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On the most expected number of components for random links
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1 Introduction

We consider the random link, which is defined as the closures of braids obtained from
random walks on the braid groups. For random links, the expected value for the number
of components were calculated by Jiming Ma. In this article, we report on the most
expected number of components, and further, consider the most expected partition of
integers coming from such random braids.

As an Appendix, we consider “Amida-kuji” (&H#72< U), that is, the traditional
Japanese method of lottery, and apply our techniques to demonstrate the randomness
of the Amida-kuji constructed via random walk.

In [3], from a probabilistic point of view, Jiming Ma introduced random links, which
is defined as the closures of the randomly chosen braids, via random walks on the braid
groups. In particular, he showed in (3, Theorem 1.1] that, for the random link coming
from a random walk of k-step on the n-string braid group (n > 3), the expected value of
the number of components converges to

1 1 1 1
totg bt
when £ diverges to oo. See the next section for the precise definition of the random link.

From this results, it is natural to ask what is the most expected number of components

for such a random link. We first answer to this question as follows.

Theorem 1. Consider a random link obtained from a random walk on the braid group of
n strands. Then the most expected number of components is equal to

¢(2) —¢(3) h
log(n+1)+~v—15 (log(n+1)+~y— 1.5)?

K, = |log(n+1)+y-1+

where [z] denotes the integer part of z,  the Riemann zeta function, v = 0.5772... the
Buler-Mascherons constant with —1.1 < h < 1.5. In particular, if n > 188, the following
hold.

[logn - % < K, < [logn]
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This can be obtained from results on Combinatorics and Analytic number theory. Here
we do not include our proof in detail, but give a sketch of the proof as follows.

The key observation to connect the problem of random link to algebra is the correspon-
dence between components of the closure of a braid and cycles in the cycle decomposition
of the permutation corresponding to the braid. In particular, the number of components
are calculated as the number of such cycles. Therefore, in order to prove the theorem, it
suffices to consider the Stirling number of the first kind, and study its maximizing index.
It was already established by Hammersley [2] and Erdés (1], and combining their results,
we can prove Theorem 1.

In view of this, we can relate random braids and random partitions of integers. Thus
it is also natural to ask what is the most expected partition of the number of strings for
a random braid. About this question, against our naive intuition, we have the following.

Theorem 2. Consider a random braid obtained from a random walk on the braid group
of n strands. Then the most expected partition of n is ((n — 1),1).

Actually the probability for such a partition of the strings is shown to converge to
1/(n=1).

This theorem, together with the above observation, can be proved as a direct conse-
quence of the next algebraic lemma.

Lemma 1. In the symmetric group of the order at least 3, the conjugacy class of the
mazimal cardinality is the one containing the (n — 1)-cycle (1 2 ... n — 1), and the
cardinality is n - (n — 2)!.

We here omit the proof of this lemma; it can be proved by using basic group theory.

2 Link, braid and random walk

We here give a brief review of the setting for studying the random links introduced in [3].
See [3] for details.

We here only consider a probability distribution on the braid group B, of n-strings
which induces a uniform distribution on the symmetric group &, on n letters, via the
natural projection B, — &, (n > 3). By using such a probability distribution, say u,
one can define a random walk by setting the transition probability as P(z,y) = p(zy™).
Here we suppose that our random walk starts at the identity element at time zero.

By considering the natural projection 8, — &, such a random walk on B, induces a
random walk on &,, with respect to a uniform distribution on &,. We here means by the
uniform distribution on &, the probability distribution defined by P(s) = 1/n! holds for
any s € &,,. That is, we are assuming that the probability P(s) for any s € &, induced
from the random walk is sufficiently close to 1/n!.

Then, conceptually, we said a braid is a random braid if it is represented by the the
braid coming from a random walk on B, with sufficiently long steps.

