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Some properties of eigenvalues
for fully nonlinear operators

Norihisa Ikoma *
Mathematical Institute, Tohoku University

1 Introduction

This note is based on joint work [8] with Professor Hitoshi Ishii and provides some results
" [%1 this note, we consider the following eigenvalue problem:
1) {F(Dzu, Du,u,z)+ pu=0 in ),
B(Du,u,z) =0 on 0.
Here @ ¢ RY (N > 1) is a finite open interval (a,b) if N = 1 and, otherwise, an open ball

Bpg centered at the origin with radius R > 0. The function F : S xRYxRxO—=R
is given where SV denotes a set of all N x N symmetric matrices and B has the form of

5 B(p,u,z) := sap(x)o(z)p+ 7(x)u if N =1,
) B(p,u,z) := og(p,v(z)) + TrRU if N >2.

Here (o(z),7(z)), (or, 7r) € R?\ {(0,0)}, sap(a) = —1, sap(b) = 1 and v(z) is the unit
outer normal to 9Q at = € Q. Remark that the sign of s,(z) corresponds to the outer
unit normal derivative. Note also that the Robin boundary conditions (2) include the zero
Dirichlet (o, 7) = (0, 1)) and the zero Neumann ((o, 7) = (1,0)) boundary condition. The
pair (u,u) € R x W%9(Q) is unknown and called eigenpair of (1) provided u # 0.

Many researchers consider the eigenvalue problem for fully nonlinear elliptic operators,
and study the existence of eigenpairs and their properties. Here we refer to [2, 4, 5, 6,
7,9, 10, 11, 12]. Among those results, in [5] and [6], the authors prove the existence of
sequences of eigenparis of (1) in the one-dimensional or the radially symmetric problem
with the zero Dirichlet boundary condition ((¢(z),7(x)) = (0,1) = (or,7r)), and these
results are extended into the L? framework in [7]. In [8] and this note, we treat other
boundary conditions and show some properties of eigenpairs of (1).

Next, we introduce our assumptions on F'. For this purpose, we first give the definition
of the Pucci operators M, (D?*u) where 0 < A < A < oo. For two positive constants

0<A<A<ooand M €SV, define M, (M) by
N N
MEAM) = A (M) s = N> ((M)) -,
i=1 =1

N N
MGAM) = A (M) 4 — A _Z(ui(M»-,

1=1
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where 1 (M) < -+ < un(M) stand for eigenvalues of M and ay = max{+a,0}. Hence,
when NV = 1, one observes that M ,(m) = Am if m > 0 and M, (m) = Am if m < 0.
Now let us state the assumptions on F'.

(F1) The function F': S¥ x RY x R x Q — R is a Carathéodory function. This means
that the function = — F(M,p,u,z) is measurable for any (M, p,u) € SN x RN+!
and the function (M, p,u) — F(M,p,u, ) is continuous for a.a. z € Q.

(F2) There exist 0 < A < A < 00, ¢ € [1,00] and functions 8, v € LI() such that

F(Mlaplﬁuly"r) - F(Mz,pg,UQ,x)
SMA(Mr = My) + B(z)|p1 — pal + v(m)|ur — ug

for all (M1, p1,u1), (Mg, p2,uz) € S¥ x RN*! and a.a. z € Q.

(F3) F(tM,tp,tu,z) = tF(M,p,u,z) for all ¢t > 0, all (M,p,u) € SV x RV*! and a.a.
x € .

(F4) When N > 2, the function F is radially symmetric in the sense that for any
(m,l,q,u) € R* and a.a. 7 € (0, R), the function

we Flmw®@w+I(Iy —w®uw), qw, u, Tw)

is constant on the unit sphere SV¥~! ¢ R where z ® z denotes the matrix in SV
with the (7, j) entry given by z;z; for € RY.

Remark that (F4) is only assumed in the case N > 2.

2 Results

2.1 Existence of sequences of eigenpairs of (1)
We first state the existence result of eigenpairs of (1) when N = 1.

Theorem 2.1 ([8]). Let N =1, Q = (a,b) and suppose (o(z), 7(z)) € R?\ {(0,0)} for
z =a,b and (F1)—(F3) with q € [1,00]. Then there exist sequences {(uE, )}, C R x
W24(a,b) of eigenpairs of (1). and sequences {x;f,c}zzé with a = 7oy < - <zf, , =b
such that

(1) £(=1)*pn > 0 4n (25,25 ,,1) for all 0 < k < n, max{£yp?(a), £(pt) (a)} > 0 and
max{-£ (—1)" 2 (8), (- 1) (2 (B)} > 0.

