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1. INTRODUCTION

This paper considers a problem concerning a generalization of elastic curves in S?(G),
where 82(G) is a 2-dimesional sphere with Gaussian curvature G. More concretely, we
consider a functional including the p-th power of the absolute value of the curvature of
¢ € S*(G). The motivation for this problem comes from [15]. In [15], we consider a
similar problem in R? and show the existence of rather curious solutions called “fat-
core” solutions for the case p > 2. Here we note the concept of flat-core solution itself
was introduced by Guedda-Veron [6] and recently developed by Takeuchi [13] in another
context (not elastica). One of the purpose of this article is to seek whether the flat-core type
solutions exist or not in S?(G). Moreover, we proceed to construct various solutions other
than flat-core type solutions. For the construction of these non-flat-core type solutions,
precise estimate for so called “time map” is necessary. For the estimation of time-map, its
differentiability (for some variable) is evidently needed. However, unfortunately we could
not find relevant articles ensuring this differentiability. So, in Appendix, we would like to
attempt to prove this property in detail. In the next section, we precisely describe the
problem to deal with.

2. FORMULATION OF THE PROBLEM
Let S denote the space of C? closed curves in S?(G):
S ={ce C?([0,1],8%(@)) |a(t) # 0(t € [0,1)),
c(0) = c(1),¢:(0) = e4(1), e (0) = (1)}

Let € > 0. We say a mapping c(w,t) : (—¢,¢) x [0,1] — S%(G) is a “variation” of c € S
if it satisfies ¢(0,t) = ¢(t) and for each w € (—¢,¢), c(w,-) is an element of S. We call
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dc(w,-)/Ow a “variational vector field” of c. Here we put some natural assumptions for a

variation c(w, -).

Assumption 1. Let c(w,-) be a variation of c € S. We assume for each t € [0,1], c(:,?)
is smooth with respect to w € (—¢,€) and for each w € (—¢,€), c(w, -) is twice continuously
differentiable with respect to t € [0,1].

To state the problem to be considered, we further define the following.

Definition 1. Let c(t) (t € [0,1]) be a curve in S and s represents its arclength parameter.

We introduce the p-elastic energy E of c as:

L L 1 1
E(c) = /0 (Ve,colPds = /O Ik(s)[Pds = /0 () P{cescx) Bt

where k is the curvature of ¢ defined by Frenet-Serret formula, L is a total length of the
curve ¢ and (-, -)rs is the standard inner product of R3. We consider the relazed functional

J\ of E which coincides with the one treated in Langer-Singer [9] when p = 2:

L 1 1
(1) JA(c)z/O (J&(s)[” + A) ds=/0 (Is@) + A) (ce, ce) hadt

Let c(w,t) ((w,t) € (—e,€) x [0,1]) be a variation of c. We say c is a “stationary curve”
in S if the first variation of Jy vanish at c, i.e.

d-]/\(c(w’ )) .
dw ‘ =0

w=0

for all variations of c.

The purpose of this article is obtaining stationary curves as many as possible and

analyzes their properties.

Remark 1. From Theorem 1 and Lemma 8 below, we see that there exist C* but not
C* stationary curves. Arroyo-Garay-Mencia (2] (see; also [7]) seek stationary curves of Jo
whose reqularity is of class C*. One of their results (Proposition 8) is that when p > 2, only
stationary curves of Jo are geodesics. However, by relaxing the regularity of solutions to
C?, we can find stationary curves of Jy other than geodesics; see Proposition 8. Moreover,

if p>2 and X > 0 we can find novel curious solutions, which we call flat-core solutions.

3. LEMMAS

To obtain the first variation formula of J), we represent the curvature of a curve on
S2(G) with local coordinate. We represent a point (z,y, z) on $?(G) with polar coordinate

as

(2) (z,y,2) = (rsinvcosu,rsinvsinu, —rcosv), (0<u<2m,0<v <),
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and assume a Riemannian metric tensor which is induced from the embedding: S?(G) —
R3.
(3) Guu =725i0%0, guy = 0, gy = 12,

We note

will be used throughout this article. Let
(4) c(s) = (rsinv(s) cosu(s), rsinv(s)sinu(s), —r cos v(s))

be a curve on S%(G) belonging to S and s represents an arc-length parameter, i.e. it

satisfies
(5) r? (sinv(s))rzus(s)2 + r?uy(s)? = 1.

