mathcal{O}_{\mathcal{B}_0(\mathbf{R}^2)}(\tau_1^2)$. Combining these, we have

$$F_{\Delta/\Delta_1}(x_{J+1}, x_J, \dots, x_1, x_0)$$

$$= F_{\Delta}(x_{J+1}, x_J, \dots, x_1, x_0) + \mathcal{O}_{\mathcal{B}_m(\mathbf{R}^{J+2})}(\tau_1^2 + \nu^{-1}(\tau_1^2 + \tau_1 \rho([T_0, T_1]))).$$

We can show that we can apply Corollary 3.3 to the right hand side of (4.15) and that

$$k(\Delta_1; F_{\Delta_1}, \nu, s', s, x, y) = k(\Delta; F_{\Delta}, \nu, s', s, x, y) + \mathcal{O}_{\mathcal{B}_m(\mathbf{R}^2)}(\tau_1^2 + \nu^{-1}(\tau_1^2 + \tau_1 \rho([T_0, T_1]))).$$

This shows Proposition 4.8.

In the case $F(\gamma) \equiv 1$ we discuss the integral transformation with the kernel $K[1](\nu, t, s, x, y)$.

Definition 4.9. We define for any $\varphi \in C_0^{\infty}(\mathbf{R})$

(4.18)
$$I(\Delta; \nu, t, s)\varphi(x) = \int_{\mathbf{R}} I[1](\Delta; \nu, t, s, x, y)\varphi(y) \, dy,$$

(4.19)
$$K(\nu, t, s)\varphi(x) = \int_{\mathbf{R}} K[1](\nu, t, s, x, y)\varphi(y) dy.$$

We write ||A|| for the operator norm of a linear operator A on $L^2(\mathbf{R})$. It turns out from L^2 -boundedness theorem in [1] that the following facts hold:

Proposition 4.10. Suppose that $|t - s| \leq \delta_0$. Then there exists a positive constant C independent of ν , t and s such that

(4.20)
$$||I(\Delta; \nu, t, s)|| \le C, \quad ||K(\nu, t, s)|| \le C.$$

Theorem 4.11. Suppose that $|t-s| \leq \delta_0$. Then there exists a positive constant C independent of ν , t, s such that

$$(4.21) ||I(\Delta; \nu, t, s) - K(\nu, t, s)|| < C(s' - s)|\Delta|.$$

Next we shall discuss the relation between Feynman path integral and propagator of Schrödinger equation.

Let H(t) be the Hamiltonian operator:

(4.22)
$$H(t) = \frac{1}{2} \left(-i\nu^{-1} \partial_x \right)^2 + V(t, x).$$

Theorem 4.12. Suppose that $|t-s| \leq \delta_0$. For any $f \in C_0^{\infty}(\mathbf{R})$ the $L^2(\mathbf{R})$ -valued function $t \to K(\nu, t, s)f$ is strongly differentiable. It satisfies

(4.23)
$$i\nu^{-1}\frac{d}{dt}K(\nu,t,s)f = H(t)K(\nu,t,s)f,$$

(4.24)
$$s - \lim_{|t-s| \to 0} K(\nu, t, s) f = f.$$

Corollary 4.13. $K(\nu,t,s)f(x)$ is the classical solution of Scrödinger equation

$$(4.25) \hspace{1cm} i\nu^{-1}\frac{\partial}{\partial t}K(\nu,t,s)f = \left[\frac{1}{2}\left(-i\nu^{-1}\frac{\partial}{\partial x}\right)^2 + V(t,x)\right]K(\nu,t,s)f(x),$$

if $f \in C_0^{\infty}$.

Remark 4.14. In the case $F(\gamma) \equiv 1$, $K[1](\nu, s', s, x, y) = \int_{\Omega_{x,y}} e^{i\nu S(\gamma)} \mathcal{D}[\gamma]$ is in fact the fundamental solution of Schrödinger equation (1.9). And it has semiclassical asymptotic formula given by (4.3) and (4.4) with $F(\gamma^*) = 1$. The principal term enjoys the property shown by Proposition 2.4. cf. [2]

These main statement of Feynman's paper [4] were verified rigorously in [5], [6], [11], [8].

§ 5. An integration by parts formula

§ 5.1. Some operators of trace class

We set s=0 and s'=T for simplicity. Let $\mathcal{X}=L^2([0,T])$ and $\mathcal{H}=H^1([0,T])$ be the real L^2 -Sobolev space of order 1. For any $x,y\in\mathbf{R}$, we write $\mathcal{H}_{x,y}=\{\gamma\in\mathcal{H}:\gamma(0)=y,\gamma(T)=1\}$

x}. $\mathcal{H}_{x,y}$ is an infinite dimensional differentiable manifold. Its tangent space at $\gamma \in \mathcal{H}_{x,y}$ is identified with the space $\mathcal{H}_0 = H_0^1([0,T]) = \{\gamma \in \mathcal{H}; \gamma(0) = \gamma(T) = 0\}$

Let $\tilde{\rho}: \mathcal{H} \to \mathcal{X}$ be the natural embedding and $\rho: \mathcal{H}_0 \to \mathcal{X}$ be its restriction to \mathcal{H}_0 and $\rho^*: \mathcal{X} \to \mathcal{H}_0$ be its adjoint.