(i) If (u, ) € R x W?4(a,b) is an eigenpair of (1), there exist n € N and § > 0 such
that either (1, ) = (uy,607) or (1, 9) = (1,05 holds.

From Theorem 2.1, we can find all eigenpairs of (1) whose eigenvalues are real. More-
over, combining Proposition 3.2 below, we also observe that each eigenvalue is simple.

Next, we consider the case N > 2. In this case, for ¢ € [1,00], let W29(0, R) be a
set of functions p € W?4(Bpg) which are radially symmetric. In what follows, we identify
any function f € W29(0, R) with a function g on [0, R] such that f(z) = g(|z|) for a.a.
= € Bgr and use the standard abuse of notation: f(z) = f(|z|) for x € Bg. Finally, set
Ac=A/A and ¢. = N/(A\,N +1 - ),). Notice that 0 < A\, <1 and ¢, € [I, N).
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Theorem 2.2 ([8)). Let N > 2, Q = Bg, and assume (F1)-(F4), (or,7r) € R?\
{(0,0)}, g € (max{N/2, ¢.},00] and 8 € L¥(Bg) if ¢ < N. Then there exist sequences
{1, )}y € R x W20, R) of eigenpairs of (1) and sequences {rE et with 0 =
rag <+ < r,an = R such that

(i) (-1 > 0 in (rik,rikﬂ) for any 0 < k < n, p;(0) < 0 < ¢+(0) and
max{+(—1)"¢%(R), F(=1)"(¢s ) (R)} > 0.

(i) Let (u, ) € R-x W29(0, R) be an eigenpair of (1). Then there ezistn € N and § > 0

such that either (1, ) = (4, 0¢0)) or (4, ) = (1, 00; )

As in Theorem 2.1, we find all eigenpairs of (1) whose eigenvalues are real-and eigen-
functions radially symmetric. Furthermore, by Theorem 2.2 and Proposition 3.2, radial
eigenvalues are simple in W24(0, R).

2.2 Monotonicity of eigenvalues on domains

Next, we observe the monotonicity properties of eigenvalues obtained in Theorems 2.1
and 2.2 with respect to domains under the zero Dirichlet boundary condition. To be
more precise, we first remark that when N = 1, for every subinterval [c,d] C [a,b], we
can consider the eigenvalue problem (1) on [c,d] instead of [a,b] and Theorem 2.1 may
be applied. We denote these eigenvalues by uf(c,d) to emphasize the dependence of
eigenvalues on domains [c,d]. Similarly, if N > 2, we use the notation ¥ (0, R) for the
eigenvalues of F' on By where R<R.

For the zero Dirichlet boundary condition, we have the following monotonicity of
pE(e,d) on ¢, d].

Proposition 2.3. Assume N = 1 and (0(a), 7(a)) = (0,1) (resp. (o(b), 7(b)) = (0,1)).
Then for eachn € Nanda < c; < co <d < b(resp. a < c <d; < dy <b), the inequalities
pE(cr,d) < p(ca,d) (resp. p(c,di) < pilc,dy)) hold. Similarly, when N > 2 and
(0g,Tr) = (0,1), for every 0 < Ry < Ry < R, the inequalities i (0, Rz) < uz (0, R1) hold.

b
+

Proposition 2.3 will be proved in Section 3. On the other hand, when N =1 and we
replace the zero Dirichlet boundary condition by the Robin boundary condition of the
form B(p,u) = pcos®+usind at z = b where 0 < § < m/2, we show that g (a, c) fails to
be monotone on ¢ by the arguments based on the strong maximum principle. See Section
4,

2.3 Solvability of inhomogeneous equation

Finally, we give characterizations of u(a,b) and pf(0, R) by the solvability of the follow-
ing inhomogeneous equations: For n € N,

F@'(z),v(x),u(z), z) + pu(z) + sgn(u(z)) f(x) =0 in (a,b),
B(v/(z),u(z),z) =0 for z=a,b,

there exist @ = Zp 9 < Tn,1 < -+ < Tnpns1 = b such that

u#0in (Tn;, Tne1) for all 0 <4 <mand u(z,;) =0foralll <j<n

(3)



where u € R, f € L%a,b), f > 0,# 0 and sgn(s) = 1 if s > 0, sgn(s) = —1if s < 0.
When N > 2, we assume that f € LY(Bg) is radial and consider radial solutions of

F(D*u(z), Du(z), u(z), z) + pu(z) + sgn(u) f(z) =0 in Bg,
B(Du(z),u(z),z) =0 on 89,

there exist 0 = 1,0 < 71 < -+ < Fppt1 = R such that u(z) = u(|z|) satisfies
u#0in (rp;,7nis1) for all 0 < i <mand u(r,;)=0forall1 <j < n.