Let e1(s) = c,(s) and es(s) be its 7/2 (rad) anti-clockwise rotation. Then, by Frenet-

Serret formulas we have

(6) e1(s) = cs(s), Ve,(s)e1(s) = n(s)es(s).

Here Vg, () is the covariant derivative for the direction e1(s), and the concrete expressions

of Ve, (sye1(s) and ex(s) are

<CSS(S)’ C($)>R3 c
72

(7) Ve, (s€1(8) = css(s) —
T

(s)
2

2 . . L
~u3 cos u(cosv)” sinv — 2ugvs COSUSIN U — Ugy SIN USIN Y + Vgg COSU COSV
. 2 . . .
=r | —uZsinu(cos )" 8in v + 2usv; COS U COS U + Ugs COSUSIN Y + Vg sinucosv |
N2 .
—u2 cosv(sinv)” + vgs sinwv

T
Us COSUCOSVSIN U + vgsinu
c(s) x cs(s) ) _ '
ex(s) = T =7 | ugsinucosvsinv —vgcosu |
(c(s) x cs(8),c(s) x cs(8))hs U (sinv)2

where X is the outer product. From these, we obtain the expression of the curvature as

follows :

Lemma 1. Assume s represents an arclength parameter of c€ S. Then the curvature x

of ¢ is expressed as
(8) F‘“(S) = <ve1(s)el(s)7e2(s)>R3
= r2(—uss(s)vs(s) sinv(s) + us(s)vss(s) sinv(s)

— 2ug(s)vs(s)? cosv(s) — us(s)3 (sin v(s))2 cos v(s)).
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We would like to see the expression of k of ¢ when t does not represent its arclength.

In this case, by changing the variable

. b atenaa T

the curvature of ¢ is expressed as follows.

w0 TZ(—uttvt sinv(t) + uevy sin v(t) — 2uvf cosv(t) — u (sinv(t))2 cosv(t))
k(t) = 3 '
) {r2 (sinv(t))2u% + TZU?}E

4. MAIN RESULTS

Under the assumption that |x[P~2k is of class C? we have the following theorem.

Theorem 1. Let p > 1 and A € R. Let (u,v) € S be a curve such that 0 < infyejo,y] u(t),
supsepo) v(t) <, and |k|P~%k is of class C?, where k is the curvature of (u,v). Then for
each variation c(w,t) = (u(w,t),v(w,t)) : (—¢,€) x [0,1] = S2(G) of (u,v) with € > 0,
there holds

dJx(c(w, -))

dw

in the coordinate (2), where s is an arclength parameter of (u(0, 9,v(0,-)), L is the total
length of (u(0,-),v(0,-)) and

X (s) = p(|K(s)P2k(5)) ,, + GoIK(s)P~*(8) + (p — 1)Iw(s)[P(s) = Asi(s)-

= /L X (s) sinv(s) (—vs(8)uw (0, 5) + us(8)vw(0, s)) ds
w=0 0

For ensuring the assumption that |x|P~2k is of class C?, we introduce the auxiliary

equation:
plws(s)> =d - F(w(s)), s€R,
(11)
ws(0) =0, F(w(0))=d,
where
(12) Fw) = (p— 1)?w|™T + Gp?w? — 2\(p — Dw|7T forw € R.

We show in [11], for certain triple of (p, A, d), (11) has C? periodic solution. We denote
the period of the solution of (11) by Ty 4 = inf{s > 0,|w(s) = w(0), ws(8) = ws(0)}-

Lemma 2. Assume p > 1, A € R and a triple (p, A, d) admits C? periodic solution w
(w #0) of (11). For such w, we define

VGp
mw(s))a
VG = (p = Dlw(s)l7T)
VAR (1 - CBuw(s)2) |

(13) v(s) = arccos(—

(14) Us (5)
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Then s represents the arclength parameter i.e. it satisfies (5).
Using Lemma 2, we obtain the following result.

