The Diamond Lemma and prime decompositions

Sergei Matveev

Chelyabinsk State University and Russian Academy of Sciences

In 1942 M. H. A. Newman proved a simple lemma (see [3]) which turned to be useful for different branches of mathematics such as algebra and mathematical analyses. In this paper I describe a new version of this lemma suitable for topological applications.

Let Γ be an oriented graph. We say that a vertex B of Γ is a *root* of a vertex A of Γ if there is an oriented path in Γ from A to B, and B has no outgoing edges. A vertex of Γ may have one root, several roots, or no roots at all. The following question seems to be reasonable.

Question: under what conditions each vertex of Γ has exactly one root?

In order to answer this question let us formulate two properties of Γ .

1. Finiteness property (FP): Any oriented path in Γ has finite length. In other words, Γ does not contain oriented cycles and infinite oriented paths. This property implies that any vertex of Γ has at least one root. By an *angle* we mean a pair of edges of Γ emanating from the same vertex. The set of all angles of Γ we denote by $A(\Gamma)$. Let N be the set of all natural numbers.

Definition. A map $\mu: A(\Gamma) \to N \cup \{0\}$ is called an angle measure if it possesses the following property (AM):

- 1. If $\mu(\overrightarrow{AB_1}, \overrightarrow{AB_2}) = 0$ then there exists a vertex C of Γ such that Γ contains edges $(\overrightarrow{B_1C})$ and $(\overrightarrow{B_2C})$.
- 2. If $\mu(\overrightarrow{AB_1}, \overrightarrow{AB_2}) > 0$ then there is an edge \overrightarrow{AC} such that for i = 1, 2 we have $\mu(\overrightarrow{AB_i}, \overrightarrow{AC}) < \mu(\overrightarrow{AB_1}, \overrightarrow{AB_2})$. We will call \overrightarrow{AC} a mediator edge.

The Diamond Lemma. Suppose Γ has properties (FP) and (AM). Then any vertex of Γ has a unique root.

Outlines of the proof.

Let us call a vertex X of Γ regular if it has only one root. Arguing by contradiction assume that Lemma 1 is false. Then there is a singular vertex X such that the endpoints of all outgoing edges are regular. Since X is singular, there is a pair of outgoing edges such that their endpoints have different roots. Among all such pairs we take a pair having minimal angle measure μ . There are two cases: $\mu = 0$ and $\mu > 0$. In the first case we get a contradiction with item (1) of property (AM), in the second one we get a contradiction with item (2) of (AM).

This lemma turned to be useful for proving or disproving prime decomposition theorems of topological objects. To give an example we describe a new simple proof of the famous Kneser-Milnor prime decomposition theorem for orientable 3-manifold.

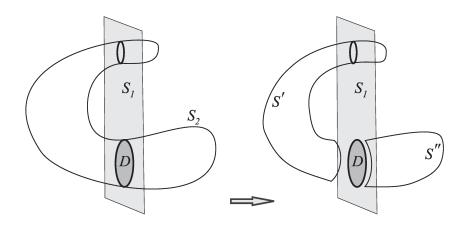
Theorem. Any connected orientable 3-manifold can be decomposed into connected sum of prime factors, and these factors are unique up to permutation.

Proof. Let us construct a graph Γ whose vertices are finite sets of 3-manifolds. Two vertices A, B are joined by an oriented edge \overrightarrow{AB} if B is obtained from A by replacing a manifold $X \in A$ by manifolds $X_1, X_2 \in B$ such that X is a connected sum of X_1 and X_2 . Note that X_1, X_2 are obtained from X by so-called *spherical reduction*, i.e. cutting X along a nontrivial sphere S and filling by balls two spheres in the boundary of the resulting manifolds. It is convenient to think that \overrightarrow{AB} is determined by S.