(4)

When n = 0, the relationship between uj and the solvability of (3) and (4) is studied, for
instance, in [1, 3, 12]. For other settings, see [2, 10].
‘Regarding the solvability of (3) and (4), we have

Theorem 2.4 ([8]). Assume N = 1, (F1)-(F3) with ¢ € [1,00], (0(2),7(z)) € R?\
{(0,0)} forz =a,b,n € N and f € L9(a,b) with f >0, f 0 in (a,b). Then

() Ifu o< pf (resp. w < py), then (3) admits a solution u (resp. v) such that
max{u(a),u'(a)} > 0 (resp. max{—v(a),—v'(a)} > 0).

(ii) If p > pt (resp. p > py), then (3) has no solution satisfying max{u(a),v'(a)} > 0
(resp. max{—v(a), —v'(a)} > 0).

(iii) When n =0, the solution obtained in (i) is unique.

When N > 2, we have

Theorem 2.5 ([8]). Suppose N > 2, (F1)-(F4) with q € (max{N/2, q.},00], B € L (Bg)
provided ¢ < N, (o,7) € R*\ {(0,0)}, n € N and that f € LY(Bg) is radial and satisfies
f=0, f#0in (0,R). Then

(i) If p < p (resp. p < py), then (4) has a solution u (resp. v) such that u(0) > 0 (resp.
—v(0) > 0).

(i) If u > p (resp. p > py), then (3) has no solution satisfying u(0) > 0 (resp.
~v(0) > 0).

(iii) When n =0, the solution obtained in (i) is unique.

Form Theorems 2.4 and 2.5, we see that (3) and (4) have a unique solution when n = 0
and p < pg. However, for the case n > 1, the uniqueness of solutions of (3) and (4) may
fail. In fact, we give an example in Section 4 such that (3) has infinitely many solutions
for n = 1. ’

In the rest of this note, we shall prove Proposition 2.3 and state a monotonicity of
{uE}22, on n in Section 3. See Proposition 3.2. In Section 4, we give some examples
related Proposition 2.3 and Theorems 2.4 and 2.5.

3 Proof of Proposition 2.3 and some remarks

In this section, we shall give a proof of Proposition 2.3, namely, the monotonicity of
eigenvalues on domains provided the boundary condition is the zero Dirichlet boundary
condition. To this end, we need the following proposition:

Proposition 3.1. (i) Assume that N = 1 and (F1)—(F3) with q¢ € [1,00|. Let u,v €
W2(a,b) satisfy ‘
Flv)(z) < Flul(z) and w<wv in (a,b)
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where Flw](z) := F(w"(z),w'(z),w(z),z). Then either u = v in [a,b] or else u < v in
(a,b), max{(v — u)(a), (v —u)'(a)} >0 and max{(v — u)(b), —(v — u)'(b)} > 0.

(i) Suppose N > 2, (F1)~(F4) with q € (max{N/2,q.},00] and B € LN(Bg) provided
g < N. Let u,v € W29(0, R) satisfy

(5) F)(z) < Flu](z) and uw<v in Bg.
Then either w = v in Bg or u < v in Br and max{(v — u)(R), —(v —u)'(R)} > 0.

Proof. For a proof of Proposition 3.1 (i), see a proof of Theorem 2.6 in [7]. Concerning
statement (ii), we give a sketchy proof. First, arguing as in (7, Section 6], thanks to (F2)
and (F4), we may find a wp € SV~ such that

]:(ml,ll,pl,'UIhr)‘—f(mz,lZ,pQ,U2,7')
< Pia(my —ma, Ly = l2) + B(rwo)|p — p2| + y(rwo)

(6)

for all (m, i, pi,w;) € R and a.a. r € (0, R) where
F(malap,uar) =F (mwo & wp + l(IN — Wo ®WO),pWO,U,T'WO) 3
Pia(m, 1) := M}, (mwo ® wo + U(In — wo ® wo)),
P;A(m, l) = —P;A(—m, =1).

Moreover, we may assume that functions defined by 5(r) := B(rwo) and J(r) := y(rwo)
satisfy

R
B,7 € LI(0,R) := {f € L0, R) | /0 |f(r)|%rN1dr < oo}

Since one has

) ] —‘PZ) Pz:_®_
B ERRR 2 © Tl

for any radial function w, it follows from (5), (6), (F2) and (F4) that w(r) := v(r) — u(r)
satisfies

Du(z) = v'(|z|) D*u(z) = u"(|z]) P: +

P (w",w'/r) - Blw|-yw <0, 0<w in(0,R).