We write $(\ ,\)_{\mathcal{X}}$ for the inner product of \mathcal{X} . We write $\mathcal{L}(\mathcal{X})$ for the Banach space of all bounded linear operators in \mathcal{X} equipped with operator norm $\|\ \|_{\mathcal{L}(\mathcal{X})}$. We adopt the following inner product of \mathcal{H}_0 :

$$(h_1, h_2)_{\mathcal{H}_0} = \int_0^T \frac{d}{dt} h_1(t) \frac{d}{dt} h_2(t) dt \qquad (h_1, h_2 \in \mathcal{H}_0).$$

We write $||h||_{\mathcal{H}_0}$ for the norm of $h \in \mathcal{H}_0$ in \mathcal{H}_0 . The cotangent vector $DF(\gamma)$ is identified with an element, which we also write $DF(\gamma) \in \mathcal{H}_0$, via the inner product of \mathcal{H}_0 by the equation $DF(\gamma)[h] = (DF(\gamma), h)_{\mathcal{H}_0}$.

Let $\omega = \pi T^{-1}$ and let $e_n(t) = \sqrt{\frac{2}{T}} \sin n\omega t$. Then $\{e_n\}_{n=1}^{\infty}$ is a complete orthonormal system of \mathcal{X} . We can choose a complete orthogonal system $\{\varphi_n\}_{n=1}^{\infty} \subset \mathcal{H}_0$ such that $\rho \varphi_n = (n\omega)^{-1} e_n$, i.e., $\rho \varphi_n(t) = (n\omega)^{-1} \sqrt{\frac{2}{T}} \sin n\omega t$. It is clear that $\rho^* e_n = (n\omega)^{-1} \varphi_n$. Therefore, ρ and ρ^* are Hilbert Schmidt operators and

(5.1)
$$\rho \rho^* e_n = (n\omega)^{-2} e_n, \qquad \rho^* \rho \varphi_n = (n\omega)^{-2} \varphi_n \qquad (n = 1, 2, 3, ...).$$

It turns out that

(5.2)
$$-\frac{d^2}{dt^2}\rho\rho^*e_n(t) = e_n(t), \qquad e_n(0) = e_n(T) = 0 \qquad (n = 1, 2, ...).$$

Proposition 5.1. cf. Kato [15]. Suppose that $B: \mathcal{X} \to \mathcal{X}$ is a bounded linear operator with operator norm $||B||_{\mathcal{L}(\mathcal{X})}$. Both of linear operators $\rho^*B\rho: \mathcal{H}_0 \to \mathcal{H}_0$ and $\rho\rho^*B: \mathcal{X} \to \mathcal{X}$ are of trace class. Their traces are equal:

$$tr\rho^*B\rho = tr\rho\rho^*B.$$

Since $\rho \rho^* B$ is in trace class, it has the kernel function $\exists k(s,t) \in L^2([0,T] \times [0,T])$, i.e.,

(5.3)
$$\rho \rho^* B f(s) = \int_0^T k(s,t) f(t) dt \qquad (\forall f \in \mathcal{X}).$$

In particular, the kernel function of $\rho\rho^*$ is the Green operator for the Dirichlet boundary value problem.

Proposition 5.2. k(s,t) has the properties:

- 1. If each $s \in [0,T]$ is fixed, then the function $k_s : [0,T] \ni t \to k(s,t)$ is a well-defined function in \mathcal{X} of t.
- 2. $[0,T] \ni s \to k_s \in \mathcal{X}$ is a strongly continuous mapping from [0,T] to \mathcal{X} .
- 3. The function $[0,T] \ni s \to k(s,t)$ regarded as a function of s is in the image of the map ρ if t is fixed for almost all $t \in [0,T]$.

Proposition 5.3. The value k(t,t) is well-defined for almost all $t \in [0,T]$ and

$$\int_0^T |k(t,t)|^2 dt < \infty.$$

$$tr\rho\rho^* B = \int_0^T k(t,t) dt.$$

§ 5.2. Admissible vector field

Let p be a C^1 map $p: \mathcal{H}_{xy} \ni \gamma \to p(\gamma) \in \mathcal{H}_0$. Then $p(\gamma)$ is a tangent vector field on \mathcal{H}_{xy} . We write as usual $p(\gamma, s) = \rho p(\gamma)(s)$. We have $\partial_s p(\gamma, s) \in \mathcal{X}$.