We here remark that our assumption on the probability distribution is not so re-
stricted. Actually, Ma showed the following as [3, Theorem 2.5]. Let u be a probability



measure on B, which induces a random walk 7(w, k) on &,. Suppose that the probabil-
ity P(7(wn,1) = ¢d) is larger than 0, and the support of u generates B,,. Then u generates
a uniformly distributed random walk on G, when k — oo. For example, the probability
measure on ‘B,, defined by

o 1

pe(e) = pe(0:) = peo; ) = m—1

for the identity element e and each canonical generator o; € B, (1 <i < n—1) is shown
to satisfy the assumption.
Now we consider a random walk wy, x on B, and the probability

P = P(Wnx has exactly m components).

Then, for the random link, we say that the most expected number of components is m
if, for any sufficiently large k, pl7; is maximal for 1 < m < n.

We also include some terminologies concerning to Theorem 2.

An element of the symmetric group &, of the oder n is uniquely represented as a
composition of several cycles with distinct letters. The set of the lengths of such cycles
gives a partition of the integer n. That is, if an element of G, is represented as a
composition of cycles of lengths ny, ny, -+ ,n, with n; > ny > -+ > n,,, then we have a
partition (ny,ng, -+ ,ny) of n, for n = n; + ny + -+ - + 0y, holds.

In view of this, given a braid ¢ with n-strings with n > 0, we define a partition of the
number of strings for ¢ as a non-increasing sequence of positive integers (n1,ng, -+ , )
which is obtained in that way for the element 7(c) of &, where 7 denotes the natural
projection B, —» S,,.
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A Appendix: Randomness of Amida-kuji

Abstract: In this appendix, applying our methods used in the above, we consider the
“Amida-kuji” constructed by the random walk, and show that such Amida-kuji are actu-
ally “random”. Furthermore we show that, when we consider the grouping given by such
Amida-kuji, against our naive intuition, the most expected grouping is that including an
element left out from the others.

A.1 Introduction

The Amida-kuji is a Japanese traditional method of lottery. In this appendix, we math-
ematically regard it as a kind of geometric object which generates a permutation of a
number of letters.

Precisely, as a geometric object on the plane, an Amida-kuji consists of parallel, evenly
placed, vertical segments, called “poles”, and mutually disjoint, horizontal segments with
endpoints on the adjacent poles, called “steps”.

In this appendix, we consider the randomness of such an Amida-kuji. Precisely if we
construct Amida-kuji “randomly”, then is the lottery obtained by the Amida-kuji actually
“random”?

There are several ways to construct Amida-kuji randomly, but we here use random
walks on some sets. See [1] for the other method for example. Our construction of
“random” Amida-kuji will be given in the next section. Then we will show that such an
Amida-kuji can yield a sufficiently random lottery. On the other hand, we can consider a
grouping of some objects via Amida-kuji. For this grouping, against our naive intuition,
we will show that a random Amida-kuji does not given a “random” grouping in some
sense. This topic will be treated in the last section.

A.2 Random Amida-kuji via random walk

Here we explain our method to construct Amida-kuji by using random walk. Rough sketch
is given as follows:

Prepare N poles (vertical segments). There are N — 1 positions (bays between poles)
where one can put steps. The, from the top to bottom, one can insert steps with equal
probabilities. Since adding steps more and more, the Amida-kuji become monotonically
complicated, it seems not a good method to choose Amida-kuji “randomly”. Thus we add
the option “insert no step”. That is, a step is either added at any of the N — 1 positions
with probability 1/N, or not added with probability 1/N.

In the next subsections, we will formulate this procedure mathematically.

Here we explain how to do lottery by using Amida-kuji (see [3] for example).

1. Draw the number of poles as same as the number of the actors.

2. Set the position at the top ends of the poles where the actors write their names.
Write the results of the lottery at the bottom of the poles.



3. Concealed the results at the bottom, insert steps “randomly”. To get more random-
ness, someone other than the actors can add steps.

4. The actors choose the positions at the top ends of the poles.

5. Follow the pole downward from the upper end. At the intersection points of the pole
and steps, have to turn right or left following the steps. Finally reach the lower end
of some pole to get the results.

Typically there are two kinds of lottery done via Amida-kuji.