Theorem 2. Letp > 1, A € R and a triple (p, A, d) admits C? periodic solution w of (11).
Further, let w be a solution of (11). If Ty 4 =0, then

(15) c(t) = (2mt,v) (t€(0,1])
is a stationary curve of Jy in S, whefe
(16) vy = arccot(—rlw(0)|§_:?w(0)),

and if Ty 4 >0, (u,v) is defined through (13) and (14), and there is m € N such that
w(0) = u(mTpra), us(0) = us(MTppa), uss(0) = uss(MTpra),
v(0) = v(mTpna),  vs(0) = vs(MmTpna), 0ss(0) = vss(mTpipa),

then

(17) c(t) = (u(mTp x4 t),v(mIpaqt)) (t€ [0,1])

is a stationary curve of Jy in S and it does not pass either the north pole or the south pole

in the coordinate (2).

Here we put

i

(18) H(w) = (p - 1)}w|7 + Gplw|7T - A.

Suppose p > 1 and A € R are given constant. We see from (18) that H(w) = 0 has at
most two positive real roots. Assume wy;) and wa;x (wW2;n < wi;n) be two positive real roots
of H(w) = 0 (in the case only single positive root exists, we put this wi;x). We enumerate
the behavior of F.

Lemma 3. For various (p,\,d), behavior of F is classified as follows.

-2
(a) The casep >2,A <0 0orp=2,A<2G orl <p<2,)\§2Gg(%:—713)E2—,

w 0
F,| - +
F 0

TABLE 1. Behavior of F for the case (a).

(b) The case p > 2,1 >0 orp=2,X> 2G,

_2 —
() 1<p<2,268(28) 7 <A< (Gp)i(p-1)1r(2-p)"7,
(d) 1<p<2, 2> (Gp)ip-1)P@2-p)7,
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w —W1;) 0 W)
F - 0 -

TABLE 2. Behavior of F' for the case (b).

w —Win —W2:\ 0 W2 Wi
F + or0 + 0 + + or0

TABLE 3. Behavior of F' for the case (c).

w —W1;A —wo;n 0 wan || Wi
Fo | - + - + - +
F - + 0 + -

TABLE 4. Behavior of F for the case (d).

Suppose d € R is given, then from Lemma 3, we see that the equation d— F(w) = 0 has
at most three positive real roots. We put these roots wi;y 4, wo;zd and ws;xd and assume
WiAd > Ward > waag (in the case, only single root exist, we put this wy.) 4). We classify

the solutions of (11) to five types:

(I) Constant solution w = wp. (wp is one of 0, wy;) and Fwy; 2)

(IT) Positive periodic solution whieh oscillates between wy;x 4 and wy.) 4. (For the sake
of completeness, if w oscillates between wy;y o and 0, we do not call it type (II)
solution, and we call it type (V) solution; see (V). Recall that if wa.x g is defined,
it is positive.)

(ITII) Negative periodic solution which oscillates between —wi;x4 and —wsg; 4.
(IV) Sign changing periodic solution which oscillates between —wi;» 4 and wyyq4. (d
must be positive.)

(V) Solution constructed along the following rule.

~ It consists of the following solutions (Vi), (Vii) and (Viii) of (11).
— It includes at least one of (Vii) or (Viii).
— It is glued in arbitrary order. ‘
(Vi) Constant solution w = 0.
(Vii) One period of positive periodic solution w which oscillates between wy;x 0 and
0. Here, one period means that the function w(s) defined on 0 < § < Tpa 4
and it satisfies w(0) = w(Tp;xq) = 0 and w(T}x,4/2) = Wi 0-
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(Viii) One period of negative periodic solution which oscillates between —w. o and

0. (The meaning of one period is similar as above.)

We sometimes call type (V) solution “flat-core solution”. Glued solutions such as (Vii),
(Vi)-(Vii)-(Viii)-(Vi), (Vii)-(Viii), (Vii)-(Vi)-(Viii) are examples of flat-core solutions.

w

I I (Viii) s

FIGURE 1. A flat-core solution of the equation (11) composed by type
(Vii),(Vi),(Viii) solution.

5. CLOSEDNESS OF CURVES

Let c be a stationary curve and k its curvature. From here we call stationary curves
constructed in Theorem 2, type (I), (II), (III), (IV) and flat-core solution if w = |&|P~2x
is a type (I), (II), (III), (IV) and (V) solution of (11).