Definition 5.4 (Admissible vector field). We say that $p(\gamma)$ is an admissible vector field if $p(\gamma)$ has the following properties:

1. There exits a C^1 map $q: \mathcal{H} \to \mathcal{X}$ such that

(5.4)
$$p(\gamma) = \rho^* q(\gamma), \quad (\gamma \in \mathcal{H}_{x,y}).$$

2. If $\gamma \in \mathcal{H}_{x,y}$, then there exists a bounded linear map $B(\gamma) \in \mathcal{L}(\mathcal{X})$ such that the Fréchet differential $Dq(\gamma) : \mathcal{H}_0 \ni h \to Dq(\gamma)[h] \in \mathcal{X}$ is given by

(5.5)
$$Dq(\gamma)[h] = B(\gamma)\rho h \qquad (h \in \mathcal{H}_0).$$

Remark 5.5. Suppose $p(\gamma)$ is an admissible vector field. Then we often write $\frac{\delta q(\gamma)}{\delta \gamma}$ for $B(\gamma)$. It follows from (5.4) and (5.5) that

$$Dp(\gamma)[h] = \rho^* B(\gamma) \rho h$$
 $(\gamma \in \mathcal{H}_{x,y}, h \in \mathcal{H}_0).$

That is, for all $\gamma \in \mathcal{H}_{x,y}$ and $h_1, h_2 \in \mathcal{H}_0$,

$$(Dp(\gamma)[h_1], h_2)_{\mathcal{H}_0} = \left(B(\gamma)\rho h_1, \rho h_2\right)_{\mathcal{X}}.$$

Definition 5.6 (Divergence of a vector field). Suppose that $p(\gamma)$ is an admissible vector field. We define its divergence Div $p(\gamma)$ at $\gamma \in \mathcal{H}_{x,y}$ by the following equality:

$$\mathrm{Div}\, p(\gamma) = \mathrm{tr}
ho^* B(\gamma)
ho = \mathrm{tr}
ho^* rac{\delta q(\gamma)}{\delta \gamma}
ho.$$

Remark 5.7 (Another expression of divergence). Let $p(\gamma)$ be an admissible vector field. Since $p(\gamma, s) = (\rho p(\gamma))(s)$ for $s \in [0, T]$, $p(\gamma, s) = (\rho \rho^* q(\gamma))(s)$. Therefore, it follows from (5.5) that

$$Dp(\gamma, s)[h] = (\rho \rho^* Dq(\gamma)[h])(s) = (\rho \rho^* B(\gamma) \rho h)(s).$$

Let $k_{\gamma}(s,t)$ be the integral kernel function of the trace class operator $\rho \rho^* B(\gamma)$. Then

(5.6)
$$Dp(\gamma, s)[h] = \int_0^T k_{\gamma}(s, t)(\rho h)(t) dt.$$

We often write $\frac{\delta p(\gamma, s)}{\delta \gamma(t)}$ for $k_{\gamma}(s, t)$, i.e.,

(5.7)
$$Dp(\gamma, s)[h] = \int_0^T \frac{\delta p(\gamma, s)}{\delta \gamma(t)} \rho h(t) dt.$$

The next Proposition follows from Proposition 5.3.

Proposition 5.8. Assume $p(\gamma)$ is an admissible vector field. Then

$$\operatorname{Div} p(\gamma) = \int_0^T \frac{\delta p(\gamma,t)}{\delta \gamma(t)} dt.$$

The notion of admissible vector field defined above is an analogy to infinitesimal version of "admissible transformation" in the case of Wiener integral. cf.[13].

§ 5.3. m-smooth functional

We use the following notation: Let \mathcal{Y} be a Banach space with norm $\| \|_{\mathcal{Y}}$. Let Δ be a division of [0,T], γ_{Δ} and $\{x_{J+1},x_{J},\ldots,x_{1},x_{0}\}$ be as before. Assume that $F(\gamma_{\Delta})$ is a map $F:\Gamma(\Delta)\ni\gamma_{\Delta}\to F(\gamma_{\Delta})\in\mathcal{Y}$ and is infinitely differentiable with respect to (x_{J+1},\ldots,x_{0}) . Let K be a nonnegative integer, m be a nonnegative constant and $K\geq 1$ be a constant. Then we define a norm of $F(\gamma_{\Delta})$ defined on $\Gamma(\Delta)$:

(5.8)
$$||F(\gamma_{\Delta})||_{\{\mathcal{Y};\Delta,m,K,X,\}}$$

$$= \max_{\substack{0 \le \alpha_j \le K, \\ j=0,1,\dots,J+1}} \sup_{(x_{J+1},\dots,x_0) \in \mathbf{R}^{J+1}} (1+|x_{J+1}|+\dots+|x_0|)^{-m} \left\| \prod_{j=0}^{J+1} X^{-|\alpha_j|} \partial_{x_j}^{\alpha_j} F(\gamma_{\Delta}) \right\|_{\mathcal{V}}.$$

Moreover if $F(\gamma)$ is defined on \mathcal{H} , then we define

(5.9)
$$||F||_{\{\mathcal{Y};m,K,X\}} = \sup_{\Delta} ||F||_{\{\mathcal{Y};\Delta,m,K,X\}},$$

where sup is taken over all divisions Δ of [0,T]. If $\mathcal{Y} = \mathbf{R}$ or \mathbf{C} , we simply write $||F||_{\{\Delta,m,K,X\}}$ and $||F||_{\{m,K,X\}}$.