Hence, applying (7, Theorem 7.7}, we observe that statement (ii) holds except for the last
assertion. Noting

0> Pia(w" w'/r) = Blw'| = 7w
_ , = AN-1 S
> Myualw) = (5+ M=) ) - 7w in (872, R)
where My , |4 denotes the one-dimensional Pucci operator, we can apply statement (i)
on (R/2, R) with

+A(N~1))

Fm, pyu,r) = My yq(m) — (Bm P~ F(ryu

and obtain the last assertion in statement (ii). Thus we complete the proof. O
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Using Proposition 3.1, we prove Proposition 2.3.

Proof of Proposition 2.3. We consider the case N = 1 and n = 0. We first treat the case
where a < 1 < ¢ <d <, (0(a), 7(a)) = (0,1). Set

(w1, ¢1(2)) = (ug (1, d), ¢ (1, d)(2)), (2, () = (13 (2, d), 0 (2, d) ()

and we shall prove p; < py. We argue indirectly and suppose ue < pp. Put

0 := sup a(z)
welead) P1(T)

By Theorem 2.1 (i), ¢; < ¢; and ) > 0 in (¢;, d), we notice that max{y;(c,), wi(c2)} >0
and max{y;(d),~¢;(d)} > 0 for i = 1,2. Hence, when o(b) # 0, it is easy to see
@i(d) > 0 and 0 < 6 < oo from the boundary condition. On the other hand, if ¢(b) =0,
then o;(d) = 0 = @(d) and I’'Hopital’s rule asserts

w2(z) _ 3(d)
Shor(a)  p@ =

Thus we have 0 < § < co.
Put 41 := 0¢;. Then it follows from (F3), u, < 1 and ¥1, 4, > 0 in (c2,d) that

Flhi] + potyy < Flyn] + pnhr = 0 (Flpr] + papr) = 0 = Flps] + papa  in (cp, d)

and 2 < 9 in (cp,d). Hence, Proposition 3.1 implies that either 2 = Y1 in [co, d] or else
2 <Y1 in (¢, d), max{(¥1 — w2)(ca), (Y1 — ¥2)'(c2)} > 0 and max{ (¥, — w3)(d), — (¢ —
©2)'(d)} > 0. Recalling ¢; < ¢y and (cp) = 0p1(cz2) > 0, the latter case occurs. Noting

p2(x) <@ forall z € [c2,d),
p1(z)
we observe that
lim —_‘802(:6) = 91
z/d 1 ()

which yields (¢ — ¢2)(d) = 0 and ¢}(d) > v;(d). Hence, when o(b) # 0, this contradicts
7(0)¢a(d) + T(b)pa(d) = 0 = o (b)¥y(d) + 7(b)¢hr(d).
When o(b) = 0, we have ¢5(d) = 0 = 9, (d) and I'Hopital’s rule yields

_ o 22(2) _ oy(d)
e T w@ b

which is a contradiction. Thus, pu; < o holds.
For the case where a < ¢ < d; < d; < b and (a(b), 7(b)) = (0,1), we introduce the
following function:

A~

F(m7p)uay) = F(m’ -pu, —_y) for every (m7p7u?y) € R3 X (_b’ —a’)'
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Notice that F satisfies (F1)-(F3) with the same constants A, A, g and functions 8,y € L9.
Setting

M = /J‘a’(ca dl) for i = 112) w‘b(y) = 903'(67 d'l)(_y) for yE (_div '—C), i= la2)

we may observe that

ﬁ’[t[),](y) + g =0 in (—di,—¢), ¥ >0 in (—d;, —c),
— o(b)i(—ds) + T(b)i(—di) = 0 = a(a)ii(—c) + T(a)ihi(~c).

By Theorem 2.1, we obtain y; = pg(—di, —c). Recalling —~dz < —d; and (o(b),7(b)) =
(0, 1), the case is reduced into the previous case and one has py < p1. Therefore, Propo-
sition 2.3 holds for the case N = 1 and (ug, %5 )-

Next we prove that the case (ug, @) can be reduced into the previous case. In fact,
we set

F~(m,p,u,z) = —F(-m,—p,—u,x) for (m,p,u, ) € R® x (a,b),
Pi(z) = —¢pg (ci, d)(x)-

It is easily seen that F~ also satisfies (F1)-(F3) with constants A, A,q and functions
B,v € Li(a,b). Furthermore, since

F_[wl] +:u'6(c7:7d>¢i =0, ¥:i> 0 in (a’ b)5
— o(a)(@hi) (c) + T(a)wi(ci) = 0 = a(B)¢;(b) + ()i (b),

we observe that (ug(c;,d),v;) are positive eigenvalues of F~. Hence, by the previous
result, we obtain pg(c1,d) < pg(c2,d). In a similar way, we can also get ug (c,dg) <
pg (¢, dy). Thus Proposition 2.3 holds for the case N =1 and n = 0.