(1) Getting a single success. i.e., a mark of success is signed at one of the bottom end of
the N poles.

(2) Making an order of the actors. i.e., the numbers 1 to N are assigned at the bottom
ends of the N poles.

For these uses of Amida-kuji, the following theorem guarantees the randomness of our
Amida-kuji constructed by using random walks.

Theorem 1 (Randomness of Amida-kuji). Consider an Amida-kugi of N poles constructed
by using a random walk of k steps. Then (1) as getting a single success, for each actor,
the probability to get the success converges 1/N when k — 0o. (2) as making an order of
the actors, for each order, the probability to be obtained the order converges 1/N! when
k — oo.

In the sequel, for both cases (1) and (2), we will set a probability space for Amida-kuji,
and give proofs for (1) and (2) in Theorem 1.

A.2.1 Getting a single success via Amida-kuji

Here we consider the case (1) to get a single success.

First we set our probability space in this case.

When N poles are given, There are N —1 positions (bays between poles), say 1,2,..., N—
1, where one can put steps. We then set the sample space 2 = {0,1,..., N — 1}V, and
consider the Bernoulli measure p = (%, ..., )Y on Q.

That is, given path w = wiwy -+ € Q, for each n > 1, a step is inserted between w,
and wy, + 1 at level n, while no step is inserted at level n when w, =0

Furthermore, to include the initial condition, we set 2 = {1,..., N} x Q, and consider
the initial distribution 7 on the top ends of the poles {1,..., N}, set the probability
measure fy = T X f( on Q. In this way, we define (Q, ir) as the probability space for
Amida-kuji with initial distribution 7 .

Next we define random variables X,, (n > 1) on (€, p) as X, ((wo,w)) = wp. Then we



see that
(¥ J=i+1Li#N
% j=1-11#1
Py = P((w0,w) € 0 Xo(w) = | Xna(@) =) = S 8=l j i Norjmi=1
M2 j=iand j#1,N
0 otherwise

\

is independent from n. By setting this p; as the transition probability, we can get a
Markov chain {X,} on € with the initial distribution 7.

By regarding this Markov chain as a random walk, for each X, (w), an Amida-kuji is
uniquely determined.

Proof of Theorem 1 (1). Let us consider the transition matrix P = (p;x) for the random
walk. Note that this P is an N x N symmetric matrix.

On the other hand, it is well-known that, for the matrix P, = (piC j) with pf} ji= P(Xy =
z;|Xo = z;), we have P, = P¥( k > 1) with setting P := P,.

Moreover, this P is an irreducible matrix, for pﬁj # 0 holds for every (¢, j) when k > N.
Also P is aperiodic, i.e., its period is 1, for p;; > 0 (Vi). It concludes that P is a primitive
matrix, and so, we can use the following Perron-Frobenius theorem.

The Perron-Frobenius theorem. Let A be an irreducible, aperiodic, non-negative
square matriz. Then there exists a positive real eigenvalue v of A, called the Perron-
Frobenius eigenvalue. Both right and left eigenspaces associated with r are one-dimensional.
All the entries of the eigenvector v for the eigenvalue r are positive. The only eigenvectors
whose entries are all positive are those associated with the eigenvalue r.

Now, since P is a stochastic matrix, *(1,1,---,1) is an eigenvector of P. Also P is a
symmetric matrix, 7o = (1/N,--- ,1/N) is a left eigenvector of P. Then, applying the
theorem above, as k — oo, we see that 7P, = mP* — 7 for any initial distribution =.
That is, for sufficiently large k, any entry of 7 P, — 7y can become smaller than any given
positive number £ > 0. In particular, if we consider

1 1 ] = 7;7
7[' . =
J 0 otherwise.

as the initial distribution, ﬂ';-Pk gives a random walk reaching everywhere with equal
probabilities as £ — oo. Consequently, as getting a single success, for each actor, the
probability to get the success converges 1/N when k — oo. O

Remark: Since the transition probability matrix is aperiodic and irreducible, this random
walk is mixing as dynamical system. Further since the matrix is symmetric, Py converges
to the stochastic matrix whose all the entries are equal. This implies that, from any initial
distribution, it converges to the distribution of equal probabilities.



