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Integration by parts formula for Feynman path
integrals

By

Daisuke FUuJjiwArA™

Abstract

The aim of this paper is to present

1. Review of time slicing approximation method of Feynman path integrals introduced by
Feynman [4].

2. An integration by parts formula for Feynman path integrals under suitable assumption:

g DF(y)[p(v)]e** M D(y) = — g F(y)Divp(y)e” ™ D(y)

i /Q F(y)DS(M)p()]e* S D ().

This formula is an analogy to Elworthy’s integration by parts formula for Wiener integrals.
cf. [3]

3. An application of integration by parts formula to semiclassical asymptotic formula which
holds in the case of F(y*) = 0. Here 4" is the stationary point of the phase S(v), i.e.,
dS(v*)=0.
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§1. Path integral defined by Feynman

For simplicity we restrict ourselves to the case where the configuration space is R*. In this
case Lagrangian function with potential V (¢,z) is

1
L(t,z,z) = 53‘;2 - V(t,x).
The case where non zero magnetic potential is present is discussed in [11]. Action of path

v:[s,8] > Ris

!

(1.1) se) = [ L3OO

We assume throughout this paper the following assumption for potential V (¢, z) cf. W.Pauli
[14]:

Assumption 1.1. 1. V(¢,z) is a real continuous function of (¢,z). If ¢ is fixed, then it
is a function of class C* in z.
2. For Ym > 0 there exists v,, > 0 such that

max  sup  |O5V(t,@)| < (1 + Jaf)m> 27O,

laj=m (t,z)€[s,s’] x RE

We write #H for the L?-Sobolev space H'(s,s’) of order 1 in [s,s’]. For any z,y € R we
write Ha,y for the closed subset {y € H'(s,s');v(s) = y,7(s') =z} of H. f c =0 and y = 0
we write Ho for Ho. It is clear that action S(vy) (1.1) is well defined for v € # under the
Assumption 1.1.

Proposition 1.2. Let 6o > 0 be so small that

581)2

1.
8<

(1.2)
If|s' — s| < 8o, then for any x,y € R there ezists one and only path v* € Ha,, such that

S(7) = 7érlﬁlilmk‘>‘(v)~
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v* is the classical path, i.e. the first variation §S(v*) of S(7y) at v* vanishes:
6S(v") =0, (s)=y, () =z

It is of class C?[s, s'] and satisfies Euler equation:

2
276 + 8.V (t,7(1) =0,
YW=z, ~(s)=y.
We define
(1.3) S(s',8,2,9) = S(v").

This is called classical action.
Let A be an arbitrary division of the interval [s, s'] such that

(1.4) Ais=TH<Th<--<Ty<Tj1=5".

Weset 7; =T —Tj-1,7=1,2,...,J+1and |A| = maxi<;<Jj+1 Tj-

Suppose that |A| <. Weset zo = y, 2741 =z. Forallz; € R, j = 1,2,...,J, there exists
one and only one piecewise classical path ya(t) which is the classical path for T;_; < t < Tj
and satisfies

(1.5) ’yA(Tj)zxj, (j:0,1,2,...,.]+1).

va may have edges at Tj. We use the symbol ya(zs+1,27,...,21,%0) to express the piece-
wise classical path satisfying (1.5), when we want to express explicitly its dependence on
(.73J+1, LTJy...,T1, CL’o)‘

If A and z,y are given then we write I'z,y(A) for the totality of all piecewise classical path
YA € Haz,y. We write I'g(A) for I'g0(A). By the map

(1.6) I'(A) 2 yalzss1, 20, ..., 21, 20) = (T41,20, ..., T1,T0) € R7*?
we can identify I'(A) and R’*2. Similarly I'; ,(A) is identified with R”.

Given a functional F(y), we often abbreviate F'(va) as Fa. Once A is fixed, it is a function
of (xj+1,%s,...,21,%0) and we denote the dependence of F(ya) on (zj+1,ZJ,...,%1,Z0) by
writing F(ya) = Fa(zj4+1,2J,-..,%1,%0)-

Feynman’s formulation of path integral. Let v = 2rh™!, where h is Planck’s con-
stant. And let Qy, be the space' of paths starting y at time s and reaching z at time s'.
Given a functional F'(y) of v € Qzy, Feynman [4] considered the following integral on finite
dimensional space:

(1.7) I[FAl(Asv, 88,2, y)

J+1 v 1/2 ] J
= H ( ) / Fya)(z,zs,...,21,y) X ewS('m)(m,wJ,m,wl,y)Hdmj.
i=1 R

2miT; ol

In this note Q is a symbol which expresses vaguely notion of path space.
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Feynman defined his path integral by the formula:
(1.8) [ F)e D)= tim 1P A0 ' 5,3,0).
Quy -

The integral I[Fal(A;v, s, s, z,y) of (1.7) 2 is called time slicing approximation of Feynman
path integral (1.8). We say F(v) is ” F-integrable”, if the limit on the right hand side of (1.8)
exists.

The main aim of Feynman’s paper [4] is the statement that the path integral (1.8) with
F =1 and ¢’ replaced by t is the fundamental solution of Schrédinger’s equation

(19) L pult,a) = H(tult,2) (¢ € (s,)

where H(t) = (—%(%)2 + V(t, ) is the Hamiltonian operator.

1
2
§2. Some properties of classical action

From now on we always assume
(2.1) |s" — 8] < So.
Calculation shows:
Proposition 2.1. If |s' — s| < 6, S(s, s,z,y) is of the following form:

’ _ ]-T—yl2 r_ '
S(S ,S,-’L'ay) - 2(8' _ S) + (S 8)¢(8 ,s,:v,y).

The function $(s', s, x,y) is a function of (s',s,z,y) of class C* and 3C > 0 such that
l6(s', 5, 2,9)| < C(1 + |z|* + [yf*).
Moreover, if s’ and s are fized, (s, s,x,y) is a C* function of (z,y) and for Vm > 2 we have

max su 8288 ¢(s', s,z,y)| = km < 00.
zslal+|ﬁ|5m(z,y)gnzl =0y y)| = rom

In particular,

Let A be the division of time interval [s, s'] as (1.4).
We discuss time slicing approximation of path integral.