Suppose that a functional $F(\gamma): \mathcal{H}_{x,y} \to \mathbf{C}$ is Fréchet differentiable at γ . Then $DF(\gamma)$ denotes its differential. For $h \in \mathcal{H}_0$,

$$DF(\gamma)[h] = (DF(\gamma), h)_{\mathcal{H}_0} \qquad (h \in \mathcal{H}_0).$$

Moreover, if there exists a density $f_{\gamma}(s) \in \mathcal{X}$ such that $DF(\gamma) = \rho^* f_{\gamma}$, i.e.,

(5.10)
$$DF(\gamma)[h] = \int_0^T f_{\gamma}(s)\rho h(s) ds \qquad (h \in \mathcal{H}_0),$$

then we often write $\frac{\delta F(\gamma)}{\delta \gamma(s)}$ or $\delta F(\gamma)(s)$ for $f_{\gamma}(s)$.

Definition 5.9. Let $m \geq 0$ be a constant. We call $F(\gamma)$ an m-smooth functional if $F(\gamma)$ satisfies the following conditions.

F-I $F(\gamma)$ is an infinitely differentiable map from \mathcal{H} to \mathbf{C} .

F-2 $\forall x, \forall y \in \mathbf{R}$ and $\gamma \in \mathcal{H}_{xy}$ the differential $DF(\gamma)$ has its density $\frac{\delta F(\gamma)}{\delta \gamma(s)}$, that is, $\forall \gamma \in \mathcal{H}_{x,y} \forall h \in \mathcal{H}_0$

$$DF(\gamma)[h] = \int_0^T rac{\delta F(\gamma)}{\delta \gamma(s)}
ho h(s) ds,$$

- **F-3** Functional $\frac{\delta F(\gamma)}{\delta \gamma(s)}$ is a continuous functional of $\mathcal{H} \times [0,T] \ni (\gamma,s) \longrightarrow \mathbb{C}$. It is infinitely differentiable with respect to $\gamma \in \mathcal{H}_{x,y}$ if s is fixed.
- **F-4** For any integer $K \geq 0$ there are constants $A_K > 0$ and $X_K \geq 1$ such that $\forall K = 0, 1, 2, \ldots,$

(5.11)
$$A_K = \sup_{\gamma \in \mathcal{H}} \left(\|F(\gamma)\|_{\{m,K,X_K\}} + \sup_{s \in [0,T]} \left\| \frac{\delta F(\gamma)}{\delta \gamma(s)} \right\|_{\{m,K,X_K\}} \right) < \infty.$$

Remark 5.10. Let δ_2 be so small that $v_2\delta_2^2 < 4$ and $v_2\delta_2 < 1$. If $T \le \delta_2$, then a *m*-smooth functional satisfies condition of N. Kumano-go 4.1 and it is "F-integrable".

§ 5.4. An integration by parts formula

Definition 5.11. Let m be a nonnegative number. We say that the vector field $p(\gamma)$ is an m-admissible vector field if it has all the following properties:

- P1 p is an infinitely differentiable map $p: \mathcal{H} \ni \gamma \to p(\gamma) \in \mathcal{H}_0$ of which the restriction to \mathcal{H}_{xy} is an admissible vector field for any fixed $x, y \in \mathbf{R}$, that is, there are C^{∞} maps $q: \mathcal{H} \to \mathcal{X}$ and $B: \mathcal{H} \to \mathcal{L}(\mathcal{X})$ such that $p(\gamma) = \rho^* q(\gamma)$ and that for $\gamma \in \mathcal{H}_{x,y}$ and all $h \in \mathcal{H}_0$, $Dq(\gamma)[h] = B(\gamma)\rho h$.
- **P2** The map $\mathcal{H} \ni \gamma \to B(\gamma) \in \mathcal{L}(\mathcal{X})$ is infinitely differentiable. For any integer $K \geq 0$ there exists a constant $Y_K \geq 1$ such that

(5.12)
$$B_K = \sup_{\gamma \in \mathcal{H}} \left(\|q(\gamma)\|_{\{\mathcal{X}, m, K, Y_K\}} + \|B(\gamma)\|_{\{\mathcal{L}(\mathcal{X}); m, K, Y_K\}} \right) < \infty.$$

We often write $\frac{\delta q(\gamma)}{\delta \gamma}$ for $B(\gamma)$.

Let δ_0 be as in (1.2). Our main theorem is the following cf.[9]:

Theorem 5.12 (Integration by parts). Let $T \leq \delta_0$. Suppose that $F(\gamma)$ is an m-smooth functional and that $p(\gamma)$ is an m-admissible vector field. We further assume that two of $DF(\gamma)[p(\gamma)]$, $F(\gamma)Divp(\gamma)$ and $F(\gamma)DS(\gamma)[p(\gamma)]$ are F-integrable. Then the rest is also F-integrable and the following equality holds.