For ensuring the existence of stationary curves, we have to show the closedness of the
curve ¢ = (u,v) satisfying (13) and (14). From the expression (13), we see that v and u; are
C? periodic functions. Hence for the closedness, we have only to show that u(0) = u(L).
To show this property, we explicitly write down the period Tpz,4 of w and angular change

Aprg. We write T, instead of Ty, 4 if w is type (IT), ALY
(IV) and so on if any distinction is necessary. More precisely, we define

instead of Ay 4 if w is type

> Y e 2P ] (Iv) WiiAd 4p
TN (=T")) = — V) _ 4
piAd p;Ad Wain.d d— F(w) pAd ) —~— F(w)
and
A (= (1) )= M /‘wl;A,d A= (p— I)W_Ll N
(19) mAd PiA,d m W N,d (]_ — ﬁ%uﬂ) d— F(LU) ’

AV VG [ A= (p— DwoT
PAMUVIER S0 (1- Sw?)/d- Fw)
Here, we define 7, ,, the set of stationary curves satisfying

2nm
(20) Apra= 20
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Concretely, for n € Z, m € N with gcd(n,m) = 1, we define
2
Yr,m :={(u,v) | (u,v) satisfies (13) and (14), Aprd = —311}

Suppose a triple (p, A, d) is given and for such (p, A, d), ¢ = (4, v) € Ynm- Put L = mTy 4,

then we obtain

L mTp;A d PN, d
(21) / us(s)ds = / s)ds = m/ s)ds = 2nm.
0 0

This means the curve which belongs to v, m close up after m period of its curvature (given
by (8)) and n trips around the small circle (or the equator).
Here for A > Q, we put

p=1 2(p—1
A PR YE N S lY
F((p—l) >__Gp(p—1) r

-1
We note that both \/(d+ A2)/(Gp?) and (M/(p — 1))%_ are roots of equations 1 —
Gp*w?/(d+>?) =0and (p— l)wzr_'lz_I — X = 0 respectively, which appear in the expression

d

of Apxg. Next lemma asserts the order relations between wyx 4, /(d+ A?)/(Gp?) and

p=1
(A-1))"
Lemma 4. Let p > 1, A € R and d > minger F(w). Then there hold d + A% > 0,
d+ N2
22 F >d
and in the case A > 0,
d+ 2
2 : = = dy.
( 3) F( sz ) ded d)\

Moreover, if d > minyer F(w) or there ezists w # 0 such that F(w) <0, then in the case
A <0, there holds

d+ A2

(24) wind < T

and in the case A > 0, there holds

d-+-/\2 A
w1,\d<\/
p 1
2 p=1
(25) 9 wl,\d—”d_'—)\ pAl) P in the case d = d,,

in the case d > dj.

in the case d < dy,

~——
ol
-
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Here we define

W:{(/\,d)ERZIASO,dZO}U{(A,d)6R2[A>0, min F(w) Sd_<d,\},

0= {(/\,d)eRzlz\>O,d>d,\}
(Figure 2 shows the sets W and O for the case p > 2). We also define for fixed A € R,
Wy = {deRj (A, d) ew} and Oy = {deR|(A,d) e o}

(note that when A <0, Oy = )). We can easily see that Ap.» 4 is continuous with respect
to d when d € W), or d € Oy. However, it may have discontinuity on dy. Indeed, using

7

GEp?(p-D7
A

Non-existenice /

d=F(o,)

FIGURE 2. Domains of W and O.

elliptic integrals, we can show this discontinuity in the case of p = 2. We note in this case
it holds that
)\ 2(p-1)

—an2( 2 NP 2 2
A =Gr*(-=5) A2 = 4GA - A
Proposition 1. Assume p = 2. Then, in the case A > 4G, it holds
4G
26 li an _ o kel
@ AR Mana =2\ )

. an 4G
(27) d—1>1cir,?—0 Ajng=2K ( 3 ) + .

In the case 0 < \ < 4G, it holds.
(28) limg g, 0 ASy ) = 2\/§K ( ) — 2

. v
limgq, 0 Aé{,\’; = 2\/—%}{ ( 4‘%) + 2.