A.2.2 Making an order of the actors via Amida-kuji

In this case, we consider the symmetric group Gy of the N letters {1,2,---, N}. Then we
take the sample space Q = {Sy}", and consider the Bernoulli measure 1 = (37, - . ., 7)™
Let us set (2, u) as the probability space of Amida-kuji in this case.

We consider random variable X, (w) (n > 0) on (2, 1) defined by
Xp(w) = wy

where we set Xp(w) = e € Gy with the identity element e. Recall that the transposition
o; = (i,5+1) is defined by 0;(i) =i+ 1, 0;(i + 1) =i, 04(j) =7 (§ # 4,9+ 1). Then

dol=0; (1<j<N-1)

zl= zj-

Poro = P(w € 0 Xn(w) = o' | Xpoa(w) = 0) =

o=0
0 otherwise

is independent from n. By setting this p,; as the transition probability, we can get a
Markov chain {X,} on Q. By regarding this Markov chain as a random walk on &, for
each X, (w) € Sy, an Amida-kuji is uniquely determined.

Now the proof of Theorem 1 (2) can be obtained in the same way as (1).

A.3 Grouping via Amida-kuji

Next we consider the grouping labeled objects of a set via Amida-kuji. Precisely consider
the following setting.

Let A be an Amida-kuji with N poles, and o4 the permutation of N letters induced
from A as in the previous subsection. Then we define an equivalence relation so that a
pair of elements X and Y are equivalent (belonging a same group) if o4(X) =Y. Then
the set S can be divided into mutually disjoint subsets.

Now it is natural to ask what grouping can occur for random Amida-kuji. By naive
intuition, it seems one can have “random” grouping via random Amida-kuji. However we
actually have the following.

Theorem 2. The most expected grouping of N objects obtained from a random Amida-
kugi s the grouping by just two subsets, one of which consists of N — 1 objects and the
other only has single elements.

Here, for example, we regard the groupings of 7 objects into (3,2,2), (2,3,2), and
(2,2,3) are equivalent. That is, we only consider the partition of the cardinality of the
set.

We remark that it is known that the expected value of the number of the grouping via
random Amida-kuji is already calculated, that is

T4 m bt
2 N’

This is essentially obtained in [2] in different context.
The key to prove the theorem is the following algebraic lemma. We omit the proof
here.



Lemma 1. In the symmetric group of the order at least 3, the conjugacy class of the
mazimal cardinality is the one containing the (N — 1)-cycle (1 2 ... N — 1), and the
cardinality is N - (N — 2)!.

Proof of Theorem 2. Amida-kuji coming from the random walk as in the previous subsec-
tion correspond to elements (permutations) of the symmetric group with equal probabil-
ities 1/N.

In this case, such an Amida-kuji gives a grouping which corresponds to the cycle
decomposition of the permutation given by the Amida-kuji.

Moreover, since the number of cycles in the cycle decomposition for a permutation
is conjugacy invariant, the number of permutations admitting a cycle decomposition by
cycles of the fixed orders is equal to the cardinality of the conjugacy class of the permu-
tation.

Therefore the probability of random Amida-kuji to correspond to a permutation induc-
ing a given grouping converges to the ratio (the number of the elements in Gy described
by a product of given cycles) / N!, which is equal to

the cardinality of the conjugacy classes in Gy represented by a product of given cycles
N! '

It then follows from the lemma above that the conjugacy class of the maximal cardinal-
ity in the symmetric group of the order at least 3 is the one containing the (N — 1)-cycle

(12 ... N—1). The grouping corresponding to this permutation is the one consisting to
{1,2,--- ,N =1} and {N}. '

Also the probability of such a grouping is equal to —1!%%3)—' = _N—l——l This completes the
proof. O
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[The followoing is a Japanese translation of Appendix A. ]
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11
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ZHERICIEBNCIUR T 5 T L DRI > TV E T,