(5.13)
$$\int_{\Omega_{xy}} DF(\gamma)[p(\gamma)]e^{i\nu S(\gamma)}\mathcal{D}(\gamma)$$
$$= -\int_{\Omega_{xy}} F(\gamma)\operatorname{Div} p(\gamma)e^{i\nu S(\gamma)}\mathcal{D}(\gamma) - i\nu \int_{\Omega_{xy}} F(\gamma)DS(\gamma)[p(\gamma)]e^{i\nu S(\gamma)}\mathcal{D}(\gamma).$$

Remark 5.13. cf. N.Kumano-go [12]. If $p(\gamma, s)$ is independent of γ , i.e., $p(\gamma, s) = h(s)$ then $\text{Divp}(\gamma) = 0$ and the above formula reduces to

(5.14)
$$\int_{\Omega_{x,y}} DF(\gamma)[h] e^{i\nu S(\gamma)} \mathcal{D}(\gamma) = -i\nu \int_{\Omega_{x,y}} F(\gamma) DS(\gamma)[h] e^{i\nu S(\gamma)} \mathcal{D}(\gamma).$$

We explain the idea of proof. We use the abbreviation:

$$N(\Delta) = \prod_{j=1}^{J+1} \left(\frac{
u}{2\pi i au_j}
ight)^{1/2},$$

and set $y_{\Delta,j} = p(\gamma_{\Delta}, T_j) = \rho p(\gamma_{\Delta})(T_j)$ for j = 0, 1, ..., J+1, in particular $y_0 = 0 = y_{J+1}$. It is clear from definition of oscillatory integrals on \mathbf{R}^J that

$$\int_{\mathbf{R}^J} \sum_{j=1}^J rac{\partial}{\partial x_j} \left(F(\gamma_\Delta) y_{\Delta,j} e^{i
u S(\gamma_\Delta)}
ight) \prod_{j=1}^J dx_j = 0.$$

It follows from this that

$$(5.15) N(\Delta) \int_{\mathbf{R}^{J}} \sum_{j=1}^{J} \partial_{x_{j}} (F(\gamma_{\Delta})) y_{\Delta,j} e^{i\nu S(\gamma_{\Delta})} \prod_{j=1}^{J} dx_{j}$$

$$= -N(\Delta) \int_{\mathbf{R}^{J}} F(\gamma_{\Delta}) \sum_{j=1}^{J} \partial_{x_{j}} (y_{\Delta,j}) e^{i\nu S(\gamma_{\Delta})} \prod_{j=1}^{J} dx_{j}$$

$$- i\nu N(\Delta) \int_{\mathbf{R}^{J}} F(\gamma_{\Delta}) \sum_{j=1}^{J} y_{\Delta,j} \partial_{x_{j}} S(\gamma_{\Delta}) e^{i\nu S(\gamma_{\Delta})} \prod_{j=1}^{J} dx_{j}.$$

Theorem 5.12 follows from the next Proposition.

Proposition 5.14.

$$(5.16) \qquad \lim_{\Delta \to 0} N(\Delta) \int_{\mathbf{R}^{J}} F(\gamma_{\Delta}) \sum_{j=1}^{J} y_{\Delta,j} \partial_{x_{j}} S(\gamma_{\Delta}) e^{i\nu S(\gamma_{\Delta})} \prod_{j=1}^{J} dx_{j}$$

$$= \int_{\Omega} F(\gamma) DS(\gamma) [p(\gamma)] e^{i\nu S(\gamma)} \mathcal{D}(\gamma),$$

$$(5.17) \qquad \lim_{\Delta \to 0} N(\Delta) \int_{\mathbf{R}^{J}} \sum_{j=1}^{J} \partial_{x_{j}} (F(\gamma_{\Delta})) y_{\Delta,j} e^{i\nu S(\gamma_{\Delta})} \prod_{j=1}^{J} dx_{j}$$

$$= \int_{\Omega} DF(\gamma) [p(\gamma)] e^{i\nu S(\gamma)} \mathcal{D}(\gamma),$$

$$(5.18) \qquad \lim_{\Delta \to 0} N(\Delta) \int_{\mathbf{R}^{J}} F(\gamma_{\Delta}) \sum_{j=1}^{J} \partial_{x_{j}} (y_{\Delta,j}) e^{i\nu S(\gamma_{\Delta})} \prod_{j=1}^{J} dx_{j}$$

$$= \int_{\Omega} F(\gamma) \operatorname{Div} p(\gamma) e^{i\nu S(\gamma)} \mathcal{D}(\gamma).$$

Proof of (5.16). Since $\gamma_{\Delta}(t)$ is a piecewise classical path with edges at $t = T_j$ for j = 1, 2, ..., J, integration by parts gives

$$(5.19) DS(\gamma_{\Delta})[p(\gamma_{\Delta})] = \int_{0}^{T} \left(\frac{d}{dt} \gamma_{\Delta}(t) \frac{d}{dt} p(\gamma_{\Delta}, t) - \partial_{x} V(t, \gamma_{\Delta}(t)) p(\gamma_{\Delta}, t) \right) dt$$

$$= \sum_{j=1}^{J+1} \frac{d}{dt} \gamma_{\Delta}(T_{j} - 0) p(\gamma_{\Delta}, T_{j}) - \frac{d}{dt} \gamma_{\Delta}(T_{j-1} + 0) p(\gamma_{\Delta}, T_{j-1}) = \sum_{j=1}^{J} \partial_{x_{j}} S(\gamma_{\Delta}) y_{\Delta, j}.$$

(5.16) is proved.