(2.2) I[FA)(A;v, 8, 8,2,9)

J+1 v 1/2 J
S W Jyeees Ty
———H ( / FA(ZJ+1,:L'_],...,.’E1,:I)0)6 A@rt1,2g 1 wO)Hd:L'j.
j=1 RJ

2miTj 1
J:

2For fixed A the integral (1.7) does not converge absolutely even in the case F(y) = 1. We regard
(1.7) as an oscillatory integral.
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Here Sa(zj+1,2s,...,21,%0) is an abbreviation of S(ya)(zj+1,2,...,21,%0). We also ab-
breviate S(Tj, Tj-1,zj,z5-1) to Sj(zj,2;-1) and ¢(Tj, Tj—1, 25, Tj—1) to ¢j(z;,z;—1). Thus

J+1 B g o2
Sa(xst1,2g,. .., T1,T0) = ZSj(xj,zj_ﬂ = Z (—i-z—TJ—— +Tj¢j($j,$j_1)> :
j=1 j=1 J

Consider J x J matrix U whose (4, k) element is

ik = 0,02, Sa(Ts4+1,2,- .., %1, Z0) (G, k=1,2,...,J).

Then we divide the matrix ¥ into two parts.

U = Ha + Wa,
where
A+ L 0 0 0 0
1 1 1 1

Tm om0 0 0

Hp = 0 —a e 0

L 1

T
0 0 0 --0-L2 L4

and Wa is the matrix whose (7, k) element is

03, (1ipj + Tit1¢it) if  j=k

(2.3) Wik = 0z, Ou; i b5 if k=j5-1
’ Oz Oz; Tj+10541 if k=j54+1
0 it |j— k> 2.

The matrix Ha is a positive definite constant matrix with determinant

T14+7o4+ 471501 (8 =)

det Hp = .
T17T2 ... TJ+1 172 ... TJ+1

It has its inverse H&l. Regarding Wa as an perturbation, we write
U = Ha(I + HY'Wa).

Proposition 2.2. Let 0 < 8, be so small that 61 < 6o and k26? < 1. Let |s" — 5| < 1.
Then ¥Y(j41,2,...,21,T0) € R7T2

(1 — k282)” < det(I + HX'Wa) < (1 + K2682)7,

and

o r_
(1- nz5f)J__(_3_3) < det¥ = det(Ha + Wa) < (1 + ,.;25}’)J__(.5__3)__.
T172...TJ4+1 TIT2 ... TJ4+1
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Assume |s' — s| < §;. Let 4* be the unique classical path in Hz , and let 2} = +*(T}) for

i=0,1,2,...,J+1and WX =Wy mj=$;,1SjSJ. We set
D(A;s',s,z,y) = det(I + H'W2)
= (_____Tszs,- ’_’ZJH) det Hessyzs 2% .. 239a(Tst1,%d,. .., 21, To0).
Here Hesszx, .23 8a(Ti+1,20, .. .,Z1,%0) is the Hessian matrix at (z3%,...z7) of Sa.

Proposition 2.3. Suppose that 0 < |s' — s| < 81. Define d(A;s’,s,z,y) by
(2.4) D(A; s, s,z,y) =14 (s' —5)%d(A; 6, 5,2, 7).
Then for any k > 0

2.5 sup sup max  sup |0505d(A;s,s,z,y)| < co.
( ) '5,_3,13551 Aplal-Hﬂ]Sk(z’y)ngl Ty ( 19 y)l

Proposition 2.4. If |t — s| < 61, then there exists the limit

(2.6) lim D(A;t, s, z,y) = D(t,s,z,y).
|A|—0

Define

(2.7) e(t,5,2,9) = (5=7—=)"/*D(t, 5,2,4)"V

2m(t — s)

Then this satisfies the transport equation cf. [2]:

ate(ta sz, y) + a:L‘S(ta s, , y)ame(ta $,Z, y) + %azs(t, $,Z, y)e(ta s, T, y) =0.

2
Let (——‘-i—z;)—1 be the Green operator of Dirichlet boundary problem. Then D(t,s,z,y) equals

the following infinite dimensional determinant:

d? 2 * d\"
(2.8) Dt,s,0,9) = det (5~ 28v(er)) (-3 )

§3. Stationary phase method for integrals over a space of large dimension

Let f(zs+1,27,...,%1,Z0) be a function of (zs41,2s,...,21,20) € R7T2 Let A be a
division of interval [s, s'] as (1.4). Then we can regard the function f as a function defined on
I'(A), because R7*2 is identified with T'(A). Let 0 = jo < j1 < -+ < jip < Jjpr1=J +1bea
subsequence of {0,1,...,J,J + 1}. Then

(3.1) Ais=Tj <Tj < <Tj, <Tj,,, =5

is a division of the interval [s,s’] of which A is a refinement. We call a division A’ of the
interval [s, s'] coarser than the division A if A is a refinement of A’. There exists a natural
embedding map I'(A’) C T'(A) and I'z4(A’) C g y(A). We shall write (5 f : T(A') - C for
the pull back of a function f : I'(A) —» C by this embedding. If f is a function defined on
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R7*2, we can define a function (%, f defined on RP*? using the identifications R7*? = I'(A)
and RP™? = T(A).
For integers 1 < k <1 < J+ 1 we define

(3.2) Sti(@e, .. zi-1) = Sz, xi-1) + Si-1(Tio1, w1-2) + - - + Si(zj, T5-1).

Note that Sjy1,1(Zs+1,...,%0) = S(@t1,...,%0). We understand that S;;(z;,zj-1) =
Sj(zj,2j-1). Suppose 1 < k <1< J+1. For any fixed (z;,x;-1) € R? let (z7_,,2]_5,...,7})
be the stationary point of the function Si ;(zi,...,z;-1) of (3.2). We shall write x}(z;,z;-1)
for z3, when we wish to express that =} depends on (z;,z;—1).