&k

&|
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Remark 2. If (A, d) € W, from (14) and (25), we see that u(s), s € (0,Tp;»,q4) is monotone
increasing, while if (A, d) € O, us(s) changes its sign on some s € (0,Tp.x4). Thus shapes

of stationary curves change drastically between W and O.

Definition 2. Assume a stationary curve (u,v) generated by (11), (13), (14) has (A, d)

belonging to W (resp. O). Then we say (u,v) is “wavelike” (resp. “orbitlike”).

5.1. Existence of the flat-core solutions. We can show the existence of flat-core so-

lutions.

Proposition 2. Assume p > 2. Then if 0 < A < Ggpp(p — 1)I7P, there exist wavelike

flat-core solutions and if G 3 pP(p — 1)}7P < A, there exist orbitlike flat-core solutions.

S Q.

FIGURE 3. Orbitlike flat-core solution of for p = 3, A = 100,G = 1.

Figures 3-5 show examples of flat-core solutions.

5.2. Existence of type (IV) solutions. Let A < 0 be fixed. Then if

(29) 7 ¢ (A0 < d < oo}

4.

holds, clearly type (IV) wavelike stationary curves belonging to v, ,, exist. We show that

n € Z and m € N satisfying (29) actually exists.

Proposition 3. Suppose n € Z and m € N satisfy

2
o < M <, 1<p<2,A<0
2G 2nw
30 -2 2T <0, p=2,)
(30) ™ 22G—A< — <0, p <0
0< - mr<<1, l1<p<L2andA=0o0rp>2X<0.

m
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m/2

FIGURE 5. Orbitlike flat-core solution of for-p = 3, A = 100,G = 1.

Then (29) is satisfied. Especially if p > 2, A < 0 and 0 < —2n7/m < 1, there exists at

least two distinct stationary curves belonging to vy m.

Although Proposition 3 asserts the existence of type (IV) solutions belonging to v, m
where 0 < —2n7/m < 1, numerical result indicates the existence of type (IV) solutions
for small m. Figure 6 shows an example of such type (IV) wavelike solution which belongs

to Y1,2-
We show the result concerning the existence of type (IV) orbitlike solutions. First we

Ap = 2G% (2_“2)

define for p satisfying 1 < p < 2,
p=2
2
p—1
We have the following lemma.,

45
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w2k

FIGURE 6. Wavelike type (III) stationary curve belonging to y12; p =
3,A=—-1and d~ 30.75,G = 1.

Lemma 5. Let 1 < p < 2. Then, on the interval (A, 0), the graphs A — F(ws,)) and

A = dy intersect only once at A = A.. Moreover, A, satisfies
(31) Ap < Aw < GEpP(p — 1)1P.

Further we define A € (2G,4G) the unique solution of

A A
=K — | =
Va (V 4G> "
The following proposition shows the existence of type (IV) orbitlike solutions.

Proposition 4. There hold the following.
(1) In the case 1 <p <2 and A > Ay,
(a) if Ap < A < A, there exists an orbitlike type (IV) solution,
(b) if A > As, for each m,n € N, there exists an orbitlike type (IV) solution
belonging to vnm,
(2) In the case p=2 and \ > 2G,
(a) if 2G < A < 4G and X # A, for each m,n € N such that
nm

(2@1{ (\/g) — 27r,0) if A € (2G, ),
— €
" (0,2\/211{ (&) - 271') if A € (), 4G),

there exists an orbitlike type (IV) solution belonging to vn m,
(b) if 2G < XA < 4G and A = X, there exists an orbitlike type (IV) solution,



(c) if X > 4G, for each m,n € N, there exists an orbitlike type (IV) solution
belonging to vypm.
(3) In the case p > 2 and A > 0, there exists an orbitlike type (IV) solution.

Figure 7 shows a numerical example of type (IV) orbitlike solution for the case p = 3.

A7 Y NN
A 2N

FIGURE 7. Orbitlike type (IV) stationary curve belonging to 71 4; p =
3,A=3,d~6.762,G = 1.