Idea of proof of (5.17). Since $F(\gamma)$ is m-smooth, $\delta F(\gamma) = \delta F(\gamma)/\delta \gamma \in \mathcal{X}$. We express the right hand side of (5.17) as a limit of time slicing approximation. Then we have only to prove that

$$(5.20) \qquad \lim_{\Delta \to 0} N(\Delta) \int_{\mathbf{R}^J} \Big(\sum_{j=1}^J \partial x_j (F(\gamma_\Delta)) y_{\Delta,j} - DF(\gamma_\Delta) [p(\gamma_\Delta)] \Big) e^{i\nu S(\gamma_\Delta)} \prod_{j=1}^J dx_j = 0.$$

Let $\zeta_{\Delta,j}(t) = \partial_{x_j} \gamma_{\Delta}(t)$ for $t \in [0,T]$. Then $\partial_{x_j} F(\gamma_{\Delta}) = (\delta F(\gamma_{\Delta}), \zeta_{\Delta,j})_{\mathcal{X}}$. It is clear that $\zeta_{\Delta,j}(t) = 0$ if $t \notin [T_{j-1}, T_{j+1}]$ and that

(5.21)
$$\frac{d^2}{dt^2} \zeta_{\Delta,j}(t) + \partial_x^2 V(t, \gamma_{\Delta}(t)) \zeta_{\Delta,j}(t) = 0 \qquad (t \in (T_{j-1}, T_j) \cup (T_j, T_{j+1})),$$

and that $\zeta_{\Delta,j}(T_{j-1})=0=\zeta_{\Delta,j}(T_{j+1})$ and $\zeta_{\Delta,j}(T_j)=1$. It is a piecewise C^1 continuous function.

We compare $\zeta_{\Delta,j}(t)$ with the piecewise linear function $e_{\Delta,j}(t)$ such that for $1 \leq j \leq J$

(5.22)
$$e_{\Delta,j}(t) = \begin{cases} 0 & \text{if } t \notin [T_{j-1}, T_{j+1}], \\ (t - T_{j-1})\tau_j^{-1} & \text{if } t \in [T_{j-1}, T_j], \\ (T_{j+1} - t)\tau_{j+1}^{-1} & \text{if } t \in [T_j, T_{j+1}]. \end{cases}$$

 $e_{\Delta,0}(t)$ and $e_{\Delta,J+1}(t)$ are defined in such a way that

(5.23)
$$\sum_{j=0}^{J+1} e_{\Delta,j}(t) = 1 \qquad (t \in [0,T]).$$

Then it turns out that for any α , β

(5.24)
$$|\partial_{x_{j-1}}^{\alpha} \partial_{x_{j}}^{\beta} (\zeta_{\Delta,j}(t) - e_{\Delta,j}(t))| = \mathcal{O}(\tau_{j}^{2}) \quad (t \in [T_{j-1}, T_{j}])$$

(5.25)
$$|\partial_{x_j}^{\alpha} \partial_{x_{j+1}}^{\beta} (\zeta_{\Delta,j}(t) - e_{\Delta,j}(t))| = \mathcal{O}(\tau_{j+1}^2) \quad (t \in [T_j, T_{j+1}]).$$

Therefore,

$$egin{aligned} DF(\gamma_{\Delta})[p(\gamma_{\Delta})] - \sum_{j} \partial_{x_{j}} F(\gamma_{\Delta}) y_{\Delta,j} &= DF(\gamma_{\Delta})[p(\gamma_{\Delta})] - \sum_{j} y_{\Delta,j} (\delta F(\gamma_{\Delta}), \zeta_{\Delta,j})_{\mathcal{X}} \ &= \sum_{j} \left(\delta F(\gamma_{\Delta}), (
ho p(\gamma_{\Delta}) - y_{\Delta,j}) e_{\Delta,j}
ight)_{\mathcal{X}} - \sum_{j} y_{\Delta,j} \left(\delta F(\gamma_{\Delta}), (e_{\Delta,j} - \zeta_{\Delta,j})
ight)_{\mathcal{X}}, \end{aligned}$$

Using (5.24), we can show

(5.26)
$$\sum_{j} y_{\Delta,j} (\delta F(\gamma_{\Delta}), (e_{\Delta,j} - \zeta_{\Delta,j}))_{\chi} = \mathcal{O}(|\Delta|T).$$

Since $p(\gamma)$ is m'-admissible, $\rho p(\gamma_{\Delta})(t) = \rho \rho^* q(\gamma_{\Delta})$ is in $C^1([0,T])$. As $\rho p(\gamma_{\Delta})(T_j) = y_{\Delta,j}$ and $e_{\Delta,j}$ vanishes outside $[T_{j-1}, T_{j+1}]$, we can show

$$(\rho p(\gamma_{\Delta})(t) - y_{\Delta,j})e_{\Delta,j}(t) = \mathcal{O}(\tau_j + \tau_{j+1}) \qquad (t \in [0,T]).$$

Hence

(5.27)
$$\sum_{j} (\delta F(\gamma_{\Delta}), (\rho p(\gamma_{\Delta})(t) - y_{\Delta,j}) e_{\Delta,j}))_{\mathcal{X}} = \mathcal{O}(|\Delta|T).$$

It follows from (5.26),(5.27) and Theorem 3.2 that

$$(5.28) N(\Delta) \int_{\mathbf{R}^J} \Big(\sum_{j=1}^J \partial x_j (F(\gamma_\Delta)) y_{\Delta,j} - DF(\gamma_\Delta) [p(\gamma_\Delta)] \Big) e^{i\nu S(\gamma_\Delta)} \prod_{j=1}^J dx_j = \mathcal{O}(T|\Delta|).$$

This shows (5.20).