We claim that Γ possesses properties (FP) and (AM). Property (FP) follows from the famous Kneser Lemma [1]. Let us define a map $\mu: A(\Gamma) \to N \cup \{0\}$ by setting $\mu(\overrightarrow{AB_1}, \overrightarrow{AB_2})$ to be the minimal number of curves in the general position intersection of spheres S_1 and S_2 which determine $\overrightarrow{AB_1}$ and $\overrightarrow{AB_2}$. The proof that this map is an angle measure, i.e. it has property (AM) is based on the standard technics of removing intersection of surfaces.

Case 1. Suppose that $\mu(\overrightarrow{AB_1}, \overrightarrow{AB_2}) = 0$. Then the corresponding reducing spheres S_1 and S_2 are disjoint and thus each of them survives the reduction along the other. It follows that $S_1 \subset B_2$ and $S_2 \subset B_1$. By reducing B_1 along S_2 and B_2 along B_1 we obtain the same vertex C. This proves item (1) of property (AM).

Case 2. Suppose that $\mu_0 = \mu(\overrightarrow{AB_1}, \overrightarrow{AB_2})$ is positive. Then those spheres lie in the same connected manifold $Q \in A$. Among the circles in $S_1 \cap S_2$ we choose one, denoted by c, which is innermost with respect to S_1 . This means that c bounds a disk D in S_1 such that $D \cap S_2 = c$. We cut S_2 along c and glue up the boundaries of the cut by two parallel copies of D. Applying a small perturbation we obtain two new spheres S' and S'' whose intersection with S_2 is empty and whose intersection with S_1 consists of a smaller number of circles (since c disappeared), see Fig. 1. At least one of these two spheres (say S') must be non-trivial in Q, since otherwise S_2 would be trivial. Therefore, reduction along S' determines a mediator edge. It follows that Γ possess property (AM). Applying the Diamond Lemma we conclude that any vertex of Γ has a unique root, which means that any oriented 3-manifold has a unique decomposition into prime factors.



⊠ 1: Fig.1: Surgery along an innermost circle.

The same strategy works for proving many other prime decomposition problems as well as for finding counterexamples. First we construct a graph whose vertices are collections of topological objects we are interested in, and whose edges are reductions along appropriate surfaces. As a rule, property (FP) is easy while property (AM) requires developing a new or adjusting a known technics for removing intersections of surfaces used for reductions. Let me list several results obtained by this strategy (see [2] for details).

- 1. The Kneser-Milnor prime decomposition theorem (new proof).
- 2. The Swarup theorem for boundary connected sums (new proof).
- 3. A spherical splitting theorem for knotted graphs in 3-manifolds (Joint work with C. Hog-Angeloni);
- 4. Counterexamples to prime decomposition theorems for knots in 3-manifolds and for 3-orbifolds.
- 5. A new theorem on annular splittings of 3-manifolds, which is independent of the JSJ-decomposition theorem.
- 6. An existence and uniqueness theorem for prime decompositions of knots in products of surfaces and intervals.
- 7. A theorem on the exact structure of the semigroup of theta-curves in 3-manifolds (joint work with V. Turaev).
- 8. Prime decompositions theorem for virtual knots.

I use the opportunity to thank the organizers and participants of the international conference "Intelligence of Low-dimensional Topology" (May, 2015, Kyoto, RIMS). The

research and my visit to Japan were partially supported by Laboratory of Quantum Topology of Chelyabinsk State University (Russian Federation government grant 14.Z50.31.0020).

References

- [1] H. Kneser, Geschlossene Flächen in dreidimensionalen Mannigfaltigkeiten, Jahresbericht der Deut. Math. Verein, 28 (1929), 248-260.
- S. V. Matveev, Roots and decompositions of three-dimensional topological objects. Russian Math. Surveys 67:3, V. 459, 507 c. 2012
- [3] M. H. A. Newman, On theories with a combinatorial definition of "equivalence", Ann. of Math. 43 (1942), 223-243.

Chelyabisk State University E-mail address: svmatveev@gmail.com