Suppose A’ is the division given by (3.1) coarser than A. Then for any f(zj+1,2s,...,%0) €
'z, (A) it is clear by definition of ¢4, that

A
LA’f(xJ—i-l’mjpy .. 'aijwO) - f(x-]-i-l, TJye.ooy, L1, '7"0) mk:zi(zjn,wjn_l).
o1 <k<in,n=1,2,...,p+1

We write S} (21, zj-1) for the stationary value of Sy j(i,...,z;-1). ie.,

St (@, j-1) =Si(wr, 271 (21, 75-1))
-1
+ D Sw(@i(mi, 25-1), o1 (@1, 25-1)) + S5 (2 (@1, T5-1), 1)
k=j+1

As Sj(zj,z5-1) = S(Tj,Tj-1,z5,xj-1) is a classical action, it turns out that

(3.3) St (@, zj-1) = Sp,5(x1, 25).
Thus
p+1
A
VA SA(@I41, Ty, 1 T 0) = D S jn_141(Tjns Tj_y)-
n=1

The interval [s, s'] itself is a particular division of [s, s'], which we write A(J + 1). Then
bﬁ(JH)SA(iEJH, zo) = S(¢, 8,2,9).

Given a function ax(zj+1,2J,...,21,%0) of (xj+1,275,...,%1,%0) € R7*? with parameter
A and a fixed division A, we discuss

(3.4) I(A, Sa,ax,v)(Zs+1,0)
J+1 y 1/2 ' J
— ( : ) / a,\(a:J+1,.CL'J,...,:L'1,.'Eo)ewsA(mJ"’l’w"""’xl’mO) Hdmj-
, 2miT; R - -
j=1 j=1
Assumption for the amplitude ax(zs41,27,...,21, o) is the following:
Assumption 3.1. Let m > 0 be a constant. The amplitude ax(zj+1,2J,...,%1,%0) is

defined on R7*2 and may depend on a parameter A. For any integer K > 0 there exist
constants Ax > 0 and Xk > 1 such that

1. If |aj| < K for all  =0,1,...,J +1, then Y(zs41,27,...,21,20) € R/T?

J+1
I(H 3:;)0»)\(1‘J+1,$J7 ooy @1, z0)| < AKXIJ<+2(1 + A+ 2| + |za| + - - + [za] + |zo])™,
j=0
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2. Let A’ be any division defined by (3.1) coarser than A and let {a;, } be a sequence
of indices each of which satisfies |a;, | < K for £ = 0,1,...,p + 1. Then for any
(%o, Tjy, - - - Tj,, TI41) € RPT?

@ A
Iagc?ag.}]-:-ll (Ha Jk) (LAlaA)(xJ+1’a:jp’"',le)xo)l

S ARXEP(L+ N A+ 2ol + s, | + .o+ |z | + |zo)™

Let (x]_4,...,x;) be the critical point of (3.2). And let Hess mean the Hessian of S ; at
the critical point. We define

1
. N _ (Tt
(3.5) Da;_,...23 (Sijixr,zj-1) = <———————-7_l - )detHess(kz_:j Sk(Tk, Tk—1)) eomet ki’
For any k=1,2,...,J + 1 we define the division
(3.6) A(k) 8=T0<Te <Ti4+1 < <Typ1 = s

A(1) = A and A(J + 1) is the interval itself without any intermediate dividing point. The
following theorem is known [7], [10].

Theorem 3.2. Suppose that |s' —s| < 81 and ax(zs41,24,...,%1,%0) satisfies Assumption
3.1. We further assume that |A||s' —s| < 1. Then

v
21T

1/2 . o
(3.7) I(A;Sa, ax, V) (Tg4+1,Z0) = ( ) evS(s ’s"’“l”“’)k(A;a)\,z/, ', 8,741, 20)

with
(3.8) k(A;ax,v,8,5,2511,20)
= Dgs,. 27(Ss+1,1; Ty41,20) "2 (bﬁ(1+1)a>\($1+1,$0) + v (s~ s)p(A, $J+1,$0))
+ v = 8)?|Alg(A, zyt1,m0) + v (s — ) (A, v, @ sg1, To).
Here

(3.9) P(A,Ty41,20)

J
_ - S)TJ+1 A6 [D Iy 1/2
B 2(3’ - ) ; (Tj+1 - 8) (ta(r+1) | Pej_y 0 (851525, 20)

x 05 (Das_,.....a1 (53,1, wj,-’vo)_l/%ﬁ(j)a,\))] (TJ41, Zo).

q(A, 2741, z0) 1s independent of v. And functions q(A, zs41,%0) and (A, v, Tj4+1,T0) satisfies
the following estimate. For any K > 0 there exists an integer M(K) > 0 and a constant
Ck > 0 independent of A such that

(3.10) (1 + A+ @] + |zol) T™102711 052 a(A, w41, T0)| < Cr An(ry Xan (i)
(3.11) (L+ AL+ |za1] + o) ™05 B0 r(A, v, 211, %0)| < Cr Anr(a) Xr (ks

if multi-indices ap, y+1 satisfies |ao| < K and |as+1| < K.
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Since

~ 8! Z S)TJ“ <1,

J=1 J+1~3

we have from Theorem 3.2
Corollary 3.3. If |aj+1| £ K and |ao| < K, then

(3.12) (14 |\ + |zs1| + |zo]) ™07 020k(As an, vy ', 8, Tat1, To)| < Cr Xirx) An(x)-
Remark 3.4. Tsuchida [16] treated the case of non-zero vector potential.

Definition 3.5. Let p > 0 and k > 0 be integers. For any function f: R" 3 x — C we
define a norm

Ifllpiy = D sup (1+[z])” £105 f(@)I.

laj<k

We write
Bo(R™) = {f € C°(R") : |fllgpy < 00, Vk = 0}.

Bp(R") is a Fréchet space. If p = 0, we abbreviate Bo(R") to B(R"™).

