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1 Elliptic inverse bifurcation problems

We first consider

=Au+ f(u) = Al in 9,
v > 0, inQ, (1.1)
u(0) = 0  on 09.

where § ¢ R” is an appropriately smooth bounded domain, and A > 0 is a parameter. We
assume that f(u) is unknown to satisfy the conditions (A.1)—(A.3):
(A.1) f(u) is a function of C* for u > 0 satisfying f(0) = f/(0) = 0.
(A.2) f(u)/u is strictly increasing for u > 0.
(A.3) f(u)/u — oo as u — 0.
The typical examples of f(u) which satisfy (A.1)—(A.3) are as follows.

flu) = v (p>1)
flu) = v+u™ (p>m>1).

Our first purpose is to study the inverse bifurcation problems in L?-framework (1 < ¢ < 00).
From mathematical point of view, since (1.1) is regarded as an.eigenvalue problem, it seems
natural to treat it in L?-framework. Moreover, from biological point of view, it also seems
significant to investigate it in L!-framework.
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Now we introduce the notion of L%-bifurcation curve. We know the following fundamental
properties of bifurcation diagrams of (1.1).
(1) Let 1 < ¢ < oo be fixed. Let || - [l; be L¢-norm. For any given o > 0, there exists a
unique solution pair (A, u) = (A(¢, @), us) € R+ x C*(Q) such that |u,||, = a.
(2) The following set gives all the solutions of (1.1):

{(Mg,a),ua) : @ >0} C Ry x C*(Q)

(3) Mg, a) = A1 (@ — 0, Ay : the first eigenvalue of — Ap), Mg, a) /oo (a0 = o0).
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Let f(u) = fi(u) and f(u) = f2(u) be unknown to satisfy (FA.l)—(A.B). Furthermore, let
Fy(u) :=/0 fi(s)ds  (G=1,2).

Assume that F} and F; satisfy the following condition (B.1).

(B.1) Let W := {u > 0: Fi(u) = F3(u)}. Then W consists, at most, of the (finite or infinite

numbers of) intervals and the points {u,}32, whose accumulation point is only co.

Theorem 1.1. [14] Assume that fi and fo are unknown to satisfy (A.1)~(A.8) and (B.1).
Furthermore, if N > 2, then assume that fi and f, satisfy the following (A.4).

(A.4) For u,v >0,
Fij(u+v) < C(F(u) + Fi(v)) (1 =1,2).

Suppose \1(2,a) = \(2,a) for any o > 0. Here, \;(2,a) is the L?-bifurcation curve associ-
ated with f(u) = f;(v) (j =1,2). Then fi(u) = fo(u) for u > 0.



76

2 Sketch of the Proof of Theorem 1.1

For simplicity, we prove Theorem 1.1 for the case N = 1. Let Q =1 = (0,1). Forj = 1,2
and v € H(I), let

35(0) = I+ [ Rt (21)

For o > 0, we put
M, = {ve Hy(I): |v|s = a}.

For j =1,2 and a > 0 we put

Cj(a) := min{®;(v) : v € M,}. (2.2)
By taking a minimizing sequence, Lagrange multiplier theorem and strong maximum prin-
ciple, there exists a Lagrange multiplier A\;(a) and a unique minimizer u;, € M, which
satisfies (1.1) with f = f;. Then by direct calculation, we obtain the following lemma.
Lemma 2.1. C(a) = Cy(a) for a > 0.

Now we give the sketch of the proof of Theorem 1.1.

Sketch of the Proof of Theorem 1.1 for N = 1.
Clearly, 0 € W, where W := {u > 0: Fi(u) = F3(u)}. First, assume that 0 € W is
contained in the interval [0, €] for some constant 0 < ¢ < 1. This implies that for 0 < u < ¢,

Fi(u) = Fy(u).
Let K be a connected component of W satisfying [0,¢] C K. Then K = [0,u]. If u; < 00,
then without loss of generality, by (B.1), there exists a constant 0 < ¢ < 1 such that
Fiu) = Fu) 0<u<Ly),
Fi(y) < F(u), (w <u<u;+e).