Next we consider the case N = 1 andn > 1. Asin the above, by F and F-, it is enough
to show (¢, dy) < it (c,dy) fora < ¢ < dy < dy <b. Set (i, i) := (it (e, di), vt (c, di)),
let ¢ < 24, < -+ < Th, < di be zeroes of ¢; and put ¢ := Tt g, di == T}, Since
Zh ey =di < dy =72, and 23, = ¢ = 73, we put

:=sup{€€{0,...,n+1}]:c,ziyggx,llye} €{0,1,...,n}.

Then, one has (z2 , T4 x41) C (T34, T2 k1) a0d (T, gy Tn 1) 7# (2 1, %2 k41)- Notice that

Flos) + pips = in (xiz,kv x;,k+l)

and that ¢; (i = 1,2) have the same sign and satisfy the zero Dirichlet boundary condition
at ¢ = xi,,2% ., if k> 1and 0 = —o(a)u'(z) + T(a)u(z) at z = 2o = cif k = 0.
Therefore, by the uniqueness of eigenvalues for n = 0, we get p; = pg (Th 4, Th 1) OF
pi = pg (T4 g, T4 pry). Since (23, Tn ksr) # (22 4, 72 441), We may apply the result in the
case n = 0 and obtain ps < p;. When N = 1, Proposition 2.3 holds.

When N > 2, we proceed in a similar way to the case N = 1. In fact, for uF(0, R;),
we can prove our assertion using Proposition 3.1 (ii) instead of Proposition 3.1 (i). For
(15(0, Ry, ¢ (0, Ry)) =: (i, ) withm > 1,1let 0 < 1ppy < -+ < ri . < R; be zeroes of
¢; and set 1% o :=0, 75, ., = Ri and

k:=sup{€€{0,...,n+l}|r,21,e§7”,llye}€{0,l,...,n}.



Then (Trlz,k’r'rlz,k-{»l) - (sz,k7r72z,lc+1)’ '(Ti,kaﬂlz,kﬂ) # (Tz,kvrﬁ,kﬂ) and ¢; (i = 1,2) have the
same sign in (r} ., 71, 1)
If k = 0, then we have

Fled(z) + piws =0, ;>0 in Br, ¢i(R;)=0.

Thus, applying the result in the case n = 0, we have uy < .
On the other hand, if 1 < k, then setting

F(m,p,u,r) := F(m,p/r,p,u,r): R® x (0,R) — R,

one sees that

~

(7) Flo) + papi =0 in (v}, Ti,k+1)} pi(ry ) =0= @i(Th k1)-

Since 0 < rZ, < rl,, regarding F as a function on R¥ x (r2 4,72 411), we also observe
that F satisfies (F1)—(F3). Therefore, we can apply the result in the case N = 1 and it
follows from (7) that us < p;. Thus we complete the proof. O

A similar argument is also useful to prove the monotonicity of eigenvalues on n, namely,
the number of zeroes of corresponding eigenfunctions. In fact, we have

Propoéition 3.2. Suppose that the assumptions of Theorem 2.1 or Theorem 2.2 hold.
Then
max{uy, py } < min{pl,;, pry}

To prove Proposition 3.2, we shall use some characterizations of u* from [8]. Before
stating the result, we need preparations. First, for any (o(a), 7(a)), (o(b), 7(b)) € R2\
{(0,0)}, notice that (c(a), 7(a)) and —(o(a), 7(a)) (resp. (o(b), 7(b)) and —(o(b),7(d)))
give the same boundary condition. Therefore, replacing (co(a), 7(a)) (resp. (a(b), 7(b)))
by —(o(a),7(a)) (resp. —(o(b),7(b))) if necessary, we may find 6,,6; € (—m/2,7/2] such

that
(0(a), 7(a)) € £(6a), (o(b),7(b)) € £(6s)

where £(6) := {a(cos§,sin§) € R? | o > 0}.
Remark that 6,,0, € (~7/2,7/2] are uniquely determined by (a(a), 7(b)), (c(b), 7(b)) €
R?\ {(0,0)}. Thus, it is clear that for the Robin boundary conditions of the form (2),
giving (0(a), 7(a)), (o(b), 7(b)) € R?\ {(0,0)} is equivalent to giving 6,8, € (—7/2, T/2].
Similarly, in the case N > 2, for the Robin boundary condition of the form (2), to give
(or,7r) € R*\ {(0,0)} is equivalent to giving 5 € (—7/2,7/2], and these quantities are
related in the following sense: (og, 7r) € £(6R).