Definition 3.6. Let m > 0 be a constant. Let {fx(z)}x be a family of functions in B,(R").
If this is a bounded set in B,(R"™), we write

r=0p,@mn(1).
And we write f) = ng(Rn)(g) if fa/g= ng(Rn)(l).
Remark 3.7. It follows from Theorem 3.2 that

(3.13) k(A;ax,v, 8,8, 254+1,%0)

=D —1/2

2,2y (874113 T7+1, To)

X (Lﬁ(ﬂrl)a/\(mﬂrhxo) + v = 8)p(A, zss1, T0)
+ 70,2y (8" — 1A + 172 Op, oy (5 = 9)))-
Assumption 3.8 (N.Kumano-go’s assumption). Suppose ax(zs4+1,27,...,Z1,Zo) satisfies

Assumption 3.1. Moreover, there exists a bounded Borel measure p > 0 on [s, s'] such that as
far as |ax| < K for k=10,1,2,...,J+1

J+1
‘(H Bg‘,f)amja,\(xj+1,mJ,...,xl,xo)
k=0
< Ak X2 p([Tjm1, T ) (L + A + |Zoa| + Jzs| + o+ 1] + [wo)™ (0SVj < T +1)
and that as far as |oj, | < K for k=0,1,...,p+1
050857 (H 5°‘Jk) Oa;, (tarax)(Za41, Tjpy - - -, Tjp, To)|

< Ak X 0([Tjeys Tino DA + N + |zag1] + s, | + .o+ |20 |+ |2o)™ (0 < VE < p+1).
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Proposition 3.9. Suppose ax(zj+1,27,...,Z1,%0) satisfies Kumano-go’s assumption. Then
the function k(A;ax, v, s',s,21+1,T0) of (3.7) is of the form

(3.14) k(A;ax, v, 8,8, T741,20)

= Dzs o1 (Ss41,15 8541, %0) "/ (bﬁ(ul)ax(w“, o) + v R(A, T4, wo))-

And for any integer K > 0 there exist Ck and M(K) independent of A and v such that as far
asla| < K,B< K

(L4 A+ [ersa] + zo]) T™10271) 820 R(A, 241, %0)| < CrAmxoyls’ — s|(Is” — s| + p([s, 1))
i.e.,

(3.15) R(A,2541,20) = Op,,ma2) (8" = s|(Is" — s| + p([s, s'])))-

§4. Convergence of Feynman path integral

We discuss convergence of Feynman path integral. Our discussion is valid only for those
F() that have rather restrictive properties.

Assumption 4.1 (N.Kumano-go’s condition). Let m be a non-negative constant and p be
a bounded Borel measure p > 0 on [s, s’]. Suppose F(+) is a functional defined for all piecewise
classical path v € UaI'(A). For any integer K > 0 there exist constants Ax > 0 and Xx > 1
such that for any division A defined by (1.4) and for any indices aj, j = 0,1,2,...,J + 1
satisfying |o;| < K there hold the following inequalities:

< ARXZP (4 lzaga] + lzg) + - + lz1] + o)™,

J+1
(H 8;1;) F(ya(zj41,25,...,21,%0))
j=0

J+1
g
| (H ax;) Oz F(Ya(@a41, -+ Tht1, Thy Th1, - - -, T0)

=0
< Ar X p([Te-1, Tera]) (1 + |zoga| + |za| + -+ + |21] + |zo)™.

Remark 4.2. F(v) =1 clearly satisfies this assumption.

Example 4.3. Let p(t) be a function of bounded-variation on [s,s’] and f(¢,z) be a con-
tinuous function of (¢,z) € [s, s'] X R and infinitely differentiable in . Suppose that for any «
there exists a positive constant C, such that

|0z f(t, #)| < Ca(l + |z|)™

with some m > 0 independent of « and (¢, z). Then the following functional satisfies Assump-
tions 4.1.

Fo = [ " £t () do(t).
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The next theorem was proved by N.Kumano-go [12], while the case F(y) = 1 had been
known. [8], [11] and [6].

Theorem 4.4. Suppose that F(v) satisfies Assumption 4.1 above and |s' — s| < §1. Let
I[FAl(A;v, 8, s,2,y) be the time slicing approzimation defined by (2.2). We write

1/2
. / — V ius(leslm’y) . /
(4.1) IIFAl(A; v, 8, s,2,y) = (————-—-———-—-271_1,(81 — s)> e k(A; Fa,v, s, s,2,y).

Then k(F;v,s',s,2,y)) = limjaj—o0 k(A; Fa,v,s',s,x,y) exists in the space B (R?). More
precisely, for any K > 0 there exists Cx > 0 such that if ja| < K and || £ K

(4.2) sup (1 + |a| + |y) ™08, (k(A; Fa,v, ', 5,2,y) — k(F;v, 8, 5,2,9))]
(zvy)ERz
< CrAmx) X | Bl (p(ls, 8'1) + |s” — s)).
k(F;v,s',s,x,y) can be written as
(4.3) k(F;v, s, s,x,y) = D(s,s,2,y) /2 (F(v*) + v 'R[F|(v,,s,3,7))
and for |a| < K and |B| < K

(44)  |0ZOJRIF)(v,¢',5,2,9)| < CxAmaols — 8'|(Is = &' + p(ls, D)1 + Jz] + |y))™

Set
' v V2 5(s’ ) !
wS(s',s,x, .
(4.5) K[F|(v,s,s,2,y) = (m) e YE(Fiv,8,8,2,9).
Then
(4.6) K[F|(v,s',s,@,y) = lim I[FA]l(A;v,s,s,,y).
|Al—>0

Remark 4.5. In short, F(vy) is ”F-integrable” if F' satisfies Assumption 4.1. We may write
(47) [ SO Db = KIFI(, o 5,2,0).
Q
Remark 4.6. Equality (4.3) together with (4.4) imply semiclassical asymptotic formula.

Theorem 4.4 follows from the next proposition.

Proposition 4.7. Let A* be an arbitrary refinement of A. For any integer K > 0 there
exist a constant Cx and an integer M(K) independent of A, A* and v such that

|3§55(k(A*; Fax,v,8,8,2,9) — k(A; Fa,v, 8, 5,2,9))|
(4.8) < CreAno Xaro)| Al (p([s, ') + [A) QA + || + Jy)™

if lo] <k, |B] < k.

11
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We indicate the idea to prove Proposition 4.7. The division points of A* that lies in the
first subinterval [Tp, T1] of A make a division § of [Ty, T1]

(4.9) 5:8=T0=T1,0 <T1,1 < e <T1,p1+1 =1Ti.

Let A; be the division of [s,s’] defined by all division points of A and division points of A*
that lies in [Tp, T1]. In other words

(4.10) A1:8=T0=T1,0<T1,1<-"<T1,p1+1=T1 <T2<T3<"‘<TJ<TJ+1=SI.