Now we choose a > 0 satisfying ||u2 4|lcc = u1 + €. Then

1., !
Ci(0) < Pa(ue) = sl + [ Fusa(t)d
0

1 1
< gl + [ Falusa(®)a
0
= Py(uza) = Co(a).
This contradicts Lemma 2.1. Therefore, we see that u; = co and K = [0,00). This implies
Fi(u) = F>(u), and consequently, fi(u) = fo(u).
We can also treat the case where 0 € W is an isolated point in W. Thus the proof is

complete. g



3 Ll-inverse bifurcation problems

It seems that the assumption \;(2, @) = A2(2,a) for any « > 0 in Theorem 1.1 seems little

bit strong. It seems better to consider the problem under more weaker condition
A1(g, @) = Aa(g, ) in some sense for a > ay, (3.1)

where ag > 0 is a constant. To do this, we consider the following inverse problem.
Let Ao(1, @) be the L!-bifurcation curve associated with f(u) = u? (p > 1). Furthermore,
let A(1,a) be the Ll-bifurcation curve associated with f(u) = u? + g(u), where g(u) is an

unknown function.

Problem. Assume that for o > 1
M1, a) = Ao(L, @)

in some sense. Then can we conclude g(u) =07
To solve this problem, we assume the following conditions on g.
(B.2) g(u) is C! function for u > 0 with compact support.

We note that n;:(z) = n2(x) nearly exponentially for = > 1 implies that
m(z) = m(z) +o(z™) (z = o0)

for any N € N.

Theorem 3.1 [16]. Let N = 1 and consider (1.1). Let p > 1 be a given constant and
assume that f(u) = wP + g(u) satisfies (A.1)-(A.3) and (B.2), where g(u) is unknown.
Suppose A(1, @) = Ao(1, ) nearly exponentially. Then g(u) = 0.

The proof of Theorem 3.1 relies on the fact that the equation (1.1) is ODE, and we treat
it in L'-framework with the aid of the time map.

Now we give the brief sketch of the proof of Theorem 3.1. Without loss of generality,
we assume that supp g C [a,b] (0 < a < b). C denotes arbitrary positive constants
independent of A > 1.

We know that (A, uy) € Ry x C*(]) : the solution of (1.1) for given A > n2. Therefore,
a = |luall;. We write A = A(a) for simplicity. Let

G(u) == /Ou g(s)ds.
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For two functions X () and Y'(A),

X(O) ~Y(N)
implies
CY(N) < X(A) < CY(\) (3> 1). (3.2)
It is well known that for A > 1,
luallzs? = A (14 0(e=Y)) . (33)
We know that for A > 72
u(t)=uxl-t), 0<t<1, (3.4)
s (;) = max 1a(1) = oo (3.5)
d(t) >0, 0<t< % (3.6)
For A\>7?and 0 <s<1,let
Ly(s) = 1-s*— ]%(1 — P, (3.7)
My(s) = 1—g*— 5—?2;—1 ““*A“"" (1 - s+ (3.8)

2
- T (Gllualleo) = GUluallo08)) ,

— 2flualle = ) (1 —s)(1 —sP*?) )
U, = (p+ 1A / \/M,\ \/L,\ \/M,\ 5+ \/L,\ d ,
21 _(1=5)(Glualle) - <||uAnoos>>

ho= AlfuallZ, \/M,\(S \/L,\ \/M,\ +\/LA

Lemma 3.2. For A > 1
lualloo = llualls = “\/I—X“%\Hoo(c(l) +Ux +V3), (3.9)

where C(1) is a constant determined explicitly.