In what follows, instead of (0(z),7(z)) € R?\ {(0,0)} for z = a,b, we consider
0a,0 € (=7/2,7/2]. Under these conventions, we have the following characterizations of
b
Theorem 3.3 ([8]). (i) Let N =1 and the assumptions in Theorem 2.1 hold. Assume
that 0;a, 06 € (—=7/2,7/2] (i = 1,2) satisfy 01, < 634 and 614 < 0ap. Let ph, (i=1,2)

denote eigenvalues of F' under the boundary condition of the form (2) corresponding to

(gi,aa ei,b)' Then lu’it,n < iu'2i,n
(ii) Let N > 2 and the assumptions of Theorem 2.2 hold. Suppose that 0; p € (—7/2,7/2]
(i =1,2) satisfy 61 r < 0o,r. Then the corresponding eigenvalues ufn satisfy ,ufn < uin.
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Remark 3.4. In [8], we use different notation. However, using the results in [8], it is not
difficult to see that Theorem 3.3 holds.

With the aid of Proposition 2.3 and Theorem 3.3, we prove Proposition 3.2.

Proof of Proposition 3.2. We first consider the case N =1 Let (uE, L) denote the
sequences of elgenvalues of (1), (z; )k zeroes of X, and set 75, = a and TEni1 =0

We prove u; < pir, ;. Since
a=zly<zh < <Tpng=b a= Thi0 < T < < Tnping2 = by
as in the proof of Proposition 2.3, set
k:=sup{¢e€{0,1,....,n+1} |z}, <zy ., ,} €{0,...,n}.
Then it is easily seen that

(I:;+l k» 1’7:+1 k+l‘)‘c (I:k’x:k—t—l)’ (x:+1,k’ I:+1,k+1) # (wi,k, $:,k+1)»-

When k = 0, we have (a,:r,H_1 ) C (a, 2 l) and z;7,;; < z},. Since o} (resp. yy,) is
a positive elgenfunctlon in (a, z,, 1) (resp. (a, ) 41 1)), satisfies the zero Dirichlet boundary
condition at z = :cn , (resp. z = :cj{ +1, 1) and pt (resp P +1) corresponds to the positive
eigenvalue of F, we may apply Proposition 2.3 to obtain ut <t

When 1 < k < n, since the boundary conditions are the zero Dirichlet boundary
condition, g (resp. p;,) is either a positive or negative elgenvalue of Fin (2}, Ty ke1)
(resp. (x:H,k,xLl,kH)) and their signs are equal, i.e., fpF,, > 0in (2}, k,x,’:H k1)
Proposition 2.3 yields u} < pf, ;.

When k =n, we have (2}, . 2541 n1) C (T,,0) and 2, iy <O Remark that p}
and u,,, are positive (resp. negatlve) eigenvalues of F in (z; n,b) and (T ) ns Tai1ns1)
prov1ded n is even (resp. odd) and o, , satisfies the zero Dirichlet boundary condition at
T =T} 1 n Tar1as1- Hence, let vbea positive (resp. negatlve) eigenvalue of F in (z;},,b)
under the zero Dirichlet boundary conditions at z = z;} o b if n is even (resp. odd). Then
it follows from Proposition 2.3 that v < pf,,. On the other hand, since the zero Dirichlet
condition corresponds to the case 6, = /2 in the notation above to Theorem 3.3, we also
obtain p} < v by Theorem 3.3. Thus y; < pir 41 holds. Moreover, by F'~ as in the proof
of Proposition 2.3, we also observe that p, < p,, 1.

Now we prove u,; < fr,;. We notice that ¢, and ¢y, have the same sign in

(max{T; T 11 ny1},b), namely,
%:‘P:H >0 in (ma,x{:c;’n,a:;_l,nﬂ},b).