A; is a refinement of A. Let (z,y) € R?. For arbitrary (y1,...,up,) € RP! and (z1,...,2)
there exists one and only one piecewise classical path ya, € I'z (A1) such that

Ye =9, (Thk), for 0<k<pi+1,
.’I)j=")/A1(Tj), for OSjSJ-i-l,

where we set yo = zo and yp,+1 = x1 as well as x 541 =z, o = ¥.
Proposition 4.8.

! 7
k(A1; Fay, v, 8,8, 2541,%0) — k(A; Fa,v, 88,2541, T0)

= OBm(R2)(Tl2) + 1/_1(95,,,@(2)(7'12 + m1p([To, T1)))-

Admitting this proposition as true for the moment, we proceed in the following way. We
add to dividing points of division A; all the division points of A* that lie in [T1,7%]. Then we
obtain a new division As of [s, s’]. A, is the same as A* in [Tp, Tz] and it is the same as A in
[T2, Ty41])- We have in this case, corresponding to Proposition 4.8,

(4.11) k(A2; Fagyv,8',8,2,y) — k(Ar; Fay,v, 8, s,2,y)
= Og,, (v2)(73) + v 'O, (r2) (73 + T2p([T1, T2])).

Similarly, we make Az from Az. Continuing this process J + 1 times, we finally obtain Ay, ; =
A*. Therefore,

(4.12) k(A™; Fax,v,8',8,2,Yy) — k(A; Fa,v, 8, 8,2,9)
J41
= Z (k(AJ’ FAj y Uy 8/, $,Z, y) - k(A]_l, FAj_.1 y Uy Sla 8§, T, y))
j=1
J+1
= Op,®2)(75) + v 0p,, w2 (7] + 730([Tj-1, T}]))
j=1

= Op,,®2)(|Al(8" = 8)) + v Op,,r2)(|AI(s" = 5) + |Alp([s, s'])).
This proves Proposition 4.7.
We suggest how to prove Proposition 4.8. We define

p1+1

Ss(Z1, Ypns- -+ Y1,%0) = Z S(T1,k, T1,k—1; Yk Yk—1)-
k=1
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Then
J+1

S'Al(:zu.;_l,...,ml,ypl,...,yl,a;o) = (ESj(.’L‘j,mJ‘_l)) +Sa(m1,ypn,...,y1,m0).
j=2

By definition
(4.13)

I[Fa)(A1;v, 85,2, 0)

J+1 1/2 J
. 1
- ( V ) / 61"23":2 Si(@j.@j—1) I | dz;
],Izlz 2miTy R

j=1
p1+1 v 1/2 s ) P1
X - eV ELYPL YT B (g1, Ty Ypyy e s YL, T dy.
II (22%%) /Rm Ay (Ta+1 L¥p1s 591, @0) | | duk
k=1 k=1
We perform integration by the variables (yp,,...,y1) prior to integration by variables
(zg,...,21). Set
(4.14)
y 1/2 st )
- ereriEnTo) g TIL1, LTy e, L1, T
(27T’L7'1> A/Al( J+1, 47, s &1y 0)

p1+1 v 1/2 .
ivSs(xy, yeeey , T
= H <2i7ro-k> / et 5(=1,Upy Y1 O)FA1(CBJ+1,---,Cl‘l,ypl,---,yl,xo) dek~
RP1

k=1 k=1

Then (4.13) means that
(4.15) IFa (A0, 8, 8,2, y) = I[Faja, )(As v, 8, 8, 2, y).

We apply Proposition 3.9 to the integration by (yp,,...,y1) in (4.14). Then
(4.16) Faja,(xsg1,%0,...,21,%0)

= D((S;xl,xo)_l/z (FA((I)J+1,£C,], ey T1,%0) + V_lRa[FAl](V,$J+1,$J, .. .,xl,a:o)),

here
(4.17) Rs[Fa, (v, Tg41,%0,...,21,%0) = OBm(RJ+1)(T12 + m10([To, T1]))-

On the other hand, it follows from Proposition 2.3 that D(8;z1,x0) /2 = 1+ OBO(Rz)(Tf).
Combining these, we have

Faja(@is1,20,...,T1,%0)
= Fa(Zj4+1,%J,...,%1,%0) + OBm(RJ+2)(T12 + 1/"1(7'12 + mp([To, T1]))).
We can show that we can apply Corollary 3.3 to the right hand side of (4.15) and that
k(Av; Fa,,v, 8,8, ,y)
= k(A; Fa,v,8',8,2,y) + Op,, m2) (11 + v (11 + 11p([To, T1))))-

This shows Proposition 4.8.

In the case F(y) = 1 we discuss the integral transformation with the kernel K[1](v, t, s, z, y).

13
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Definition 4.9. We define for any ¢ € C§°(R)
(4.18) I(A; vt s)p(x) = /R IN)(A; 5,3, y)0(y) dy,
(4.19) K(v,t,8)p(z) = /R K(1](v, t, s, z,y)e(y) dy.
We write ||A|| for the operator norm of a linear operator A on L%(R). Tt turns out from

L*-boundedness theorem in [1] that the following facts hold:

Proposition 4.10. Suppose that |t — 3| < do. Then there exists a positive constant C
independent of v, t and s such that

(4.20) 11(Asv,¢8,8)] SC,  [|K(1,t, )] < C.

Theorem 4.11. Suppose that |t — s| < do. Then there exists a positive constant C inde-
pendent of v, t ,s such that

(4.21) 11(A;v,t,8) — K(v, t,8)|| < C(s" = s)|A|.

Next we shall discuss the relation between Feynman path integral and propagator of
Schrédinger equation.
Let H(t) be the Hamiltonian operator:

(4.22) H(t) = 2 (~iv7'0.)" + V(5,2)

Theorem 4.12. Suppose that |t — s| < 8. For any f € C§°(R) the L*(R)-valued function
t = K(v,t,s)f is strongly differentiable. It satisfies

(4.23) iu_lgEK(v, t,5)f = HO)K(nt, s)f,
(4.24) s— |t_lirlnn*0 K(y,t,8)f = f.