Lemma 3.3. For A > 1

|Uy| < CVae O3, (3.10)



Proposition 3.4. Assume that V) =0 for A> 1. That is,

1
Uplloo = lltalli = —=llualloe (C(1) + Usy). 3.11
lualloe = lualfs \/XH Meo(C(1) +Un) (3.11)
Then for aa > 1,
N
Ma) = Pt 4+ C1aPD/2 4 Z arpa® IR 4 (N (1-P)/2) (3.12)
k=0

where Cy, {a;}i_y are constants determined explicitly.
To prove Proposition 3.3, we would like to calculate V) precisely.

Lemma 3.5. Let H(0) := G(b) — G(6). Then, for A > 1,

Vi ~ i (ck /0 bH(G)H’“dG) lullF 249,

k=0
where C # 0 (k € No := NJ{0}) is a constant.

It should be mentioned that, to prove Lemma 3.5, we need the condition ¢ = 1.

By using Lemma 3.5 and the assumption that A(1,a) = Xo(1, @) nearly exponentially,

we obtain the following Lemma 3.6.

Lemma 3.6. Let H(0) := G(b) — G(8). Then for any non-negative integer n.

/ " H(0)6"d8 = 0. (3.13)

We can prove Lemma 3.6, since we treat it in L!-framework. Theorem 3.1 follows from

Lemma 3.6. Thus the proof is complete. y

4 Direct problems

We consider the semilinear non-autonomous logistic equation of population dynamics

—u"(t) + k@)ut)? = u(t), tel:=(-1/2,1/2), (4.1)
wt) > 0 tel, (4.2)
w(-1/2) = u(1/2) =0, (4.3)

where p > 1 is a given constant, and A > 0 is a parameter. We assume that k(t) € C?(I)
satisfies the following conditions.
k(t) >0, k(t)=k(-t), tel, (4.4)
K'(t)>0, 0<t<1/2 (4.5)
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The local and global structure of the bifurcation diagrams of (4.1)-(4.3) have been investi-
gated by many authors in L™-framework. Especially, the following basic properties are well
known.

(a) For each A > 72, there exists a unique solution uy € C?(I) such that (), u,) satisfies
(4.1)-(4.3).

(b) The set {(A,uy) : A > w2} gives all the solutions of (1.1)-(1.3) and is a continuous
unbounded curve in R, x C(I) emanating from (72,0).

(c) 72 < p < A holds if and only if u, < u, in I.

For a given a > 0, we denote by (M\(g,@),us) € {X\ > n2} x C*(I) the solution pair of
(4.1)-(4.3) with [|&*/®Dy,||, = «, which uniquely exists by (c) above. We call the graph
A= Ag,a) (a > 0) the L%-bifurcation diagram of (4.1)-(4.3). Then we know that
(d) Mg, a) is increasing for o > 0 and A(g,a) — 00 as a — o0.

We assume the following condition.
(H) Assume that k(t) satisfies (1.4) and (1.5). Furthermore, K'(t)/K(t) and K"(t)/K (t)

are non-increasing for 0 < t < 1/2, where K(t) := k(t)~¥/®-1,

Comparing to the autonomous case, however, there are no works which obtain precise
asymptotic formula in non-autonomous case. By the terms which come from k, %', k" and
u/, the tools for autonomous case are not useful any more in non-autonomous problems. To
overcome this difficulty, we adopt a new parameter ||k*/®~Vu,|, = a to parameterize the
bifurcation curve A(g, a). By the new idea above, the tools for autonomous problems can be

available to our non-autonomous case.

Theorem 4.1 [15]. Let p > 1 and ¢ > 1 be fized. Assume that k is a given function which

satisfies (H). Then as o — 00,

Ag,a) > aPt 4 CLa® V2 Lag +mg — g + 0(1), (4.6)
Mg, o) <P+ CioP™ V2 4 gy + My + 0(1), (4.7

where C1, Ca, C(q), ag, Mo, My, mo, 7pq, Wpq are constants determined explicitly.

The proof of Theorem 4.1 depends on the precise calculation of the time map. y
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