We can show the existence of type (I) solutions and type (II) or (III) solutions. These
results are seen in [11]. Figure 8 and 9 are examples of type (II) wavelike solutions, Both
Figure 8 and 9 take p = 1.5, A = 2.4.

z/2F — - - - - — — — — -

FIGURE 8. Wavelike type (II) stationary curve belonging to Ya3; P =
1.5, =24, d~ —0.273,G = 1. |

47
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FIGURE 9. Wavelike type (II) stationary curve belonging to vs3; p =
15,2 =24,d~0.236,G = 1.

6. APPENDIX

In this section, as mentioned in the introduction, we will show the differentiability of
time map TUY)
e map T '\

we give an alternative proof of its differentiability which may be useful for the case that

. In [11], we show this property with implicit function theorem. Here

the implicit function theorem is not applicable. Let ¢g > 0 be sufficiently small and
B € (w1, — €0, w1, +€0). For such S, clearly there uniquely exists a(8) > 0 such that a(f)
is continuous with respect to 3, F'(a(8)) = F(B), a(B) # B if B # wy,» and a(wy;y) = wia.
Putting d = F(8), the time map TIS;I/\‘Q can be regarded as a function of 8. In some

circumstances, we need the differentiability of the time map with respect to 5.

Lemma 6. It holds that a(B) is a smooth function of 8, moreover
(32)

2F”/(W1;,\)
3F”(w1;,\) ’

2F"’(w1;>\)2

" _
o (wiia) = 3F"(wi;n)?’

a(wl;/\) = wl;)h a,(wl;)\) = —1, Q”((JJ]‘;)‘) = -

Proof. Since the smoothness of a at § = wy;) seems not so clear, we show its smoothness

in the neighborhood of 8 = wy;y. Now put
G(a, B) = F(a) — F(B).
We note G is C* in the neighborhood of (o, ) = (w1;»,ws;r) and
Goalwin,win) = Gglwin,win) = Fu(win) =0
Gaalwin, win) = Fuw(win) > 0, Ggp(win,win) = —Fuw(win) <0,

s0 (w1;x,w1;)) is a non-degenerate critical point of G. Hence by Morse’s lemma, there exists
a coordinate chart U;(z,y) and C*®-diffeomorphism & : (z,y) — (a(z,y),B8(z,y)) € R?



such that (0,0) € U and

®(0,0) = (wipn,wipn), Glalz,y), B(z,y)) = Gwip, wipn) + 2% — y? =22 — 42

We note it holds
{(z,y) € U|G(alz,y), B(z,y)) = 0} = {(z,2) € U} U{(z, ~z) € U}.
We put

®((z,z)) = ((z, z), B(z,2)) = (u(x), B1())
®((z, —z)) = (a(z, —x), B(z, ~)) = (aa(x), Ba(x)).

From G(a(x),B1(x)) = 0 and G(az(z), B2(z)) = 0, clearly an(x) = Bi(x) or ag(z) =
B2(z) holds. Assume ap(z) = B2(z) holds (we only consider this case, since the case
o1(x) = f1(z) can be treated similarly). Since ® gives the C®-diffeomorphism from U to
®(U), it holds that

day . dBi
(520, 20) # 0.0,
In the case dB1(0)/dx # 0, z(B1) is C*™ for B; € (wix — €0,w1.x + €0), where ¢ > 0 is
sufficiently small. Thus a1 (z(61)) is C* with respect to 8;. Setting 8 = 61, a = a1, we
obtain that o is a C*° function of 8. In the case daj(0)/dz # 0, similarly we obtain 8
is C% for oq € (wi;n — €0, w1\ + €0). Setting 8 = ay, o = By, we obtain that-a is a C®
function of 3.

Formula (32) can be obtained by derivating

F(B) = F(a(B))
with g several times. U

Lemma 7. Let eg > 0 be sufficiently small. Then T(/\ A(8) is C? (w1,x — €0,w1.x + €0) with
respect to 3.

Proof. We show that T(I/\VJ( 5)

not so complex.. Since the proof for C? differentiability is quite similar, we would like to

is C! in detail, for the reason that the proof for this case is

note only essential points.

Now, putting w = 8 — (8 — a(B))z, we have

V) _ - 04(5) .