Corollary 4.13. K(v,t,s)f(x) is the classical solution of Scrédinger equation

2
(4.25) w12 K(t,5)f = [;} (—u%) + vum} K(vt,5)f (),

if feCs°.

Remark 4.14. In the case F(y) = 1, K[1)(v, ¢, 5,2,y) = [, . eSMDly] is in fact the
fundamental solution of Schrédinger equation (1.9). And it has semiclassical asymptotic for-
mula given by (4.3) and (4.4) with F(v*) = 1. The principal term enjoys the property shown
by Proposition 2.4. cf. [2]

These main statement of Feynman’s paper [4] were verified rigorously in [5], [6], [11], [8].

§5. An integration by parts formula

§5.1. Some operators of trace class

We set s =0 and s’ = T for simplicity. Let X = L%([0,T]) and # = H'([0,T]) be the real
L*-Sobolev space of order 1. For any z,y € R, we write Hs, = {y € H : 7(0) = y,7(T) =
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z}. He,y is an infinite dimensional differentiable manifold. Its tangent space at v € Ha,y is
identified with the space Ho = H3([0,T]) = {y € H;v(0) = v(T) = 0}

Let p : H — X be the natural embedding and p : Ho — X be its restriction to Ho and
p* : X — Ho be its adjoint.

We write ( , )x for the inner product of X. We write £(X) for the Banach space of all
bounded linear operators in X’ equipped with operator norm || ||z(x). We adopt the following
inner product of Ho:

Td d
(h1,h2)u0 = g Ehl(t)&;hz(t) dt (hl,hz € Ho).

We write ||h||3, for the norm of h € Ho in Ho. The cotangent vector DF(«) is identified with
an element, which we also write DF(y) € Ho, via the inner product of Ho by the equation

DF(y)[h] = (DF(7), h)no-
Letw = 7T and let e, (t) = —12: sinnwt. Then {e, }ne; is a complete orthonormal system
of X. We can choose a complete orthogonal system {¢,}32; C Ho such that pp, = (nw) e,

ie., ppn(t) = (nw)d‘/%sin nwt. Tt is clear that p*e, = (nw) '¢y,. Therefore, p and p* are

Hilbert Schmidt operators and
(5.1) poien = (nw) 2en,  ppon = (nw) 2oy (n=1,2,3,...).

It turns out that

2
(5.2) —%pp*en(t) = en(t), en(0) = en(T) =0 (n=1,2,...).

Proposition 5.1. c¢f. Kato [15]. Suppose that B : X — X is a bounded linear operator
with operator norm ||B||z(x). Both of linear operators p*Bp : Ho — Ho and pp*B : X - X
are of trace class. Their traces are equal:

trp*Bp = trpp* B.
Since pp* B is in trace class, it has the kernel function Jk(s,t) € L*([0,T] x [0, T)),i.e.,

(5.3) pp* Bf(s) = / ks, 0f (Mt (Vf € X).

In particular, the kernel function of pp* is the Green operator for the Dirichlet boundary value
problem.

Proposition 5.2. k(s,t) has the properties:

1. If each s € [0,T] is fized, then the function ks : [0,T] > t — k(s,t) is a well-defined
function in X of t.

2. [0,T] 35— ks € X is a strongly continuous mapping from [0,T) to X.

3. The function [0,T] > s — k(s,t) regarded as a function of s is in the image of the map p
if t is fized for almost all t € [0,T].
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Proposition 5.3. The value k(t,t) is well-defined for almost all t € [0,T] and
T
/ Ik(t, £)[2 dt < oo.
0
T
trpp* B =/ k(t,t) dt.
0

§5.2. Admissible vector field

Let p be a C' map p: Hay 3 v — p(y) € Ho. Then p(v) is a tangent vector field on Hy.
We write as usual p(y, s) = pp(y)(s). We have d,p(,s) € X.

Definition 5.4 (Admissible vector field). We say that p(vy) is an admissible vector field if
p(7) has the following properties: ‘

1. There exits a C* map q : H — X such that

(5.4) p(v) =p"a(), (v € Hay).

2. If v € Ha,y, then there exists a bounded linear map B(y) € L(X) such that the Fréchet |
differential Dq(7) : Ho 3 h — Dq()[h] € X is given by

(5.5) Dq()[h] = B(v)ph  (h € Ho).

dq(v) for

Remark 5.5. Suppose p(y) is an admissible vector field. Then we often write 5y

B(y). It follows from (5.4) and (5.5) that
Dp(y)[h] = p*B(v)ph (v € Hayy, h € Ho).

That is, for all v € H;,y and ki, he € Ho,

(Dp(7)[h1], ho2)ao = (B('y)phl , phz) v

Definition 5.6 (Divergence of a vector field). Suppose that p(y) is an admissible vector
field. We define its divergence Div p(«y) at v € Hg,y by the following equality:

5q(v)
oy p:
Remark 5.7 (Another expression of divergence). Let p(vy) be an admissible vector field.

Since p(v, s) = (pp(7))(s) for s € [0,T), p(, s) = (pp*q())(s). Therefore, it follows from (5.5)
that

Divp(y) = trp*B(7)p = trp*

Dp(y, s)[h] = (pp" Da(7)[h])(s) = (pp™B(7)ph)(s).
Let k~(s,t) be the integral kernel function of the trace class operator pp* B(y). Then

T
(5.6) Dp(,5)[H] = / ke (5, £) (oh) (8) d.

op(7, 8)
5v(t)

We often write for ky(s,t), i.e.,

_ [T op(1,9)
(5.7) Dp(v,s)[h] = =0 ph(t) dt.
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The next Proposition follows from Proposition 5.3.
Proposition 5.8. Assume p(vy) is an admissible vector field. Then

T ép(v,)
Di = ) g,

The notion of admissible vector field defined above is an analogy to infinitesimal version of
”admissible transformation” in the case of Wiener integral. cf.[13].