B.3 SYVHLLEHHEL LITKBIRERD

DA, NXFOES {1,2,---,N} LO NISIf#E 6y #E X, EAZEREZ Q =
{GaINELET, ZD LI BernoullifllE p= (F,..., )N ZEXET, TD(Q,u) 2dH
HIEL COMEREMEEZZT LICLET,

(Q, ) DEDHERZE X, (w) (n>0) 2,

Xn(w) = wn

TEDEY, IRL, Xo(w) =ec &y ([HFm) LLEF, CDOEE, Bfto; = (i,i+1)
Zo(i)=i+1, oi(i+1) =14, o;(j) =35 G#4,i+1D &L,

5 ool=0;(1<j<N-1)

Poro=PlweQ Xp(Ww)=0"| Xp1w)=0)={ % o =0

0 otherwise
LEBL, pe, dnllkELEVOT, Q EO<LaTEE (X)) MEEN, ThE
B LD Y H LT —T b BELET, TDEE, X, (w) €SN IKHNLT, HHEL
UM—DRREZZLICADET, TDHHEL Uk, WFBELOS VAL F— D57
bhaH#HEL LS LICLET,

EH 1 (2) DI, 175 P = (poro) ZEXET, TOD PI3 NI x NI EIDORFTIIC
BoTVET,
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—J, WEEZTOEI A TBEDEROUEBHERITING, pf, = P(w € Q: Xi(w) =
0| Xo(w) =e) ZHRD LT B1TH P = (pf,) ELTEABNEY, CDLE, P:=P
ETnUE, Po=PF (k>1) BEROIIBET,

EHIT, k> NIDLE, pb, # 0 MEED g ICDWTH D MLDEN S, PIIBHIITH
THETELADOVET, £lep,, >0 Vo e Gy) &b, PORAEN1, DFED, P
AN THZT LDV ET, [oT, PRVDBBFAKNE D, BURO -7
ONZY ADEHZERATI2ENTEET,

HERITHIOMEN S, ¢(1,1,---, )& P OEBEXXT MUICEDES, $hbb, r=1
WEAEEETH Y, WHTIITHBHT LD 1o = (1N, -+, 1/N)EEBRERY klic
BOET, k> ooD&E, FIHIKET = (1,0,--- ,0) ICDWVWTIEEMIC n P, = nPF -
THY, THKERZ EIZDVTIE, 7P —mp DERDNCDOWVT, FOMMEIMERICE
ABNIEB e>0KDENERBEICTEET, /5T, ko o0DEE, BNE
DIEFEZZHBHEL, TAThOEFTIHEONIHRIISHERIIGRLET, O

B4 HHIFELLCICEBTIV—=T9F

TTRIC, DAL CEESTENBEDTNIFTEDEE S D JIV—To #EZTH
9, BEMICE, RO GREEEXET,

N ROHHRERFFDHHIEL LR ALL, ADLHFEIND NXEOBER o, L LE
To TDEZE, g4(X) =Y HEDIE, SNVVXBDNeSDIRESNIVY BDN S D
TTRELCITNV—TICBTHE LT, SEEVCHEETRDRWESEAOME LTET,
DEDITN—THITS, TeNTEET,

ETHEMEEERELT, HARLUCANLBONE TN —TRTREDLIBEDT
L&ID? HRHT, AT VAL JBIEAD) BARLE, EQXIRITN—THIH
BENBTLLIN?