B dw
phd /a F(B) — F(w) / VF(B) - — (B~ a(B))z)
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We have
d ( 8- () )
s \ /F(B) — F(B - (B - a(B))?)
_2(F(B) - F(w))(1 - /(8) - (B—a(B)) (F'(B) — F'(w)(1 - (1 -~ @'(8))2))
2(F(B) - Fw))?
AF(B) - Fw))(1 — o (8)) + (w — a(B)F'(w) — (8 ~ a(B)F'(B) + (8 — w)o/(B)F'(w)
2(F(B) - F(w))?

We put
p1(w) =2(F(B) — F(w))(1 - &(8)) + (w ~ a(B) F'(w) — (B — a(B))F'(8)

+ (B~ w)e(B)F'(w)
and show for w satisfying w € |wi;», 8], there exists a constant Cy > 0 such that
(33) lp1(w)] < C1e®(8 ~ w)
holds. We can easily see that
(34) ¢1(B) = 0.
Next we estimate ¢} (w). We note it holds

P (w) = F'(w)(-1+a/(8)) + (w — a(B) + (~w + H)o/ (B)) F" (w)-

Substituting 8 = wy,x + €, we obtain from Taylor series expansion for w and e that
(35) o1 (W) =) (W) + (W — w1l (Wia) + O((w = win)?)

= (win — a(B) + (—win + B/ (8)) F" (wr;)

+ (w — win) (Wi = a(B) + (~wipn + B) (B)) F” (wi;n)

+O0((w ~ wi)?)

" 2
_ (——%F’”(Wl;)\)ez + 0(53)) + (w - wl;,\) (—;?F,E((A:’l):)‘)) 62 + 0(53))

+ 0 ((w - wl;)‘)2) .

Since by Lemma 6, |w —wix| < 26 for w € [a(B), 8], (35) means that there exists a
constant C; > 0 such that

(36) [Ph(@)] < Cré® for w e [a(B), A].
From (34) and above inequality, we have
B
@< [l du< Ciet(e-w),

which shows (33) on w € [wi;x, 8]



Next, noting F(a(8)) = F(f3), we see that

(37 or(a(8) =0.

Hence from (36), (37), we obtain as in the case w € [wi.», 8],

(38) lor(w)] < Cre*(w — a(B)),  w € [a(B),wrpnl.

Here, let 21,5 € (0,1) be the point satisfying w1,y = 8 — (8 — a(8))21;a. Then we obtain

@) | min EG)=F(6-(6-alB)) _ Lmin_ _fi(_ﬁ;:_z@(g — a(8))
_FB) - Flo)
- ﬂ — Wy (ﬁ (5)))

e ey R e e CEEO)
_Fla() - Flon)
== (5 ().

Using (33), (38), (39), (40) and noting the relation, 8 — w;;x = €, we obtain

P (W)
2(F(B) — F(w))

(41)

d ( B—a(B) ) _
dB \\/F(B) —- F(B— (8- a(d))z)
_ leiB— (8- a(®)2)

2(F(8) - F(B - (8 — «(8))2))?

LS

< C1(B =~ a(B))e?2 N C1(8 — a(B))e*(1 - 2)
225 (F(—‘;)glf:;’-ﬂ) 2(B-a(B)? 21-2)2 (f—(ﬁ):%%f—)) (8- a(B)?

N e \i(F(B)-Fww\* 1
T2V a <“’“ - a(ﬁ)) (win — a(B))? ) (1—2)2
G [ (F(B) ~ Flop)) 7% 1
2V B—a(B) \” (B—wnn)? »!

3
2

(F(a(ﬁ)) - F(w,) -3
(

- :
toE= a(B) (wm - a(ﬂ)) (wi;x —a(B))? 1-2)7

We note it holds
N orsem) (Ceatam) 3V (greew)

njco
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as € = +0. Thus it holds for sufficiently small eg > 0 that

I

< 201Fuw(w1;)\)—

4 B~ a(B) 1 1 o
db <\/T(6) —F(B-(B- a‘(,B))z)) (z% T z)%) € L'(0,1).

Hence from Lebesgue dominated convergence theorem, we have
ar’y) 1 _
(42) »A,d(B) — 2p/ __d_ ﬂ a(ﬂ) dz
df o 4B\ VF(B) - F(B - (B—a(B))?)