Hence, us1ng F" as in the proof of Proposition 2.3, the case can be reduced into a proof of
b < ptyy or Pn < Pni- Thus, by the previous result, we get p, < pi ;-
By F~ and F, we also see that max{y,’, s, } < p,;, which implies that

max{py, pn } < min{pgiy, b}

Thus when N = 1, Proposition 3.2 holds.
Next, we treat the case N > 2. Let {(uf, ¢ )}n—O be eigenpairs, 0 < ri; < -+ <

r¥ . < R zeroes of ¢, and set rhy = 0 and 7 +ns1 = R We first notice that by

n,n+



Proposition 2.3, one can prove yx < p'.; and u, < u,.; in a similar way to the case
N = 1. Now we prove u, < ut,;. For this purpose, we set

=inf{e € {0,1,...,n+1} | iy o4 S 70

and remark that 0 < k < n+1sincery,, ; > 0=r.,. By the deﬁnltlon of k and properties
of ¢, we obtain (Tn+1,ka :+1,k+1) C (r, Tnk-1 nk) ( Tn+1,k n+1 k+1) # (rn, Tnk—1 n,k;) and
Or e > 00 (), vt ). When k > 2, noting v, _; > 0, we can prove u; < pt,
in a similar way to the case N = 1 with the aid of F.

When k = 1, we remark that ¢, (r}},; ;) < 0, hence, for sufficiently small £ > 0, we
may find 8. € (—7/2,7/2) so that

(8) —(@) (i1 —€)cosb. + @, (ri, ) —€)sinf, = 0.

Since we may also find § € (—7/2,7/2] so that

9) () (r n+12)0089+90n( Toy1,2)8ind =0,

we observe that (u,,¢;) is a negative eigenpair of F on (7., —€,75,;,) under the
boundary conditions (8) and (9). Let v, be a negative eigenfunction of .7—" under the zero
Dirichlet boundary condition on (r},;, —¢,77,;,). Notice that vy = u7,, and ve < pf,,
thanks to Proposition 2.3. On the other hand, applying Theorem 3.3, we obtain u, < v,
which implies pu; < ;. Hence, max{u}, u,} <y, when N > 2. Using F~, we may
also show max{y}, ur} < u,., and Proposition 3.2 holds in the case N > 2. O

4 Examples

In this section, we give examples related to Proposition 2.3 and Theorems 2.4 and 2.5.
More precisely, regarding Proposition 2.3, we give examples in which the monotonicity of
eigenvalues on domains may fail when we replace the zero Dirichlet boundary condition
by the Robin boundary condition. On the other hand, about Theorems 2.4 and 2.5, we
provide examples in which (3) and (4) have infinitely many solutions when n = 1.

4.1 Example about the monotonicity of eigenvalues

We first consider an example in which the monotonicity of eigenvalues on domains fails
when we change the zero Dirichlet boundary condition. We prove this fact by the argument
based on the strong maximum principle, namely, Proposition 3.1. We only treat the case
N =1. Fix a 0y € (0,7/2). Then we consider the following boundary condition of the
form (2):

Bi(p,u) :=u, Bs(p,u):=pcosby+ usinb,.

Remark that
0 = By(—sin 65, cos 62).

Next, select p > 0 so that
' sin 92

p

cos 6y >
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and set

v(z) := cos b, cosh {p (m -0y — g)} - sir;t% sinh {p (x — 0y — g)} .

From the choice. of p and the definition of v, it is easily seen that
v(z) >0 inR, lim v(z)=o00, v"(z)=p’*v(z), ¢'is increasingin R.
—00

Next, put a := 0 and b := 0, + 7/2 € (7/2, 7). Then v(z) is rewritten as

v(z) = cos b, cosh {p(z — b)} —~ sin bz

sinh {p(z — b)}.

Since v'(b) = —sinf, < 0 and v(b) = cosfy > 0, there is a ¢ € (b,00) such that v(c) =
cosf; = v(b). Here we remark that v'(c) > 0 and v(c) > 0, hence, we may find 63 €
(—7/2,0) such that

Bs(v'(c),v(c)) := v'(c) cos b3 + v(c) sinf3 = 0.
Now we define F(m,p,u,z) by

I if 2 € [a, )],
F(m,p,u,z) :=m~ (P + Dxpo(@)u, W(z):= {SE)I ;f z € EZ c}.

It is immediate to see that ¢ € W2%(a,c) satisfies

F]+v =0 in(a,c), ¥ >0 in(a,c), |
B1(¢/(a),%(a)) = B2(¢/(b),%(b)) = Ba(¥/'(c), ¥(c)) = 0.

Thus, (1,) is a positive eigenpair of F in (a,b) and (a, ¢) under the boundary conditions
Bl, Bz and Bl, B3.

Let p, . be a positive eigenvalue of F' under the boundary conditions B; and B,. Our
aim here is to prove y,. > 1. If this is true, then we may observe that the dependence
of positive eigenvalue of F' on domains under the boundary conditions B; and B; is not
monotone.