§5.3. m-smooth functional

We use the following notation : Let ) be a Banach space with norm || ||y. Let A be a
division of [0,T], va and {zs+1,2s,...,%1,Z0} be as before. Assume that F(ya) is a map
F :T(A) 5 va — F(ya) € Y and is infinitely differentiable with respect to (+1,...,%0). Let
K be a nonnegative integer, m be a nonnegative constant and X > 1 be a constant. Then we
define a norm of F(ya) defined on I'(A):

(5.8) IF(va)ll{y;a,m k,x,}

J+1
= Joax sup (Lo fogaa] ot o)™ [T XT19105 Fva)
j=0_,1a,J..T,J-’}~1 (mJ+1,A..,zo)eRJ+1 =0 N

Moreover if F(v) is defined on H, then we define
(5.9) IF 1l wim. . xy = sUp | Fllvia,m.x,x3,
where sup is taken over all divisions A of [0,T]. If ¥ = R or C, we simply write | F||ta,m k,x}
and || Fll {m,k,x}-

Suppose that a functional F(v) : Hzy — C is Fréchet differentiable at v. Then DF(v)
denotes its differential. For h € Ho,

DF(y)[h] = (DF(v),M)nus  (h € Ho).

Moreover, if there exists a density f,(s) € X such that DF(y) = p* fy,i.e.,
T
(5.10) DFO)[k = [ £,()oh(s)ds  (he Ha),
0

then we often write (;518)) or 6F(y)(s) for fy(s).

Definition 5.9. Let m > 0 be a constant. We call F(v) an m-smooth functional if F(v)
satisfies the following conditions.

F-1 F(v) is an infinitely differentiable map from H to C.

F-2 Vz,Vy € R and v € Hgy the differential DF'(vy) has its density f;:((;’)) , that is, Vv €
Hm,yvh E HO

DRI = [ G pn(s)ds,
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F-3 Functional 3{;8)) is a continuous functional of % x [0,T] 3 (v,8) — C. It is infinitely

differentiable with respect to v € Hz y if s is fixed.
F-4 For any integer K > 0 there are constants Ax > 0and Xk > 1suchthat VK =0,1,2,...,,

SF(v) < oo,
6v(s) {m,K, X5}

(5.11) Ak = sup (IIF(v)II{m,K,xK} + sup
’YEH SE[OrT]

Remark 5.10. Let §; be so small that v262 < 4 and v2d; < 1. If T < 42, then a m-smooth
functional satisfies condition of N. Kumano-go 4.1 and it is ”F-integrable”.

§5.4. An integration by parts formula
Definition 5.11. Let m be a nonnegative number. We say that the vector field p(~) is an
m-admissible vector field if it has all the following properties:

P1 pis an infinitely differentiable map p: H 3 v — p(v) € Ho of which the restriction to Hay
is an admissible vector field for any fixed z,y € R, that is, there are C*° maps q¢: H - X
and B : H — L(X) such that p(y) = p*q(y) and that for v € H,, and all A € Ho,
Dq(v)[h] = B(7)ph.

P2 The map H 3 v — B(y) € L(X) is infinitely differentiable. For any integer K > 0 there
exists a constant Yx > 1 such that

(12) B =swp (lalgxm vt + IBOicqeym xr) <
Y

We often write é%(’;_)’l for B(¥).

Let §p be as in (1.2). Our main theorem is the following cf.[9]:

Theorem 5.12 (Integration by parts). Let T < &o. Suppose that F(v) is an m-smooth
functional and that p(vy) is an m’-admissible vector field. We further assume that two of
DF(®)[p(v)], F(y)Divp(y) and F(y)DS(v)[p(v)] are F-integrable. Then the rest is also F-
integrable and the following equality holds.

(5.13) / DF(7)p()]e* S D()

=— [  FDivp(1)e”*MID() —iv [ F(y)DSM)p()e” M D(y).

Q::'y lel

Remark 5.13. cf. N.Kumano-go [12]. If p(v, s) is independent of v, i.e., p(v,s) = h(s)
then Divp(y) = 0 and the above formula reduces to

(5.14) DF(7)[he*SMD(y) = —iv / F(y)DS()[Ke*5D().
Qaz,y Qz,y
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We explain the idea of proof. We use the abbreviation:

JHL o\ 1/2
N(@a) = H (2m"rj) ’

j=1

and set ya,; = p(va,Tj) = pp(va)(T;) for 5 =0,1,...,J + 1, in particular yo = 0 = ysu1. It
is clear from definition of oscillatory integrals on R’ that

J J
_a _iwwS(va) o
/RJ J; ey (F(12)ua s¢70)) E daj = 0.

It follows from this that

J J
(5.15) N(A) /R . 3" 0, (F(ya))ya je*502) T] de;
j=1

j=1

J J
=—-N(A) /RJ F(va) Z 1y (ya,;)e™508) H dz;
i=1 =1

J J
. wS
—wN(b) [ Fom) > vty STa)e ) [ .

j=1
Theorem 5.12 follows from the next Proposition.
Proposition 5.14.

J J
s ivS
(5.16) L{l_n}ON(A) /RJ F(ya) E Ya,j0z; S(ya)e (va) I Idwi

=1 j=1

= [ FOIDSmlp(a)le D),

J J
. LiwS(va) .
(5.17) /_lxlglo N(A) /RJ ;537- (F(va))ya,je dej
- /Q DF()p()]e* S D(y),
J s J
(5.18) iiinoN(A) /RJ F(ya) ; Bz, (ya,j)e” (va) Jl;[l dz;

= /Q F(y)Divp(7)e* 5 D(y).

Proof of (5.16).  Since ya(t) is a piecewise classical path with edges at t = T} for j =
1,2,...,J, integration by parts gives

619 DSGa)ptal = [ (el gpm0) - 0V (6 1a@)ptad) )

J+1 J

d d
=Y =T = 0p(va, Tj) — —ya(T-1 + 0)p(va, Tj-1) = D _ 82;5(va)ya ;-
= dt dt =1

19
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(5.16) is proved.

Idea of proof of (5.17). Since F(v) is m-smooth, §F(y) = 0F(v)/dy € X. We
express the right hand side of (5.17) as a limit of time slicing approximation. Then we have
only to prove that

J J
: . o wS(va) -

(5:20)  Jim N(&) /R , (;&% (F(va))uas = DF (1) [p(ya)] )72 [] dz; =0
Let ¢a,j(t) = Oz;va(t) for t € [0,T]. Then 0;;F(va) = (6F(va),Ca,;)x. It is clear that
CA,j(t) =0ift ¢ [7}-1,Tj+1] and that
d2
dt?
and that ¢a j(Tj—1) = 0 = (a,j(Tj+1) and {a;j(T;) = 1. It is a piecewise C' continuous
function.