Similarly, we can show (5.18).

§ 6. Application to semiclassical asymptotic behaviour of Feynman path integrals

We always assume $T < \delta$. Let $F(\gamma)$ be an m-smooth functional. Then semiclassical asymptotic formula (4.3) was proved by Kumano-go [12]. The principal part of (4.3) is $F(\gamma^*)$, the value of F at the classical path γ^* .

What happens if $F(\gamma^*) = 0$? Integration by parts formula enables us to get a sharper information even in this case.

Assumption 6.1. 1. $F(\gamma)$ is a real valued m-smooth functional. For fixed $\gamma \in \mathcal{H}_{x,y}$, $\frac{\delta F(\gamma)}{\delta \gamma(s)}$ is a \mathcal{X} -valued function, which we write $\frac{\delta F(\gamma)}{\delta \gamma}$. The map $\mathcal{H}_{x,y} \ni \gamma \to \frac{\delta F(\gamma)}{\delta \gamma} \in \mathcal{X}$ is a C^{∞} map. There exists a C^{∞} map $\mathcal{H}_{x,y} \ni \gamma \to A(\gamma) \in B(\mathcal{X})$ such that for any $h \in \mathcal{H}_0$,

(6.1)
$$D\frac{\delta F(\gamma)}{\delta \gamma}[h] = A(\gamma)\rho h.$$

2. Linear operator $A(\gamma)$ has the integral kernel $k_{\gamma}(s,t)$ which is continuous in $(s,t) \in [0,T] \times [0,T]$ and we have for any $K=0,1,2,\ldots$

(6.2)
$$\sup_{(s,t)} ||k_{\gamma}(s,t)||_{\{m,K,X_K\}} < \infty.$$

Suppose $F(\gamma)$ satisfies the above conditions and $F(\gamma^*) = 0$. Let $\gamma_{\theta} = \theta \gamma + (1 - \theta) \gamma^*$ for $0 \le \theta \le 1$. We define an element $\zeta(\gamma) \in \mathcal{X}$ by

(6.3)
$$\zeta(\gamma,t) = \int_0^1 \frac{\delta F(\gamma)}{\delta \gamma(t)} \Big|_{\gamma = \gamma_{\theta}} d\theta.$$

Let $\tilde{W}(\gamma)$ be the multiplication operator in \mathcal{X} defined by

(6.4)
$$\mathcal{X} \ni g(s) \to \tilde{W}(\gamma, s)g(s) \qquad (g \in \mathcal{X}),$$

where

(6.5)
$$\tilde{W}(\gamma, s) = \int_0^1 \partial_x^2 V(s, \gamma_{\theta}(s)) d\theta.$$

Since $T < \delta$, $(I - \tilde{W}(\gamma)\rho\rho^*)^{-1} \in \mathcal{L}(\mathcal{X})$. We define a vector field

(6.6)
$$p(\gamma) = \rho^* (I - \tilde{W}(\gamma)\rho\rho^*)^{-1} \zeta(\gamma).$$

Proposition 6.2. If $F(\gamma)$ satisfies our assumptions and $F(\gamma^*) = 0$, then $p(\gamma)$ is an madmissible vector field and

(6.7)
$$DS(\gamma)[p(\gamma)] = F(\gamma).$$

Thus $DS(\gamma)[p(\gamma)]$ is F-integrable. The following equality holds:

(6.8)
$$\int_{\Omega_{xy}} F(\gamma) e^{i\nu S(\gamma)} \mathcal{D}[\gamma] = \int_{\Omega_{xy}} DS(\gamma) [p(\gamma)] e^{i\nu S(\gamma)} \mathcal{D}[\gamma].$$

We can apply the integration by parts theorem 5.12 and obtain

Theorem 6.3. Suppose $F(\gamma)$ is an m-smooth functional with some $m \geq 0$ and it satisfies the additional assumption 6.1. Assume further that $F(\gamma^*) = 0$. Define $\zeta(\gamma, t)$ and $p(\gamma)$ as above. Then we have

(6.9)
$$\int_{\Omega_{xy}} F(\gamma) e^{i\nu S(\gamma)} \mathcal{D}[\gamma] = -(i\nu)^{-1} \int_{\Omega_{xy}} \text{Div} p(\gamma) e^{i\nu S(\gamma)} \mathcal{D}[\gamma].$$

Apply Kumano-go's theorem of semiclassical asymptotics to (6.9), we have the following theorem.