Next, we show the continuity of dTIS,I/\Vd)( 5) /dp on (wy; — €0, wi;x + €0). For simplicity, we

put

B—al(p) ) |
VFE(B) - F(B - (B—a(B))2)

Then, for €; > 0 sufficiently small we have

d

av) 1v)
ATosde | dTp;A,d(a)‘

4B ‘ﬂ=5o g la=p

1

< /61 |¥(z, Bo) — ¥(z,B1)|dz +/ |¥(z, Bo) — ¥(z,B1)|dz
0 1

—€1

1—¢1
+/ 19 (2, Bo) — U(z, Br)| de

€1

_3 @] 1 1 1
5401Fww(w1;)\) 2 - + -dz + — + -dz
0 z2 (1-2)2 1-a 22 (1-2)2

1—€1
[ 10 ) - ¥ )1 02

€1

Again by Lebesgue dominated convergence theorem, we have

1-¢;
[ w0 - a1z 0

€1

as 81 — Bo. Thus for €; > 0 sufficiently small, there exists ;1 > 0 and Cp > 0 such that if

|Bo — B1| < 81, then

(1v) (1v)
a5 4(8) AT 5 d(8)

T‘ﬁ=ﬁo - ——d_ﬂ—\ﬂ=ﬁ1 =L

holds. This shows the continuity of dTIE_I/\VJ( ﬂ)/ dB on (wy;n — €0, w1\ + €0).
To show C? differentiability, we put

L ( 8 — a(B) ) _ P2(w)
dB* \ JF(B) - F(B— (B-a(B))?))  4(B - a(B)) (F(B) — F(w))?
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and show there exist a constant C3 > 0 such that

0364(ﬂ - 0.))2, wE [wl;)\a ,B]
lp2(w)| < . ,

Cse(w — a(B))?, w € [a(B),w1;].

In the following we have to perform some complex computation and we use Mathematica

(43)

for these computation. First we obtain the expression of py(w) as:

P2(w)
={(8 - a(8))* 2F(W)F"(8) - 2F(B)F"(B) +3F'(6)?)
+6(8 — a(B))F'(B)F'(w) (wa'(8) — B/ (B) + a(f) — w)
+ (wo/(8) ~ B! (B) + a(B) — w)" (2F(B)F"(w) — 2F (w)F" (w) + 3F(w)?)
—4(8 - o(B)) (F(B)* + F(w)?) o"(8)
+2(F(8) - Fw))F'()
(4 (o(B) = 1) ((w = B)a'(8) + a(B) — w) — 28 — alB))(w — F)o(8))
+4(8 - a(B)(F(8) — F@)F'(8) (o/(8) — 1) }.
We can check

(44) p2(B) =0, w3(B) =0.

Next we estimate ¢4 (w). Similar to (35), substituting 8 = ws.) + ¢, we obtain from Taylor

series expansion for w and ¢ that

(45)
¥o(w)
=2 ((-3F" @) + P/ () FOor)) 4+ 0())
+ (w = wr;n) (gF"'(wl;,\)ze3 + 0(64)> + (W - wrn)? (4F"(w1;,\)F(4) (win)e + 0(63))
+ oo (=GP e+ 0E) +0 (- win)?).

Since |w —wi;n| < 2¢ for w € [a(B), ], (45) means that there exists a constant Cy > 0
such that

(46) o3 ()] < Cae®.

Hence from (44) and (46), we obtain the following estimate for w € [wy;y, 8],

B B
(47) | (w)| g/ |5 (u)| du < / Cyetdu = Cye* (8 — w).
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Thus, again from (44) and (47), we obtain

(48)

64
fpalw)] < L (8~ w)? = Cyet(8 - )"

Using Mathematica, we can check

(49)

p2(a(B)) =0, ws(a(B)) =0.

So, again from (47), we have

lp2(w)] < Caet(w — a(B))?

for w € [@(B),w1.r]. The remaining part of the proof can be shown as in the proof of ct
differentiability. O

7]

(8]
(9]

[10]

[11)
(12]
(13]
[14]
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