We compare (a,;(t) with the piecewise linear function ea ;(t) such that for 1 <j < J

(5.21) $a,i (&) + 02V (L, va(E))Cai(t) =0 (t € (Tj—1,Ty) U (T}, Tis1)),

0 if t ¢ [Tj-1, Tj41],
(5.22) eaj(t) =1 (t—-Tj-1)r;"  ifte[Tj-1, T,
(Tj+1 = )73 if t € [Ty, Tyral.

eao(t) and ea,j+1(t) are defined in such a way that

J+1
(5.23) deajt)=1  (te[o,T)).
j=0
Then it turns out that for any «, 3
(5.24) 105,_,0%,(Ca () —ea ()| = O(F) (¢ € [Tj-1,Ty])
(525) |8:j8£j+1 (CA:j(t) - €A7j(t))| = O(T.7'2+l) (t € [T.VDT.‘HJ])
Therefore,
DF(ya)lp(va)l = Y 8z, F(va)ya,; = DF(ya)lp(va)] = Y _ ya,;(6F(7a),Ca5)x
J J

= Z (0F(va), (op(va) — Ya,j)en,5) x ~ ZyA,j (6F(va), (e, = €a,5)) s

J
Using (5.24), we can show
(5.26) > vai(6F(1a), (ea; — €a5)) » = O(AIT).

J

Since p(v) is m’-admissible, pp(ya)(t) = pp*q(ya) is in C*([0,T]). As pp(7a)(T;) = ya,; and
ea,; vanishes outside [T;_1,Tj+1], we can show

(op(v2)(t) —ya)eai(t) = O(r; + 7541) (L €[0,T)).
Hence

(5.27) Y (BF(va), (op(18)(2) — ya.i)eas)) » = OUAIT).

7

20
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It follows from (5.26),(5.27) and Theorem 3.2 that

(5.28)  N(A) / Zawy F(ya))ya.; = DF(7a)[p(1a)]) ’"“‘*A)Hda: = O(T|A).

j=1

This shows (5.20).
Similarly, we can show (5.18).

§6. Application to semiclassical asymptotic behaviour of Feynman path
integrals

We always assume T' < §. Let F(v) be an m-smooth functional. Then semiclassical
asymptotic formula (4.3) was proved by Kumano-go [12]. The principal part of (4.3) is F'(y*),
the value of F' at the classical path .

What happens if F(v*) = 0 ? Integration by parts formula enables us to get a sharper
information even in this case.

Assumption 6.1. 1. F(v) is a real valued m-smooth functional. For fixed v € Hg,y,

358)) is a A-valued function, which we write 5(7) The map Hz,y 37— 6F(5(7) € Xis

a C° map. There exists a C°° map Hz,y 3 v = A(y) € B(X) such that for any h € Ho,
6F

(6.1) 22 ) = Ao

2. Linear operator A(y) has the integral kernel k- (s,t) which is continuous in (s,t) € [0, T} x
[0,T] and we have for any K =0,1,2,...

(6.2) sup ||k (8, )|l m, &, x 3 < 0.

st

Suppose F(7) satisfies the above conditions and F(y*) = 0. Let 79 = 6y + (1 — 0)y* for
0 £ 9 <1. We define an element {(vy) € X by

(63) / 6F(7) ¥="0 a6

Let W (v) be the multiplication operator in X defined by

(6.4) X3g(s) > W sgls) (g€ ),
where
(6.5) W(r,s) = /0 82V (5, vo(s)) do.

Since T < 8, (I — W(y)pp*)~" € L(X). We define a vector field

(6.6) p(v) = p*(I = W(v)pp*) " *¢(7).

21
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Proposition 6.2. If F(vy) satisfies our assumptions and F(v*) = 0, then p(y) is an m-
admissible vector field and

(6.7) DS()[p(v)] = F(v).

Thus DS(v)[p(v)] is F-integrable. The following equality holds:

(6.8) ; F(y)e*5™MDly] = : DS(7)[p()]e” M Dly].

We can apply the integration by parts theorem 5.12 and obtain

Theorem 6.3. Suppose F(v) is an m-smooth functional with some m > 0 and it satisfies
the additional assumption 6.1. Assume further that F(~v*) = 0. Define {(v,t) and p(vy) as
above. Then we have

(6.9 [ P ODp) = ~) [ Divp(ye O pp)

zy zy

Apply Kumano-go’s theorem of semiclassical asymptotics to (6.9), we have the following
theorem.

Theorem 6.4. [12]. Under the same assumption as in Theorem 6.3 the following asymp-
totic formula holds:

F(y)e"5D[y]
sz

__. 1/2 : -
= (—ﬁ) D(T,0,z,y) /%" (= (i) "' Divp(y") + v *r (v, T,0,2,1)).

For Va, B there erists a constant Cop > 0 such that

(6.10) 2abr(v, T, O,w,y)l < Cap(l+ |z] + [y)™

Let G4+(t, s) be the Green function of differential equation of Jacobi field:
d2
(6.11) (dt2 + 82V (t, v (t ))) u(t) = f(t), u(0) =0 = u(T).

Calculation shows:

Theorem 6.5. Under the same assumption as in Theorem 6.4

Divp(r") = & f / 5 (t)«:w (t,9)°F ((7)))(1 dt

1 T 6G4(t,8) OF (") 82F(v*)
“2/0/0 () or(s) BT f / G () 5 eyoy iy 2




INTEGRATION BY PARTS FORMULA FOR FEYNMAN PATH INTEGRALS

Remark 6.6 (The 2nd moment of Feynman path integral). Let

T T
Fly) = /0 / (Y() = 7" (8))(1(8) — 7" (8))a(s, t) dsd.

Then

e F(y)Dl]

S~

Qe

v
_ (v \? ~1/2 ivS(y*)
- QWZT) D(T,O,a:,y) €

T ,T
X ( — (i2v)™* / / G+ (s,t)a(s, t) dsdt + v r(v, T, 0, , y))
o Jo

Here r(v,T,0, z,y) satisfies (6.10) with m = 2.
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