Now we prove p,. > 1. We first notice that (1,%) is a positive eigenpair of F on
(a,c) under the boundary conditions B; and Bs. Recalling 63 € (—7/2,0), 6, € (0,7/2)
and Theorem 3.3, we observe that 1 < p,.. Let us suppose p,. = 1 and ¢ is a positive
eigenfunction of F' corresponding to pq.. Define

()
P e ¥(@)

Then ¢(z) < pyp(z) in [a,¢]. Moreover, we have
Flo) +p¢p = p (Flp] +9) =0=Flp] + ¢ in (a,c).

Applying Proposition 3.1 with F(m,p,u, ) + u, we obtain either pyp = ¢ in (a, ¢) or else
pv > o, max{(ph — p)(a), (o = ¢)'(a)} > 0 and min{(py) — ¢)(c), =(p¥ — 9)'(c)} > 0.

€ (0, 00).



Next, we remark that the first case does not occur since it follows from 6, € (0,7/2)
and ¥(c), ¥’ (c) > 0 that Ba(py'(c), p¥o(c)) > 0. Thus the latter case occurs.. By definition
of 6, we observe that either pi)(a) = ¢(a) or else py(c) = ¢(c). However, if pi)(c) =
¢(c), then noting that py'(c) > 0 > ¢'(c) due to —7/2 < 3 < 0 < 6, < 7/2 and
Ba(#'(c), v(c)) = 0 = Bs(py/(c), p¥(c)), one obtains —(pyp — )'(c) < 0. This contradicts
max{(py — ¢)(c), = (o — ¥)'(€)} > 0 by py(c) = p(c). Thus pY(c) > ¢(c) and py(a) =
0 = ¢(a). Since 0 < ¢'(a) < py'(a), we obtain

i 22 _ £00)
svap(z)  Y'(a)

R’ecalling v < pY in (a,c|, we have a contradiction. Thus we have Hae > 1.

4.2 [Example related to the multiplicity of solutions of (3) and
(4)

Finally, we give examples in which (3) and (4) have infinitely many solutions for n = 1.
First, we consider the case N = 1. Set

ZT_2
1

Then Fy satisfies (F1)—~(F3) with A =1 = A, ¢ = 00, 8 = 0 and v(z) = 72/4. Let us
consider the equation:

(CL, b) = (0) 7)) FO(m7p7u1 .’E) =m+ X(6,7)(x)ua f(.'L') = X(l,3)($) + X(4,6)(x)'

(10)  Fo[u] +sgn(u)f =0 in (0,7), «(0)=0=wu(7), wu has one zeroin (0,7).

Remark that this corresponds to the case =0 and n =1 in (3).
Next we claim that uf = 0 < pf. Indeed, it is easy to check that a function defined

by

1 if0<z<6,
po(z) =

T
“r — ' <
cos(z(as 6)) f6<z<7
satisfies
Folpo] =0 in (0,7), o >0 in(0,7), ¢5(0)=0= (7).

Hence, we observe that (0, ¢o) is a positive eigenpair of Fy. Noting that pi = pi holds
for all k since Fj is linear, Proposition 3.2 asserts ,u§ =0 < ui.
Now for 0 <t < 2, set

(2 .+t fo<z<l,
(2+1t) — (z —1)%/2 ifl1<z<3,
u(z) == ¢ t —2(z — 3) if3<z <4,
t—2—-2(z—4)+(r—4)?/2 if4<z<6,
| (t —4)cos(m(z ~6)/2) | if6<z<T.

Then by direct calculations, one sees that u, (t € [0,2]) is a solution of (10). Hence, the
uniqueness of solutions of (10) fails.
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Lastly, we treat the case N > 2. Let  := B7(0) and set
N-1/z 2
FOMp,0,2) = (M) = @ (500) = pxas(@

f(z) := x1,3(2) + xa6(2)

where x; ;(z) denotes the characteristic function of annulus {z € RY | i < |z| < j}.
Notice that F satisfies (F1)—(F4) with ¢ = co. Note also that for radial functions u, we
have

F(D*u) = Au in By(0), F(u"(r),u'(r),u(r),r) = Fo(u"(r),u'(r),u(r),r) in(1,7)

where Fy appears in the above example.

Now one can check that a function (1) := o(r) € W2*(0,7) satisfies Flyo] = 0,
o > 01in [0,7) and 1)o(7) = 0. In this case, by the linearity of F' and Proposition 3.2, one
has 0 = puf < pf. Setting vy(r) := w(r) € W2>(0,7) (¢t € [0,2]), it is not hard to check
that v, satisfies

Flv](r) +sgn(ve) f(r) =0 in (0,7), wv; has exaxtly one zero in (0,7), (7)) =0.

Since this equation corresponds to (4) with n = 1 and u = 0 < uf. Thus the uniqueness
of solutions of (4) does not hold.
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