CDKICLT, FUYELICRARLDHIZL LIZDNWT, FhhSBSNEZTN—T
DI EEZEZTHET, I N BOLODITN—T33%2T 5L &, EEMICIZTS,
BHCDITSNES BTN LETH, HiE, LUTOENMHTEET,

EE 3. FJUVELIGEARDHIEL CICED N BOLDDTIV—T533T, oL bl
ROBWEDIE, N - HENSRZT—IVT L (ADE DN S5 T NV—TD 2 Dicbly
2LDTHB,

BBZTOWRIE 1/(N-1) BB LEbHDET, £EEE, NETRTE—DD



TN—TLFBHED, RHERIEL, TOWRE 1N LE>TVET, 1=FEL, ¥
W=TRFBVT, FIAE, TEOLOEDIZLEE, (3,2,2) £(2,3,2) & (2,2,3) &
FCTIN—T0F e BETHICLET,

SHICBENZTIN—T30D [F)V—T08 DERFEIL,
Ll
2 N
KEBZELHONTVET (BAHEL LEWS> TWBRTIIEVDTTH, REHICIX
[4] TEERREN TV E D),

EHDIADE L 75 5DI3, RORBWITHETT,

Rl 1. XHFEE S (N > 3) DHEFAD 5 B, TOMBEABAILZZDE, o= (12...n-1)
ZECHBIADBBICRY, 200K N- (N -2)! TEA5hET,

HHEDZEN. SWFBE Sy(N > 3) DT a I LT, C(a) = {g € Snlga = ag} I XD ZD
OB 2R T L&, o ZETHE K OFOEMIR |6y]/|C(a)) TEZE5NET (3D,
WoT, HED a€ G, ITHLT, |C)|>N-1%2E2ITE0,

—HRUC, Ky, ke 225 ko k> k4 ke (L, S8 r =1, ¥,
r=2k =k =20 EIROET) IKEELET, G r IKDWTORNEEHL
£7,

ST, a€ By ZHBXFRZEERVKBOBTEEFZLLS ja=0a;--q, (TTT,
ai &k BT, by > ko> >k > 1)

kr>22892LE, Cla)da,. .. a TERINBME k- ke OF —~NVEEOER
ZEAET, LOERICED, |C)| & k+ - +k =NLUETT,

kry 2 2,k =1 ELELED, LEFARKIC, Cla)liday,...,ar-1 TERENBZT—
NIVEE, TbE, (BN koko OBEERETH, EOFEICKD, FOMEBUL
kit 4k =N-1UETY, (COHPBFREBICED S BBEETT, )

BRI, kp=- =k =102<p<r-1) DPAEEIEL LS, TDLE, Cla)ld
a1y, ap1 WKHIA T, BRO DXLEN SR B EE r—p+1 (> 2) DK TER I NBERET —
NVEZZHET, TOMEUI, ki kyr (r—p+1) > ki 44k +(r—p+1) =N
M ECRDET,

DERS, 2l |Cla)| > N -1 MbhbET,

7z, |Cla)|=N-1DBIILee 2L, r—1=1k>2k=1Fdr-1=
2,k1 =ky=2,k3=1,n—-1=4 DVWTNODBRIZILET, BiEZEE, o & (n - 1)K
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L0 ET, BELSE n=5MRVIBET, TOLE, a=(12)(34) LE>TXKNT
L&, UL, COBREIE|CQ) =8 BDT, FERIKILERA (HTHEL Cl)
IKEENET), O

3 3 OFEN. WIE (2) TRBLES VALY +— I hEBENEHREL UEELD
v, WIS BMMROT, OF B, ZEFARE 1/N TELNTVET, ZORE,
ZDBRIEL LRl TEENS FIV—THHE, WS 2ERZCEOMTR UL ¥
DELHCHIGLET, b, BREEOMTELE L 2 DXBEOEKIEHETET
B0, FUMMOMBOMTEE N2 BROMEI, TOMPEOREIC—]T 2HHD
MO ET,

HoT, SYRLABRELLY, HB0EDDTN—TMIRER S BRICHET
BHERI,

16

HHRBOMTERIND Sy DO HEIMROMTREING Sy DITDHIFADAIEL

N! N!

C—HTBEIDADET,

T3, LOWMBERD, MR Sy(N > 3) OREEDS B, TOEMEMBEKICKZD
&, o=(12...N - 1) ZECHEEOHAICRY, TOBBIISS 27V —T7343,
(1,2, \N—1} & {N} 53 EDICEZDITYE, £LEFOXIBIN—THTIk
YRR Y VRS O

N!
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