Theorem 6.4. [12]. Under the same assumption as in Theorem 6.3 the following asymptotic formula holds:

$$\begin{split} &\int_{\Omega_{xy}} F(\gamma) e^{i\nu S(\gamma)} \mathcal{D}[\gamma] \\ &= \left(\frac{-i\nu}{2\pi T}\right)^{1/2} D(T,0,x,y)^{-1/2} e^{i\nu S(\gamma^*)} \left(-(i\nu)^{-1} \mathrm{Div} p(\gamma^*) + \nu^{-2} r(\nu,T,0,x,y)\right). \end{split}$$

For $\forall \alpha, \beta$ there exists a constant $C_{\alpha\beta} > 0$ such that

(6.10)
$$\left| \partial_x^{\alpha} \partial_y^{\beta} r(\nu, T, 0, x, y) \right| \le C_{\alpha\beta} (1 + |x| + |y|)^m.$$

Let $G_{\gamma^*}(t,s)$ be the Green function of differential equation of Jacobi field:

(6.11)
$$-\left(\frac{d^2}{dt^2} + \partial_x^2 V(t, \gamma^*(t))\right) u(t) = f(t), \qquad u(0) = 0 = u(T).$$

Calculation shows:

Theorem 6.5. Under the same assumption as in Theorem 6.4

$$\begin{aligned} \operatorname{Div} p(\gamma^*) &= \frac{1}{2} \int_0^T \int_0^T \frac{\delta}{\delta \gamma(t)} (G_{\gamma^*}(t,s) \frac{\delta F(\gamma^*)}{\delta \gamma(s)}) \, ds dt \\ &= \frac{1}{2} \int_0^T \int_0^T \frac{\delta G_{\gamma^*}(t,s)}{\delta \gamma(t)} \frac{\delta F(\gamma^*)}{\delta \gamma(s)} \, ds dt + \frac{1}{2} \int_0^T \int_0^T G_{\gamma^*}(t,s) \frac{\delta^2 F(\gamma^*)}{\delta \gamma(s) \delta \gamma(t)} \, ds dt. \end{aligned}$$

Remark 6.6 (The 2nd moment of Feynman path integral). Let

$$F(\gamma) = \int_0^T \int_0^T (\gamma(s) - \gamma^*(s))(\gamma(t) - \gamma^*(t))a(s,t) ds dt.$$

Then

$$\begin{split} &\int_{\Omega_{x,y}} e^{i\nu S(\gamma)} F(\gamma) \mathcal{D}[\gamma] \\ &= \left(\frac{\nu}{2\pi i T}\right)^{1/2} D(T,0,x,y)^{-1/2} e^{i\nu S(\gamma^*)} \\ &\quad \times \Big(-(i2\nu)^{-1} \int_0^T \int_0^T G_{\gamma^*}(s,t) a(s,t) \, ds dt + \nu^{-2} r(\nu,T,0,x,y) \Big). \end{split}$$

Here $r(\nu, T, 0, x, y)$ satisfies (6.10) with m = 2.

References

- [1] K. Asada and D. Fujiwara. On some oscillatory integral transformations in $L^2(\mathbb{R}^d)$. Japanese Journal of Mathematics, 4:299–361, 1978.
- [2] G.D. Birkhoff. Quantum mechanics and asymptotic series. Bulletin of the American Mathematical Society, 39:681–700, 1933.
- [3] K. D. Elworthy. Gaussian measures on banach spaces and manifolds. Global analysis and its applications (lectures International Semi. couse, International center of theoretical physics Triest., 2:151–166, 1972.
- [4] R. P. Feynman. Space time approach to non relativistic quantum mechanics. *Reviews of Modern Phys.*, 20:367–387, 1948.
- [5] D. Fujiwara. A construction of the fundamental solution for the Schrödinger equations. Journal d'Analyse Mathématique, 35:41–96, 1979.
- [6] D. Fujiwara. Remarks on convergence of the Feynman path integrals. *Duke Mathematical Journal*, 47:559–600, 1980.
- [7] D. Fujiwara. The stationary phase method with an estimate of the remainder term on a space of large dimension. Nagoya Mathematical Journal, 124:61–97, 1991.
- [8] D. Fujiwara. Mathematical method for Feynman path integrals. Springer Tokyo, in Japanese, 1999.
- [9] D. Fujiwara. An integration by parts formula for feynman path integrals. *Journal of the Mathematical Society of Japan*, 65:1273–1318, 2013.
- [10] D. Fujiwara and N. Kumano-go. An improved remainder estimate of stationary phase method for some oscillatory integrals over a space of large dimension. *Funkcialaj Ekvacioj*, 49:50–86, 2006.
- [11] D. Fujiwara and T. Tsuchida. The time slicing approximation of the fundamental solution for the Schrödinger equation with electromaganetic fields. *Journal of the Mathematical Society of Japan*, 49:299–327, 1997.
- [12] N. Kumano-go. Feynman math integrals as analysis on path space by time slicing approximation. *Bull.Sci.Math.*, 128:197–251, 2004.
- [13] H.H. Kuo. Gaussian Measures in Banach Spaces. Lecture notes in Math. 463. Springer, 1975.

- [14] W. Pauli. Pauli lecture on Physics. MIT press, 1977.
- [15] T.Kato. Perturbation theory for linear operators, volume 132 of Die Grundlehlen der mahemtischen Wissenschaften in Einzeldarstellungen. Springer, 1966.
- [16] T. Tsuchida. Remarks on Fujiwara's stationary phase method on a space of large dimension with a phase function involving electromagnetic fields. *Nagoya Mathematical Journal*, 136:157–189, 1994.